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SYNERGISTIC PREDICTION OF 
PENETRATION RATE IN BOUKHADHRA 
MINING USING REGRESSION, DESIGN 
OF EXPERIMENTS, FUZZY LOGIC, AND 
ARTIFICIAL NEURAL NETWORKS

The comparative analysis of predictive methodologies highlights the original contribution of this study in op-
timizing the prediction of Rate of Penetration (ROP) in mining drilling operations. The emphasis on employing 
advanced Artificial Neural Networks (ANN), fuzzy logic, and linear regression models provides new insights into 
enhancing predictive accuracy and operational efficiency in mining practices. This study aims to quantify the ef-
fects of three pivotal drilling parameters: compressive strength, rotational pressure, and thrust pressure on the rate 
of penetration, a critical performance metric in mining drilling operations. Additionally, the study seeks to develop 
and evaluate advanced predictive methodologies for predicting ROP. The effects of compressive strength, rotational 
pressure, and thrust pressure on the rate of penetration were investigated through a Design of Experiments (DOE) 
approach. Initially, the main effects and two-way interactions among these variables were identified using DOE. 
Subsequently, three predictive methodologies: linear regression, fuzzy logic, and artificial neural networks, were 
developed and evaluated to predict ROP based on the identified factors. The evaluation of predictive methodologies 
revealed that the ANN model demonstrated superior accuracy in predicting the ROP, achieving over 95 % accuracy.  
Additionally, the fuzzy logic model provided effective handling of nonlinearities in the data, while the linear re-
gression model offered initial insights into the relationships between the variables. The application of advanced 
predictive methodologies: artificial neural networks, fuzzy logic, and linear regression to optimize the prediction 
of rate of penetration in mining drilling operations offers precise insights into drilling parameter interactions, 
enhancing operational efficiency and supporting informed decision making in mining practices.
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1.  Introduction

Rate of penetration (ROP) is essential in determining 
drilling efficiency and managing operational costs. A  de-
crease in ROP leads to a long drilling process, resulting 
in important economic losses  [1]. On the other hand, 
exceeding the ideal ROP results in several operational 
issues, such as important vibration, fast bit overheating, 
and tear of the bit  [2].

These drilling malfunctions require frequent stops to 
replace the bit, which in turn leads to an increase in 
drilling duration and costs  [3]. The important role of 
ROP has led to a wide range of studies and research 
projects, and it is the primary motivation for the authors 
conducting the present study. This topic has attracted 
significant attention in recent years, not only in terms 
of concepts and theoretical definitions, but also for its 
practical applications  [4].

Numerous ROP correlations have been proposed over 
the years as part of on-going efforts to predict the ROP. 
Initially, an empirical correlation was introduced for dia-
mond bits, taking into account lot of drilling parameters 
such as formation characteristics and drill bit configuration 
parameters. This correlation considered factors like effective 
formation strength, hydraulic horsepower (HHP), rotational 
fluid loss, speed, and average weight on bit (WOB) per 
square inch, as influencing factors on ROP  [5]. Later on, 
a ROP correlation was developed based on geological data, 
the factors incorporated in this correlation was the depth 
interval, the mud weight and viscosity, the rotational speed, 
the bit torque, and the conditions of the bit [6]. ROP was 
predicted also using two different correlations under distinct 
conditions, incorporating the presence of rock mechanical 
properties and its absence  [7]. These correlations take 
into account variables such as friction angle, WOB, bit 
rotational speed, mud flow rate, hole depth, resistivity logs,  
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and neutron porosity hydrogen index. Subsequently, Regres-
sion analysis was employed to predict ROP in different 
geological layers. These correlations relate ROP to several 
important factors [8]. A correlation was developed to predict 
the rate of penetration (ROP) by integrating controllable 
factors such as compressive strength (UCS) and uncontrol-
lable factors like: Push pressure (PP) and rotation pres-
sure  (RP). The study focused on these specific factors to 
enhance the accuracy of ROP predictions in mining drilling 
operations, reflecting the dynamic interaction between the 
drill mechanism and the different rock properties  [9].

