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DEVELOPMENT OF LOCK-FREE 
APPROACH FOR SHARED MEMORY 
ORGANISATION IN REAL-TIME MULTI-
THREADING APPLICATIONS

The development vector of modern central processing units, which increasingly involves using a more signifi-
cant number of cores and prioritizing parallelism over the high power of a single computational unit, presents new 
challenges for the existing software design. This work investigates and addresses the problem of access to shared 
memory in multithreaded environments, such as operating systems, interactive distributed computing systems, and 
high-performance simulation systems. Thus, the object of study is a non-blocking approach to organizing access 
to memory and performing basic operations with it through non-blocking synchronization.

The research methods include developing an approach to organizing access to shared memory using the double-
word compare-and-swap algorithm, followed by a theoretical and practical comparison of the resulting outcome 
with the standard blocking access algorithm to shared memory for different configurations of the number of threads 
and the number of simultaneous memory access attempts. Additionally, testing was conducted within the framework 
of an unnamed closed-source project by integrating the solution into it, followed by A/B testing.

The results showed that using non-blocking approaches is advisable, especially in comparison with locking ap-
proaches, which demonstrated a performance degradation relative to the standard allocation algorithm by more than 
300 %, while non-blocking approaches provided an improvement of 40–90 %. It was also found that using hybrid 
approaches to the organization of shared memory systems at the software level can lead to more stable results and 
mitigate application performance degradation compared to classical approaches such as buddy algorithms or free lists.

Despite the results obtained, the author remains cautious about the idea of memory management and pool 
organization at the software level and does not recommend using specialized allocation algorithms without an 
urgent need to speed up memory allocation itself. The purpose of these structures is still not to improve software 
performance directly but to enhance and speed up access to the data stored in them.

Keywords: multi-threading, dynamic memory allocation, real-time systems, lock-free algorithms, game engine, 
high-performance computing.
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1.  Introduction

In modern software development, especially high-per-
formance ones, several well-known bottlenecks are broadly 
recognized and are the first candidates for improvements 
and further optimizations.

The first bottleneck was the performance of single-thread 
applications, as the CPU’s development is irrelevant to the 
simple Moore’s law. As the performance of the single core 
became stale, applications with high efficiency in their design 
started to embrace multi-threading [1, 2].

The second issue is memory bandwidth, access, and al-
location speed. For both RAM and storage drives, even the 
most efficient CPU is limited by RAM and SRAM access [2]. 
Embracing multi-threaded, cache-friendly, and no-runtime-
allocation design became the number one priority of real-time 
applications that aim for performance.

On the other hand, there are a lot of historically defined 
standard approaches, design patterns, and structures that 
are used in both user and kernel spaces. One such approach 
is the use of predefined memory pools and sets of arenas. 
A single arena is a tightly pre-allocated contiguous block of 
memory, requested on startup and served to an application in 
run-time. A memory pool is a similar structure, except that 
it is used to serve arbitrary-size blocks of memory. In some 
cases, a pool can be organized as a set of arenas. Although 
their exact implementations may vary, the key concepts and 
characteristics remain the same. These structures grant deve-
lopers refined control over the memory used by an application. 
Moreover, they provide a more cache-friendly data layout, 
compared to random blocks of memory, allocated by OS, at 
least in the case of the application programmer level [3, 4].

Creating an efficient multi-threading safe memory mana-
gement system became a challenge for application develo-
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pers (who can implement the abovementioned memory 
pools and arena) and OS developers (who must implement 
OS-level mechanisms to serve memory to the end-used – 
application developer). Currently, there are two common 
approaches: the application programmer creates thread-local 
storage for each thread and gets additional memory ei-
ther from the OS or the global storage via locking it [5]. 
OS developers (at least in early Linux kernel days), on 
the other hand, do not have per-thread storage but have 
a vast number of hot caches which serve memory to the 
user, but at the end, those caches are also created under 
the one global lock [5]. In common, both systems have  
the same bottleneck – they must incorporate a single syn-
chronization point where no cache fall-back is available or 
local memory needs an extension.

During the study, the problems mentioned above were 
researched [1–5], and different solutions were found [6, 7]. 
During the study, similar spirit research [8] incorporated 
similar ideas (while missing some important for developer 
operations with memory) to one author of this work. The study  
aims not only to research one concrete method of lock-free 
memory allocation but also to describe how those me thods 
can be integrated into a coherent memory pool system 
for real-time application and how that system will look  
and operate.

