
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

UDC 004.75
DOI: 10.15587/2706-5448.2024.309344

DEVELOPMENT OF LOCK-FREE
APPROACH FOR SHARED MEMORY
ORGANISATION IN REAL-TIME MULTI-
THREADING APPLICATIONS

The development vector of modern central processing units, which increasingly involves using a more signifi-
cant number of cores and prioritizing parallelism over the high power of a single computational unit, presents new
challenges for the existing software design. This work investigates and addresses the problem of access to shared
memory in multithreaded environments, such as operating systems, interactive distributed computing systems, and
high-performance simulation systems. Thus, the object of study is a non-blocking approach to organizing access
to memory and performing basic operations with it through non-blocking synchronization.

The research methods include developing an approach to organizing access to shared memory using the double-
word compare-and-swap algorithm, followed by a theoretical and practical comparison of the resulting outcome
with the standard blocking access algorithm to shared memory for different configurations of the number of threads
and the number of simultaneous memory access attempts. Additionally, testing was conducted within the framework
of an unnamed closed-source project by integrating the solution into it, followed by A/B testing.

The results showed that using non-blocking approaches is advisable, especially in comparison with locking ap-
proaches, which demonstrated a performance degradation relative to the standard allocation algorithm by more than
300 %, while non-blocking approaches provided an improvement of 40–90 %. It was also found that using hybrid
approaches to the organization of shared memory systems at the software level can lead to more stable results and
mitigate application performance degradation compared to classical approaches such as buddy algorithms or free lists.

Despite the results obtained, the author remains cautious about the idea of memory management and pool
organization at the software level and does not recommend using specialized allocation algorithms without an
urgent need to speed up memory allocation itself. The purpose of these structures is still not to improve software
performance directly but to enhance and speed up access to the data stored in them.

Keywords: multi-threading, dynamic memory allocation, real-time systems, lock-free algorithms, game engine,
high-performance computing.

Oleksandr Syrotiuk

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Syrotiuk, O. (2024). Development of lock-free approach for shared memory organisation in real-time multi-threading applications. Technology Audit and

Production Reserves, 4 (2 (78)), 6–11. https://doi.org/10.15587/2706-5448.2024.309344

Received date: 10.06.2024

Accepted date: 30.07.2024

Published date: 31.07.2024

1. Introduction

In modern software development, especially high-per-
formance ones, several well-known bottlenecks are broadly
recognized and are the first candidates for improvements
and further optimizations.

The first bottleneck was the performance of single-thread
applications, as the CPU’s development is irrelevant to the
simple Moore’s law. As the performance of the single core
became stale, applications with high efficiency in their design
started to embrace multi-threading [1, 2].

The second issue is memory bandwidth, access, and al-
location speed. For both RAM and storage drives, even the
most efficient CPU is limited by RAM and SRAM access [2].
Embracing multi-threaded, cache-friendly, and no-runtime-
allocation design became the number one priority of real-time
applications that aim for performance.

On the other hand, there are a lot of historically defined
standard approaches, design patterns, and structures that
are used in both user and kernel spaces. One such approach
is the use of predefined memory pools and sets of arenas.
A single arena is a tightly pre-allocated contiguous block of
memory, requested on startup and served to an application in
run-time. A memory pool is a similar structure, except that
it is used to serve arbitrary-size blocks of memory. In some
cases, a pool can be organized as a set of arenas. Although
their exact implementations may vary, the key concepts and
characteristics remain the same. These structures grant deve-
lopers refined control over the memory used by an application.
Moreover, they provide a more cache-friendly data layout,
compared to random blocks of memory, allocated by OS, at
least in the case of the application programmer level [3, 4].

Creating an efficient multi-threading safe memory mana-
gement system became a challenge for application develo-

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

pers (who can implement the abovementioned memory
pools and arena) and OS developers (who must implement
OS-level mechanisms to serve memory to the end-used –
application developer). Currently, there are two common
approaches: the application programmer creates thread-local
storage for each thread and gets additional memory ei-
ther from the OS or the global storage via locking it [5].
OS developers (at least in early Linux kernel days), on
the other hand, do not have per-thread storage but have
a vast number of hot caches which serve memory to the
user, but at the end, those caches are also created under
the one global lock [5]. In common, both systems have
the same bottleneck – they must incorporate a single syn-
chronization point where no cache fall-back is available or
local memory needs an extension.