The concept of fuzzy sets was pioneered in 1965, mark-
ing a significant advancement in the field of handling 
uncertainty and imprecision  [10]. Fuzzy logic (FL) uti-
lizes an inexact approach for reasoning, where deduction 
are approximations rather than precise. This technique is 
particularly effective in processing data that may be lacks 
completeness, precise, or reliability. FL shares a strong re-
semblance with the concept of fuzzy sets, which deals with 
collections of elements defined by ambiguous boundaries 
where membership varies in degree [11]. Fuzzy systems are 
commonly utilized to describe uncertainty resulting from 
imprecise data or a lack of adequate input factors, both 
of which significantly impact the outcomes. An item or 
property can be classified into one of several ambiguous  
groups; each assigned a specific level of membership. Fuzzy 
set theory suggests incorporating a truth value that falls 
between 0 to 1 for dealing with non-crisp variables. This 
approach employs a membership function to establish the 
relation between a truth value and its variable, where 
the function assigns a value from 0 and 1 that represents 
the «degree» of membership. Several forms membership 
functions are applicable in practice, such as triangular, 
trapezoidal, Gaussian, bell-shaped, sigmoidal, and S-curve 
waveforms  [12]. The knowledge base includes the defi-
nitions of linguistic variables, their associated terms as 
fuzzy sets, and fuzzy production rules, representing all 
the knowledge required to solve the problem. Fuzzy rules 
are established based on past experience and knowledge 
that has been gathered over time.

The Fuzzy Inference System (FIS) is designed to map 
given inputs to outputs, employing a structured approach. 
It integrates logical operations, a set of «If-Then» rules, 
and the development of membership functions. The sys-
tem comprises five principal components: the Fuzzification 
Interface, Rule Base, Database, Decision-Making Unit, 
and Defuzzification Interface. The Fuzzification Interface 
converts input data into degrees that align with linguistic 
values. The Rule Base contains different fuzzy «If-Then» 
rules, which utilizes a database for the appropriate mem-
bership functions. The decision-Making Unit is responsible 
for the inference operations. Finally, the Defuzzification 
Interface converts the fuzzy output into precise results. 
Numerous defuzzification techniques are utilized, including 
those based on the centroid of an area, the bisector of an 
area, the mean of maxima, the smallest of maxima, and the 
largest of maxima. Among these, the centroid of an area 
method is the most frequently used for defuzzification.

The application of fuzzy logic to solve real-world problems 
across various domains has been extensively documented 
in many studies demonstrating the utility of the aggre-
gated output membership function  [13]. The Sugino-type 
constitutes another category of fuzzy «If-Then» rules. This 
configuration is recognized as the Adaptive Neuro-Fuzzy 

Inference System (ANFIS), which integrates elements of 
both fuzzy logic and neural networks. ANFIS harnesses the 
strengths of both methodologies in a robust method  [14].  
It utilizes both of backpropagation and least squares methods 
to learn and adjust the membership functions, thereby enabling 
the fuzzy system to train and model data accurately  [15]. 
Numerous models have been developed to estimate drill-
ing penetration rates, yet none have proven reliable due to 
the complexity of the drilling operations. This has led to 
a growing reliance on artificial intelligence (AI) in mining 
drilling operations, due to its ability to incorporate unknown 
parameters effectively in model development.

An artificial neural network (ANN) is a computational 
model inspired by the structure of biological neural systems, 
employed to address computational problems that challenge 
unmanageable linear computing methods  [16]. An ANN  
is composed of multiple layers, with a basic requirement of 
three layers: input, hidden, and output layers. Each layer 
consists of units known as neurons, which are the core 
components of each layer, essential in processing information 
within the ANN system. Transfer functions interconnect 
these layers, while data training is done using specialized  
algorithms. Furthermore, the links between neurons across 
various layers are established by constants known as mo
del weights  [17]. It is essential to adjust the number of 
neurons to avoid overfitting or underfitting, which can 
degrade performance, or can lead to inadequate model 
training. During the training phase, the system employs 
backpropagation to adjust errors and process data from the 
input to the output layer. To enhance model efficiency, the 
predicted outputs are then compared with actual data, and 
weights and biases are adjusted to minimize errors in the  
output estimations  [18].