2.   Materials and Methods

The theoretical part of the study was conducted in mul-
tiple – investigate existing methods of memory manage-
ment in multi-threading [3–7], investigate relevant existing 
methods [8], and investigate existing tools that implement 
them. The practical side of the research is straightforward. 
It consists of implementing such a system and then further 
testing it in the actual application and on synthetic use-case 
scenarios, preferably alongside the previously investigated 
implementation. The relevant characteristics of the computer 
that will be tested further are described in Table 1.

The first result of this work is 
architecture of a memory pool that 
will incorporate lock-free design 
and be helpful in real-world ap-
plications. The proposed design is 
schematically described in Fig. 1. 
It is necessary to be aware of ge-
neral points while designing pool 
and memory allocation systems, 
which will affect the overall solu-
tion but are not properly covered in 
analyzed relevant research [6–8].

As far as the system should 
be multi-purpose and will be used 
for general purpose programming, 
it needs to be aware of alignment 
requirements. Unaligned memory 
access is either not recommended 
or is strictly forbidden. At best it 
causes performance degradation. 
In the worst case, depending on 
the host CPU and OS architec-
tures, it causes a hard crash (fatal 
error) in run-time. Additionally, it 
is possible to remember that in 
that research, we are looking at the 

problem from the application developer’s point of view and 
requesting memory from the physical space is left to the OS.

Fig. 1 provides a brief description of the schematic. The 
system has two main sections: the special-purpose memory 
section (further referred to as SP, red in Fig. 1) and the 
general-purpose memory section (GP, green in Fig. 1).

Each of those two sections consists of two parts: a static 
one (will be called fixed further), used for metadata (and serves 
mainly for an acceleration purpose), and a dynamic one, used 
for an actual memory serving. Fixed section components can 
be distinguished in Fig. 1 by hatching the background of the 
corresponding color and placed at the top of the dedicated 
section. A colorless background can distinguish a dynamic 
component. Arrow helps to identify traversing order. It is 
straightforward, from SP (top) to the GP (bottom) section.

SP section is a set of free lists [9]. This research does 
not describe a free list, but generally, a free list is a memory 
management structure that organizes blocks of free memory 
in a linked list structure. Concrete implementations of this 
structure may vary depending on programmers’ demands; 
in this research, a free list is a self-embedded single-linked 
lock-free list of fixed-size nodes that is used as a fast-
accessed cache for fixed-size allocations.

Table 1
Characteristics of the testing environment computer

Parameter Name Value

CPU AMD Ryzen 9 3950X

Real Core Count 16

Virtual Core Count 32

Cache L1 64 KB (per core)

Cache L2 512 KB (per core)

Cache L3 64 MB (common)

CPU Frequency 3.5–4.7 GHz

RAM 32 Gb

RAM Frequency 3200 MHz

 
Fig. 1. Generalized schematic view of the system
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A single free-list instance further will be referred to 
as a bucket. In Fig. 1, each bucket has the suffix <X>B, 
which describes how many bytes are held by each block 
in the bucket. There are no hard upper limits for the size 
of the bucket or block inside it. Those variables should be 
measured by programmers for each application separately, 
depending on the allocation patterns, but head ahead to 
the results; as a rule of thumb, let’s advise not to allocate 
blocks of size bigger than a single cache line. There is 
no way to create a bucket of size smaller than a single 
word (register) width on the host PC (to be more precise, 
smaller than the pointer byte width).

Self-embedded here means that free-list nodes and me-
mory nodes are basically the same entity and data (memory) 
is embedded in those nodes. Free-list nodes can be in 
two states: allocated (removed from the free list) and 
free (linked to the list), and nodes’ memory is interpreted 
differently according to their state schematically, as de-
scribed in Fig. 2.