During the study, the problems mentioned above were
researched [1–5], and different solutions were found [6, 7].
During the study, similar spirit research [8] incorporated
similar ideas (while missing some important for developer
operations with memory) to one author of this work. The study
aims not only to research one concrete method of lock-free
memory allocation but also to describe how those me thods
can be integrated into a coherent memory pool system
for real-time application and how that system will look
and operate.

2. Materials and Methods

The theoretical part of the study was conducted in mul-
tiple – investigate existing methods of memory manage-
ment in multi-threading [3–7], investigate relevant existing
methods [8], and investigate existing tools that implement
them. The practical side of the research is straightforward.
It consists of implementing such a system and then further
testing it in the actual application and on synthetic use-case
scenarios, preferably alongside the previously investigated
implementation. The relevant characteristics of the computer
that will be tested further are described in Table 1.

The first result of this work is
architecture of a memory pool that
will incorporate lock-free design
and be helpful in real-world ap-
plications. The proposed design is
schematically described in Fig. 1.
It is necessary to be aware of ge-
neral points while designing pool
and memory allocation systems,
which will affect the overall solu-
tion but are not properly covered in
analyzed relevant research [6–8].

As far as the system should
be multi-purpose and will be used
for general purpose programming,
it needs to be aware of alignment
requirements. Unaligned memory
access is either not recommended
or is strictly forbidden. At best it
causes performance degradation.
In the worst case, depending on
the host CPU and OS architec-
tures, it causes a hard crash (fatal
error) in run-time. Additionally, it
is possible to remember that in
that research, we are looking at the

problem from the application developer’s point of view and
requesting memory from the physical space is left to the OS.

Fig. 1 provides a brief description of the schematic. The
system has two main sections: the special-purpose memory
section (further referred to as SP, red in Fig. 1) and the
general-purpose memory section (GP, green in Fig. 1).

Each of those two sections consists of two parts: a static
one (will be called fixed further), used for metadata (and serves
mainly for an acceleration purpose), and a dynamic one, used
for an actual memory serving. Fixed section components can
be distinguished in Fig. 1 by hatching the background of the
corresponding color and placed at the top of the dedicated
section. A colorless background can distinguish a dynamic
component. Arrow helps to identify traversing order. It is
straightforward, from SP (top) to the GP (bottom) section.

SP section is a set of free lists [9]. This research does
not describe a free list, but generally, a free list is a memory
management structure that organizes blocks of free memory
in a linked list structure. Concrete implementations of this
structure may vary depending on programmers’ demands;
in this research, a free list is a self-embedded single-linked
lock-free list of fixed-size nodes that is used as a fast-
accessed cache for fixed-size allocations.

Table 1
Characteristics of the testing environment computer

Parameter Name Value

CPU AMD Ryzen 9 3950X

Real Core Count 16

Virtual Core Count 32

Cache L1 64 KB (per core)

Cache L2 512 KB (per core)

Cache L3 64 MB (common)

CPU Frequency 3.5–4.7 GHz

RAM 32 Gb

RAM Frequency 3200 MHz

Fig. 1. Generalized schematic view of the system

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

A single free-list instance further will be referred to
as a bucket. In Fig. 1, each bucket has the suffix <X>B,
which describes how many bytes are held by each block
in the bucket. There are no hard upper limits for the size
of the bucket or block inside it. Those variables should be
measured by programmers for each application separately,
depending on the allocation patterns, but head ahead to
the results; as a rule of thumb, let’s advise not to allocate
blocks of size bigger than a single cache line. There is
no way to create a bucket of size smaller than a single
word (register) width on the host PC (to be more precise,
smaller than the pointer byte width).

Self-embedded here means that free-list nodes and me-
mory nodes are basically the same entity and data (memory)
is embedded in those nodes. Free-list nodes can be in
two states: allocated (removed from the free list) and
free (linked to the list), and nodes’ memory is interpreted
differently according to their state schematically, as de-
scribed in Fig. 2.