In various studies, artificial neural networks (ANNs) 
were employed to predict of ROP in drilling operations. 
A model used 500 data points with nine inputs. The data 
set was split into 90  % for training and 10  % for testing, 
achieving correlation coefficients between 0.902 and 0.982.  
Another approach focused on enhancing ROP prediction by 
analyzing previous drilling data with six key factors, and 
reported a determination coefficient (R2) of 0.8, indicating 
a significant correlation between predicted and actual ROP 
measurements  [19]. Researchers have employed ANNs to 
predict ROP in drilling. One study integrated Genetic 
Algorithm into ANN, using 330  data points across ten 
different parameters. The model was tested with 20  data 
points, reporting a coefficient of determination (R2) of 
0.9402 for training and 0.7401 for testing. Another ap-
proach involved analyzing offset well data using ANN, 
incorporating 21 inputs. 75 % of its data were splitted into 
training, with the remaining divided equally for testing 
and validation, resulting in a correlation coefficient (R) of 
0.916 and a mean square error (MSE) of 0.015, using two 
ANN layers  [20]. In recent studies ANNs were applied to 
enhance the prediction of the rate of penetration  (ROP) 
in drilling operations. One approach used 5000 data points 
with 11 factors, splitting them into 75 % for training and 
25  % for testing. The results gave a coefficient of deter-
mination (R2) of 0.91 for training and 0.90 for testing,  
with RMSE = 1.51. Another method utilized a multi-layer 
ANN combined with a Genetic Algorithm (GA) to optimize 
the ROP model using a dataset of 332 across ten parameters.  
High correlation coefficients of 0.957 for training and 0.962 
for testing were reported.
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The aim of this study is to develop predictive models for 
the rate of penetration in blast hole drilling at Boukhadra’s 
open cast mine (Algeria). Our structured approach includes 
four pivotal stages: operational testing on different geological 
layers, gathering detailed operational data, analyzing this 
data statistically using design of experiments and regression 
model, and construction of accurate predictive models by 
application of fuzzy logic and Artificial Neural Network. 
These models are designed to optimize the prediction of 
rate of penetration in drilling operations, improve efficiency 
and enhance the drilling precision.

2.  Materials and Methods

2.1.  Overview on the Boukhadra mine. The Djebel Bouk
hadra, situated in eastern Algeria, lies 45 km north of Tebessa 
City and just 13 km from the Algerian-Tunisian border (Fig. 1). 
The region, part of the mountainous Atlas Saharan series, hosts 
the Boukhadra iron deposit, notable for its straightforward 
NE-SW anticline structure. Mining operations at Boukhadra 
are conducted using two methods: open pit mining, employ-
ing half-trench techniques, and underground mining via sub-
level stopping. Iron ore is transported from the mine site to 
a  gyratory crusher using trucks, after which the crushed ore 
is moved via a belt conveyor to a homogenization station 
for further processing.

2.2.  Laboratory assessments and field studies. In drilling 
of blast holes, Compressive strength is a vital mechanical 
property of rocks. The compressive strength was measured 
using a compression testing machine (results in Table  1).

Table 1

Independent factors and levels used in the experimental design  
for ROP case in Boukhadhra mine

Factors
Level

–1 +1

Compression Strength, MPa 8 52

Rotational Pressure, bar 30 70

Thrust Pressure, bar 30 110

At the Boukhadra open cast mine, diverse geological 
layers are present within the working area. The performance 
of drilling in these various formations is evaluated based 
on the penetration rate of a blast hole. The data used in 
the study come from direct, controlled measurements at the 
mine site. ROP was measured using a stopwatch to accu-
rately track the time required for the drill process, enabling 
real-time assessment of drilling efficiency. The  penetration 
depth records are obtained from the digital displays on the 
drilling machines. The penetration rates are then calculated 
using the following equation:

ROP
H

t

Depth of the blasthole

time
= = , m min.	 (1)

The field drilling tests were conducted using an ATLAS- 
COPCO ROC-L8 drilling machine (manufactured in 
Sweden), equipped with a 160  mm diameter button bit 
and drill tubes of a 70  mm outer diameter. Drilling 
parameters were maintained constant during the drill-
ing process.

In our study, let’s focus on two critical parameters of 
the drilling machine: Thrust pressure (TP) and rotational 
pressure (RP). Thrust pressure, ranging from 30–110  bar, 
refers to the axial force applied to the drill string. The 

interaction between the drill bit 
and the rock face generates fric-
tion, which influences the cut-
ting and removal of rock mate-
rial. Increased thrust pressure 
can enhance the cutting action, 
potentially increasing ROP up to 
a certain threshold, beyond which 
it may cause bit wear or failure. 
Rotational pressure, ranging from 
30–70  bar, also plays a signifi-
cant role in the drilling process. 
Although its effect on ROP is 
positive, it is not as pronounced as 
that of thrust pressure. Our find-
ings indicate that the mean ROP 
increases slightly with higher ro-
tational pressure, suggesting that 
rotational pressure contributes  
to the rate of penetration, albeit  
to a lesser extent compared to 
thrust pressure.