In Fig. 2, it is possible to see the free-list list before (top 
path) and after allocation (bottom path). Also, it is known 
how the memory layout of 64B.1 changed depending on 
the state of the block; the following field inside it served 
as part of the memory because 64B.1 is not more part 
of the free list. On dealloca-
tion, 64B.1 will become part 
of the free list again and can 
be split into two parts. The ac-
tual state after the deallocation 
will not be shown here because 
different deallocation strategies 
can be incorporated in general. 
There are three of them: make 
a deallocated blockhead of the 
free list, insert it in its previ-
ous location or insert it to the 
end. An optimal strategy is the 
point of additional research, but 
naively, it was decided to make 
a deallocated block to be the 
head of the free list. Potentially, 
it will be more cache-friendly by 
design and make deallocation an 
O(1) operation in nature [10, 11].

It is also vital to notice that 
the list is designed over a conti-
guous array, and the list nodes 
are tightly placed in memory, 
reducing linked-list known draw-
backs of random-memory access.  
The chosen design of SP section 
buckets incorporates fast-paced 
single fixed-size block allocation 
and deallocation. Also, those 
blocks are strictly aligned to one 
particular alignment and should 
not be used to allocate impro-
perly aligned memory. Depending 
on the system design (bucket se-
lection strategy), those free lists 
can also support memory real-
location operations (both grow 
and fit). As far as the free list is 
just a regular single linked list,  

it was implemented as a lock-free (non-blocking) linked 
list with the compare-and-set (Read-Modify-Write) opera-
tion and can be treated as a thread-safe instance [11].

The GP section is a set of structures incorporating 
a design supporting the buddy allocation strategy. Buddy 
allocators organize memory blocks in a binary-tree structure. 
This tree is self-balanced in its nature by design (because 
each block must have a relative buddy block). Again, this 
research does not describe how this allocation pattern 
works in general [7, 8].

The significant points that must be made clear are that 
this binary tree is fixed size (as far as blocks of the buddy 
allocation are fixed) and implemented over a contiguous 
array alongside two helper arrays that hold allocation 
state and tree nodes state (both described further), as 
presented in Fig. 3.

This research heavily incorporates a lock-free buddy 
allocation system, represented in the above papers. Still, 
it heavily modifies it regarding operations, alignment sup-
port, index structure, and tree traversing strategy. Instead 
of describing how buddy allocation generally works, it is 
possible to focus on specific modifications that distinguish 
our approach from another research. The overall scheme 
is presented in Fig. 3 [8].

Fig. 3. Schematic view of the designed buddy tree before and after allocation

 
Fig. 2. Schematic view on the designed free-list before and after allocation
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First, the developed design tries to incorporate stability 
of allocation and fast pacing of memory access in real-time 
applications, so it was decided to avoid potential misalloca-
tions. Previous research acknowledged that fact provided 
a roll-back mechanism; this research, on the other hand, 
attempts to avoid it at all, and for that, the binary tree 
is traversed not from the middle (from the best suitable 
block) but from the top. Due to that, theoretically, memory 
allocation must be slower in best-case scenarios. Still, in 
worse-case scenarios, rollbacks will be avoided, and the 
allocation process will be redirected to another branch 
of the binary tree or completely moved to another GP 
bucket [12]. Additionally, the original research proposes 
using random numbers generation to determine the al-
location branch because, in that case, the possibi lity of 
collision (and further rollback) should be lower. Still, this 
claim needs to be additionally researched, as far as random 
number generation may be a costly operation in general, 
and from an application point of view, it is preferable 
to avoid even pseudo-randomness in critical (hot) paths. 
Moreover, not all CPUs support RDRAND instructions 
to make their generation efficient [13].

Secondly, as far as buddy allocation is used as a gene-
ral-purpose allocation strategy, and the system does not 
incorporate separate alignment restrictions on memory 
served by the GP section, an additional allocation index 
structure was modified. When the user allocates memory 
in the integrated design, it has an additional structure for 
each tree [8]. That structure stores an allocation of info 
about the memory served to the user. In general, that 
index is used to guarantee the correctness of the deal-
location processes. This index, in practice, is a fixed-sized 
array that holds a pointer to the block, served to the 
user, and alignment; it is necessary to use it to convert 
a served pointer to the served block beginning.

In Fig. 4 presented a scoped view on block 256B, in 
which previously allocated 192 bytes of memory, with 
the alignment of 16. As Block 256 is naturally aligned 
to 8 (0x7BB6C7C8), and the user had requested strict 
alignment of 16, it is necessary to serve it to the following 
address (0x7BB6C7D0). During the deallocation process, 
the user will provide with a memory address served to it; 
using the alignment info, it is possible to decode that ad-
dress back to the actual block 256B begin (0x7BB6C7C8) 
and «free» it.