In Fig. 2, it is possible to see the free-list list before (top
path) and after allocation (bottom path). Also, it is known
how the memory layout of 64B.1 changed depending on
the state of the block; the following field inside it served
as part of the memory because 64B.1 is not more part
of the free list. On dealloca-
tion, 64B.1 will become part
of the free list again and can
be split into two parts. The ac-
tual state after the deallocation
will not be shown here because
different deallocation strategies
can be incorporated in general.
There are three of them: make
a deallocated blockhead of the
free list, insert it in its previ-
ous location or insert it to the
end. An optimal strategy is the
point of additional research, but
naively, it was decided to make
a deallocated block to be the
head of the free list. Potentially,
it will be more cache-friendly by
design and make deallocation an
O(1) operation in nature [10, 11].

It is also vital to notice that
the list is designed over a conti-
guous array, and the list nodes
are tightly placed in memory,
reducing linked-list known draw-
backs of random-memory access.
The chosen design of SP section
buckets incorporates fast-paced
single fixed-size block allocation
and deallocation. Also, those
blocks are strictly aligned to one
particular alignment and should
not be used to allocate impro-
perly aligned memory. Depending
on the system design (bucket se-
lection strategy), those free lists
can also support memory real-
location operations (both grow
and fit). As far as the free list is
just a regular single linked list,

it was implemented as a lock-free (non-blocking) linked
list with the compare-and-set (Read-Modify-Write) opera-
tion and can be treated as a thread-safe instance [11].

The GP section is a set of structures incorporating
a design supporting the buddy allocation strategy. Buddy
allocators organize memory blocks in a binary-tree structure.
This tree is self-balanced in its nature by design (because
each block must have a relative buddy block). Again, this
research does not describe how this allocation pattern
works in general [7, 8].

The significant points that must be made clear are that
this binary tree is fixed size (as far as blocks of the buddy
allocation are fixed) and implemented over a contiguous
array alongside two helper arrays that hold allocation
state and tree nodes state (both described further), as
presented in Fig. 3.

This research heavily incorporates a lock-free buddy
allocation system, represented in the above papers. Still,
it heavily modifies it regarding operations, alignment sup-
port, index structure, and tree traversing strategy. Instead
of describing how buddy allocation generally works, it is
possible to focus on specific modifications that distinguish
our approach from another research. The overall scheme
is presented in Fig. 3 [8].

Fig. 3. Schematic view of the designed buddy tree before and after allocation

Fig. 2. Schematic view on the designed free-list before and after allocation

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

First, the developed design tries to incorporate stability
of allocation and fast pacing of memory access in real-time
applications, so it was decided to avoid potential misalloca-
tions. Previous research acknowledged that fact provided
a roll-back mechanism; this research, on the other hand,
attempts to avoid it at all, and for that, the binary tree
is traversed not from the middle (from the best suitable
block) but from the top. Due to that, theoretically, memory
allocation must be slower in best-case scenarios. Still, in
worse-case scenarios, rollbacks will be avoided, and the
allocation process will be redirected to another branch
of the binary tree or completely moved to another GP
bucket [12]. Additionally, the original research proposes
using random numbers generation to determine the al-
location branch because, in that case, the possibi lity of
collision (and further rollback) should be lower. Still, this
claim needs to be additionally researched, as far as random
number generation may be a costly operation in general,
and from an application point of view, it is preferable
to avoid even pseudo-randomness in critical (hot) paths.
Moreover, not all CPUs support RDRAND instructions
to make their generation efficient [13].

Secondly, as far as buddy allocation is used as a gene-
ral-purpose allocation strategy, and the system does not
incorporate separate alignment restrictions on memory
served by the GP section, an additional allocation index
structure was modified. When the user allocates memory
in the integrated design, it has an additional structure for
each tree [8]. That structure stores an allocation of info
about the memory served to the user. In general, that
index is used to guarantee the correctness of the deal-
location processes. This index, in practice, is a fixed-sized
array that holds a pointer to the block, served to the
user, and alignment; it is necessary to use it to convert
a served pointer to the served block beginning.

In Fig. 4 presented a scoped view on block 256B, in
which previously allocated 192 bytes of memory, with
the alignment of 16. As Block 256 is naturally aligned
to 8 (0x7BB6C7C8), and the user had requested strict
alignment of 16, it is necessary to serve it to the following
address (0x7BB6C7D0). During the deallocation process,
the user will provide with a memory address served to it;
using the alignment info, it is possible to decode that ad-
dress back to the actual block 256B begin (0x7BB6C7C8)
and «free» it.

The allocation process is straightforward, with those
two designs incorporated into the structure, as presented
in Fig. 1. The system receives the number of bytes to al-
locate and the alignment to allocate with. Firstly, wit is
possible to try to find a suitable bucket in the SP section
and allocate memory. Then, if the system fails to allocate
memory in those buckets, let’s try to allocate memory in
the GP section. Otherwise, fail. Obviously, there are pos-
sible fallbacks for the development stages, like allocating on
the system heap, in case SP and GP sections are busy and
there is no free memory left. All in all, this is up to actual
cases and not relevant to the overall design of that system.

The deallocation process is even simpler; when memory
is deallocated, it is possible to know exactly what it is
necessary to deallocate, and there is a special acceleration
structure for that. In practice, those structures are just an
array of pairs. Each pair contains lower and higher ad-
dresses of the memory, the bucket holds, and the system
on deallocation search range in which the corresponding
address falls and deallocates memory. Those structures are
read-only and do not affect multi-threading safety at all. The
system should be safe from race conditions until both GP
and SP sections are lock-free and thread-safe. The overall
correctness of lock-free GP and SP sections can be verified
through corresponding research for both lock-free buddy
allocators (as far as this research does not completely ne-
glect the approach in it, just modify some parts to be
more suitable for purposes of the author’s practical domain)
and the overall design of the lock-free linked lists [8, 11].

3. Results and Discussion

A prototype of the designed system was implemented in
C++ and tested alongside the built-in standard allocation
functions. This test aimed to show that the system can be used
and that any performance gains can be received at all. Then,
the system will be tested against itself, but without a lock-
free approach, every bucket in the SP and GP section will
instead be guarded by a regular spinlock. The randomly pre-
defined sequence of allocations and deallocations (10,000 al-
locations and deallocations per thread) was executed with
a different number of threads, and the time wasted in alloca-
tion (malloc) and deallocation (free) functions was measured.

Fig. 5, 6 describe the behavior of allocators against
standard built-in malloc/free allocation functions in the
C language.

Even with spin-lock, when the thread count is small (up
to 3 threads), spin-lock memory access will outperform direct
memory requests from OS through free/malloc, but things
get worse on larger thread counts. Progressively, the margin
of error became bigger. Degradation can be seen in Table 2.

This may be seen as an expected result. First of all,
concurrency in memory allocation is not a completely new
problem, and a lot of work has been done to improve the
overall performance of those functions in general. Straight-
forward spin-locking will not provide a lot of gain on
a large number of threads. The result from Fig 6 sounds
promising, on the other hand. It is possible to receive an
increase in performance, adopting the lock-free approach
in allocation design. Table 3 presents performance gain
against the malloc/free pair mentioned above.

As it is possible to see from Table 3, even the simplest
lock-free free list may benefit from that design and receive
performance gain against built-in malloc/free. Drastic perfor-
mance gains were received from that improvement. Still, it
is necessary to mention that this should also be an expected
result. It is not a secret that specialized allocators, tuned
for the behavior of an application, will outperform general-
purpose allocators. As far as all tested counterparts have

a severe issue, all of them have a limited amount
of predefined memory, and they either need to fall
back to request them from OS, or either application
will receive a hard crash. It is possible to conclude
from testing against the malloc/free pair that the
lock-free approach should be tried in the OS-level
implementation of the memory management system.

Fig. 4. View on allocated memory blocks

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

From the application programmer’s
perspective, it is possible to compare the
lock-free buddy allocator, lock-free list
and lock-free hybrid system designed in
that paper. As it is possible to see in
corner cases, the hybrid system, in ge-
neral, is slightly worse than the simpler
approaches on the smaller thread count,
and the free list is better by ~2 %.
On the other hand, the buddy system
is drastically worse. The same can be
said for 4 threads, where buddy-allocator
became better but still not as good as
a simple free list. The free list is still
better by ~4.5 % than the hybrid sys-
tem. On 16 threads, it is possible to
see that the free list starts to fall back,
while the buddy allocator and hybrid
system perform nearly the same, and
with further thread count increases, the
picture stays the same. Further tests
with 64 and 128 threads had shown no
significant progress, except the fact that
all application-written solutions (buddy
allocator, free list and hybrid system)
became harder to maintain. The key
maintenance problem is the need to pro-
grammatically set a hard max memory
limit for those systems. The source of
that limitation is in the initial design.
Those systems are not designed for arbi-
trary allocations, like default malloc/free
or OS API for allocations (but they can
be done so, there is just not a lot of
sense in creating such a general-purpose
allocator on the application side).