The allocation process is straightforward, with those 
two designs incorporated into the structure, as presented 
in Fig. 1. The system receives the number of bytes to al-
locate and the alignment to allocate with. Firstly, wit is 
possible to try to find a suitable bucket in the SP section 
and allocate memory. Then, if the system fails to allocate 
memory in those buckets, let’s try to allocate memory in 
the GP section. Otherwise, fail. Obviously, there are pos-
sible fallbacks for the development stages, like allocating on 
the system heap, in case SP and GP sections are busy and 
there is no free memory left. All in all, this is up to actual 
cases and not relevant to the overall design of that system.

The deallocation process is even simpler; when memory 
is deallocated, it is possible to know exactly what it is 
necessary to deallocate, and there is a special acceleration 
structure for that. In practice, those structures are just an 
array of pairs. Each pair contains lower and higher ad-
dresses of the memory, the bucket holds, and the system 
on deallocation search range in which the corresponding 
address falls and deallocates memory. Those structures are 
read-only and do not affect multi-threading safety at all. The 
system should be safe from race conditions until both GP 
and SP sections are lock-free and thread-safe. The overall 
correctness of lock-free GP and SP sections can be verified 
through corresponding research for both lock-free buddy 
allocators (as far as this research does not completely ne-
glect the approach in it, just modify some parts to be 
more suitable for purposes of the author’s practical domain) 
and the overall design of the lock-free linked lists [8, 11].

3.  Results and Discussion

A prototype of the designed system was implemented in 
C++ and tested alongside the built-in standard allocation 
functions. This test aimed to show that the system can be used 
and that any performance gains can be received at all. Then, 
the system will be tested against itself, but without a lock-
free approach, every bucket in the SP and GP section will 
instead be guarded by a regular spinlock. The randomly pre-
defined sequence of allocations and deallocations (10,000 al-
locations and deallocations per thread) was executed with 
a different number of threads, and the time wasted in alloca-
tion (malloc) and deallocation (free) functions was measured.

Fig. 5, 6 describe the behavior of allocators against 
standard built-in malloc/free allocation functions in the 
C language.

Even with spin-lock, when the thread count is small (up 
to 3 threads), spin-lock memory access will outperform direct 
memory requests from OS through free/malloc, but things 
get worse on larger thread counts. Progressively, the margin 
of error became bigger. Degradation can be seen in Table 2.

This may be seen as an expected result. First of all, 
concurrency in memory allocation is not a completely new 
problem, and a lot of work has been done to improve the 
overall performance of those functions in general. Straight-
forward spin-locking will not provide a lot of gain on  
a large number of threads. The result from Fig 6 sounds 
promising, on the other hand. It is possible to receive an 
increase in performance, adopting the lock-free approach 
in allocation design. Table 3 presents performance gain 
against the malloc/free pair mentioned above.

As it is possible to see from Table 3, even the simplest 
lock-free free list may benefit from that design and receive 
performance gain against built-in malloc/free. Drastic perfor-
mance gains were received from that improvement. Still, it 
is necessary to mention that this should also be an expected 
result. It is not a secret that specialized allocators, tuned 
for the behavior of an application, will outperform general-
purpose allocators. As far as all tested counterparts have 

a severe issue, all of them have a limited amount 
of predefined memory, and they either need to fall 
back to request them from OS, or either application 
will receive a hard crash. It is possible to conclude 
from testing against the malloc/free pair that the 
lock-free approach should be tried in the OS-level 
implementation of the memory management system.

 

Fig. 4. View on allocated memory blocks
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From the application programmer’s 
perspective, it is possible to compare the 
lock-free buddy allocator, lock-free list 
and lock-free hybrid system designed in 
that paper. As it is possible to see in 
corner cases, the hybrid system, in ge-
neral, is slightly worse than the simpler 
approaches on the smaller thread count, 
and the free list is better by ~2 %.  
On the other hand, the buddy system 
is drastically worse. The same can be 
said for 4 threads, where buddy-allocator 
became better but still not as good as 
a simple free list. The free list is still 
better by ~4.5 % than the hybrid sys-
tem. On 16 threads, it is possible to 
see that the free list starts to fall back, 
while the buddy allocator and hybrid 
system perform nearly the same, and 
with further thread count increases, the 
picture stays the same. Further tests 
with 64 and 128 threads had shown no 
significant progress, except the fact that 
all application-written solutions (buddy 
allocator, free list and hybrid system) 
became harder to maintain. The key 
maintenance problem is the need to pro-
grammatically set a hard max memory 
limit for those systems. The source of 
that limitation is in the initial design. 
Those systems are not designed for arbi-
trary allocations, like default malloc/free 
or OS API for allocations (but they can 
be done so, there is just not a lot of 
sense in creating such a general-purpose 
allocator on the application side).