In the end, the main limitation of
that study is the fact that real-world
applications that can benefit from those
systems are too complex. Improvements
from those changes cannot be mea-
sured so easily, as far as they have
incremen table, fractional characteris-
tics. A simple synthetic benchmark may
show raw performance gains or losses,
but systems like the developed one pro-
vide not only a «lock-free» approach to
memory allocation. They provide better
direct control over the memory and
improve control over the data locality.
Those improvements may allow it to
outperform the general-purpose alloca-
tion method even without optimization
of an allocation speed.

There are two integration tests were
performed. One was done in the closed
project, replacing a simple free list with
a developed free list system. In that test,
the performance was measured as an
integrated value in framerate and time
wasted in the allocation function; in
both cases, overall framerate increased
by 2.2 % from 53.7 to 55.9, and time
wasted in the allocation/deallocation

Fig. 6. Test of allocators with lock-free design alongside the malloc/free

Fig. 5. Test of allocators with spin-lock guard alongside the malloc/free

Table 2

Degradation of performance against malloc/free pair in Fig. 5

Thread count
Spin-Locked Buddy

Allocator (%)
Spin-Locked Free

List (%)
Spin-Locked Hybrid

System (%)

2 –5.29 –40.00 –43.31

4 236.01 3410.49 263.39

8 243.78 1332.32 301.09

16 278.93 1234.64 272.96

32 495.72 1282.67 455.44

Table 3

Increase of performance against malloc/free pair in Fig. 6

Thread count
Lock-Free Buddy Al-

locator (%)
Lock-Free Free List

(%)
Lock-Free Hybrid

System (%)

2 2.82 38.20 36.27

4 43.03 87.67 83.00

8 94.54 94.04 93.42

16 98.09 40.52 98.25

32 99.06 60.09 99.13

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

block was reduced by ~0.3 %. The second test was per-
formed. The code base already used a custom allocation
strategy, so that is not a very relevant result, but it is
interesting, nonetheless. The second integration test was
done on previous research of authors, and in that scenario,
received a ~13 % improvement in performance, which was
again measured in framerate [14]. In that case, the standard
allocation scheme with C++ was replaced with a new/deleted
one. As mentioned above, the author was forced to measure
memory consumption manually and configure the memory
pool of the hybrid system in order to receive such a gain.
This, again, is a drawback that application programmers
need to be ready for.

Further research should include experiments with SP
bucket selection strategies. During this paper’s organiza-
tion, it was noticed that in a strongly typed language,
it could greatly benefit from mapping buckets not to the
block size but to an actual type and replacing bucket
IDs with a type map. Secondly, further experimentation
between the SP and GP section’s size relations can be
done alongside the relation between the size and num-
ber of buckets in each section. Additionally, the fallback
mechanism may be provided in out-of-memory scenarios.
In general, research about memory allocation tracing will
greatly benefit such a system.

4. Conclusions

In conclusion, overall tests and theoretical research show
that the presented approach has a place to be used. It can
provide benefits of both a free-list and a buddy-allocator.
The approach also can be made lock-free and provide sig-
nificant performance improvements, alongside the base gain
of the memory pool, in comparison to the general-purpose
allocation strategies. Still, it must be considered that such an
approach should not be used every time and must be used
carefully. Fallback to manual memory allocation management
will put an additional burden on the application program-
mer’s shoulders. Additionally, standard allocation methods
like malloc/free, new/delete or OS API calls (depending on
the language and OS) already provide refined and performa-
tive general-purpose solutions that do not require additional
work, configuration and maintenance.