In the end, the main limitation of 
that study is the fact that real-world 
applications that can benefit from those 
systems are too complex. Improvements 
from those changes cannot be mea-
sured so easily, as far as they have 
incremen table, fractional characteris-
tics. A simple synthetic benchmark may 
show raw performance gains or losses, 
but systems like the developed one pro-
vide not only a «lock-free» approach to 
memory allocation. They provide better 
direct control over the memory and 
improve control over the data locality. 
Those improvements may allow it to 
outperform the general-purpose alloca-
tion method even without optimization 
of an allocation speed.

There are two integration tests were 
performed. One was done in the closed 
project, replacing a simple free list with 
a developed free list system. In that test, 
the performance was measured as an 
integrated value in framerate and time 
wasted in the allocation function; in 
both cases, overall framerate increased 
by 2.2 % from 53.7 to 55.9, and time 
wasted in the allocation/deallocation  

Fig. 6. Test of allocators with lock-free design alongside the malloc/free
 

 
Fig. 5. Test of allocators with spin-lock guard alongside the malloc/free

Table 2

Degradation of performance against malloc/free pair in Fig. 5

Thread count
Spin-Locked Buddy 

Allocator (%)
Spin-Locked Free 

List (%)
Spin-Locked Hybrid 

System (%)

2 –5.29 –40.00 –43.31

4 236.01 3410.49 263.39

8 243.78 1332.32 301.09

16 278.93 1234.64 272.96

32 495.72 1282.67 455.44

Table 3

Increase of performance against malloc/free pair in Fig. 6

Thread count
Lock-Free Buddy Al-

locator (%)
Lock-Free Free List 

(%)
Lock-Free Hybrid 

System (%)

2 2.82 38.20 36.27

4 43.03 87.67 83.00

8 94.54 94.04 93.42

16 98.09 40.52 98.25

32 99.06 60.09 99.13
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block was reduced by ~0.3 %. The second test was per-
formed. The code base already used a custom allocation 
strategy, so that is not a very relevant result, but it is 
interesting, nonetheless. The second integration test was 
done on previous research of authors, and in that scenario, 
received a ~13 % improvement in performance, which was 
again measured in framerate [14]. In that case, the standard 
allocation scheme with C++ was replaced with a new/deleted 
one. As mentioned above, the author was forced to measure 
memory consumption manually and configure the memory 
pool of the hybrid system in order to receive such a gain. 
This, again, is a drawback that application programmers 
need to be ready for.

Further research should include experiments with SP 
bucket selection strategies. During this paper’s organiza-
tion, it was noticed that in a strongly typed language, 
it could greatly benefit from mapping buckets not to the 
block size but to an actual type and replacing bucket 
IDs with a type map. Secondly, further experimentation 
between the SP and GP section’s size relations can be 
done alongside the relation between the size and num-
ber of buckets in each section. Additionally, the fallback 
mechanism may be provided in out-of-memory scenarios. 
In general, research about memory allocation tracing will 
greatly benefit such a system.

4.  Conclusions

In conclusion, overall tests and theoretical research show 
that the presented approach has a place to be used. It can 
provide benefits of both a free-list and a buddy-allocator. 
The approach also can be made lock-free and provide sig-
nificant performance improvements, alongside the base gain 
of the memory pool, in comparison to the general-purpose 
allocation strategies. Still, it must be considered that such an 
approach should not be used every time and must be used 
carefully. Fallback to manual memory allocation management 
will put an additional burden on the application program-
mer’s shoulders. Additionally, standard allocation methods 
like malloc/free, new/delete or OS API calls (depending on 
the language and OS) already provide refined and performa-
tive general-purpose solutions that do not require additional 
work, configuration and maintenance.
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