Conflict of interest

The author declares that he has no conflict of interest
about this research, whether financial, personal, authorship
or otherwise, that could affect the study and its results
presented in this paper.

Financing

The research was performed without financial support.

Data availability

The manuscript has no associated data.

Use of artificial intelligence

The author confirms that he did not use artificial in-
telligence technologies when creating the presented work.

References

1. Ross, P. E. (2008). Why CPU Frequency Stalled. IEEE Spectrum,
45 (4), 72–72. https://doi.org/10.1109/mspec.2008.4476447

2. Efnusheva, D., Cholakoska, A., Tentov, A. (2017). A Survey of
Different Approaches for Overcoming the Processor – Memory
Bottleneck. International Journal of Computer Science and In-
formation Technology, 9 (2), 151–163. https://doi.org/10.5121/
ijcsit.2017.9214

3. Barnes, N., Brooksby, R. (2002). Thirty person-years of memory
management development goes Open Source. Available at: https://
www.ravenbrook.com/project/mps/doc/2002-01-30/ismm2002-
paper/ismm2002.html

4. Ferreira, T. B., Matias, R., Macedo, A., Araujo, L. B. (2011).
An Experimental Study on Memory Allocators in Multicore
and Multithreaded Applications. 2011 12th International Con-
ference on Parallel and Distributed Computing, Applications and
Technologies. https://doi.org/10.1109/pdcat.2011.18

5. Carribault, P., P rache, M., Jourdren, H. (2011). Thread-Local
Storage Extension to Support Thread-Based MPI/OpenMP Ap-
plications. Lecture Notes in Computer Science. Springer, 80–93.
https://doi.org/10.1007/978-3-642-21487-5_7

6. Von Puttkamer, E. (1975). A Simple Hardware Buddy System
Memory Allocator. IEEE Transactions on Computers, C–24 (10),
953–957. https://doi.org/10.1109/t-c.1975.224100

7. Larson, P.- ., Krishnan, M. (1998). Memory allocation for
long-running server applications. Proceedings of the 1st Inter-
national Symposium on Memory Management. https://doi.org/
10.1145/286860.286880

8. Marotta, R., Ianni, M., Scarselli, A., Pellegrini, A., Quaglia, F.
(2018). A Non-blocking Buddy System for Scalable Memory
Allocation on Multi-core Machines. 2018 IEEE International
Conference on Cluster Computing (CLUSTER). https://doi.org/
10.1109/cluster.2018.00034

9. Devkota, P. P. (2023). Dynamic Memory Allocation: Implementa-
tion and Misuse. https://doi.org/10.13140/RG.2.2.34993.97129

10. Xu, J., Dou, Y., Song, J., Zhang, Y., Xia, F. (2008). Design and
Synthesis of a High-Speed Hardware Linked-List for Digital
Image Processing. 2008 Congress on Image and Signal Process-
ing. https://doi.org/10.1109/cisp.2008.338

11. Braginsky, A., Petrank, E. (2011). Locality-Conscious Lock-
Free Linked Lists. Lecture Notes in Computer Science. Springer,
107–118. https://doi.org/10.1007/978-3-642-17679-1_10

12. Senhadji-Navarro, R., Garcia-Vargas, I. (2018). High-Perfor-
mance Architecture for Binary-Tree-Based Finite State Machines.
IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 37 (4), 796–805. https://doi.org/10.1109/
tcad.2017.2731678

13. Klein, N., Harel, E., Levi, I. (2021). The Cost of a True Random
Bit – On the Electronic Cost Gain of ASIC Time-Domain-
Based TRNGs. Cryptography, 5 (3), 25. https://doi.org/10.3390/
cryptography5030025

14. Beznosyk, O., Syrotiuk, O. (2023). Usage of a computer clus-
ter for physics simulations using bullet engine and OpenCL.
Technology Audit and Production Reserves, 4 (2 (72)), 6–9.
https://doi.org/10.15587/2706-5448.2023.285543

Oleksandr Syrotiuk, PhD Student, Department of System Design,

National Technical University of Ukraine «Igor Sikorsky Kyiv Poly-

technic Institute», Kyiv, Ukraine, ORCID: https://orcid.org/0000-

0002-4531-6290, e-mail: oleksandr.syrotiuk.dev@gmail.com