2.3.  Design of Experiments (DOE). To thoroughly inves-
tigate the impact of compressive strength, thrust pressure, 
and rotational pressure on the ROP, a full factorial design 
was selected. This design allows for the evaluation of the 
main effects of each factor as well as their interactions.

The full factorial design for three factors, each at two 
levels (–1, +1 for Compression Strength (MPa), Rotational 
Pressure (bar), Thrust Pressure (bar)) as described in 
Table  1, results in 23 experimental runs, enabling a com-
prehensive analysis of the factors and their interactions.

The experimental data were analyzed using MINITAB 
software. The software facilitated the calculation of main 
effects, interaction effects, and the generation of an em-
pirical regression model. Design of experiments (DOE) 
was conducted to identify the significance of each factor 

 
Fig. 1. Location map of the study area
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and their interactions. The regression equation derived 
from the DOE analysis is as follows:

ROP CS TP

RP CS

= − + ⋅ + ⋅ +
+ ⋅ − ⋅ ⋅

1 275 0 0539 0 01709

0 04932 0 001384

. . .

. . RRP, 	 (2)

where ROP is the rate of penetration, CS is the Com-
pressive Strength, TP is the Thrust Pressure, RP is the 
Rotational Pressure, and CS·RP is the interaction term 
between Compressive Strength and Thrust Pressure.

2.4.  Development of the fuzzy model. This section details 
the development of a fuzzy model, using the Mamdani 
algorithm, for predicting ROP at Boukhadra mine. The 
model was implemented using the fuzzy logic toolbox 
in MATLAB version 7.6 (R2016b). It comprises three 
input variables: compressive strength (CS), rotational pres-
sure  (RP), and thrust pressure (TP), with ROP as the 
output variable. Fig.  2 provides a visualization of these 
input and output variables within the MATLAB interface.

In the model, triangular membership functions were 
chosen to characterize the input and output variables 
due to their ease of use and processing reliability. These 
functions, as expressed in Equation (1), convert linguistic  
terms into numerical values ranging from 0 to 1:
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where a, b, and c represent the parameters of the linguistic 
value, and x indicates the range of the input parameters. 
Fig.  3 illustrates the membership functions for various 
input and output variables. Furthermore, Table 2 outlines 
the linguistic variables, their corresponding linguistic 
values, and the associated parameters.

The subsequent phase of the FIS involves developing 
the «If-Then» rules to describe the fuzzy relationships 
between the input and output fuzzy variables. In this 
study, 35 rules were formulated to build the rule base 
of the fuzzy model, based on expertise of professionals 
and data collected from the mine (measured data).

Fig. 4 illustrates a fuzzy «If-Then» rule editor featuring 
10 rules from the model in the MATLAB interface. These 
rules integrate different levels of input variables to generate 
an output, following a logical. Each rule is given an equal 
weight of 1, ensuring that all rules have the same impact 
on the output when their conditions are met. Additionally, 
the rules are covering various input level combinations to 
enable the system to handle a wide range of scenarios.

In the final stage, the fuzzy set results are converted 
into crisp values again through the defuzzification pro-
cess. In this model, the centroid of area (COA) method, 
a widely used defuzzification technique, was employed to  
obtain the crisp value using the following equation:

Z

z z z

z z
COA

A

Z

A

Z

=
( )

( )
∫
∫

µ

µ
,

d

d
	 (4)

where µA z( ) denotes the aggregated output membership 
function.

 Fig. 2. Input and output variables of the fuzzy model

Fig. 3. Graphical representation of triangular membership functions of:  
a – Compressive strength, b – Rotational pressure,  

c – Thrust pressure, d – ROP
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Table 2
Membership functions and their input and output parameters

Variables Linguistic 
variables Range Linguistic 

values Parameters

Input

Uniaxial 
Compression 

Strength 
(UCS)

[8 52]

Low [8 8 25.6]

Medium [12.4 30 47.6]

High [34.4 52 52]

Rotational 
Pressure 

(RP)
[30 70]

Low [30 30 46]

Medium [34 50 66]

High [54 70 70]

Thrust  
Pressure 

(TP)
[30 110]

Low [30 30 62]

Medium [38 70 102]

High [78 110 110]

Output
Rate of 

Penetration 
(RoP)

[0.48 3.66]

Very low [0.48 0.48 1.27]

Low [0.8 1.27 1.7]

Medium [1.5 2.07 2.65]

High [2.4 2.7 3.1]

Very High [2.86 3.66 3.66]

 
Fig. 4. Fuzzy logic rules

The developed fuzzy model can estimate the rate of penetra-
tion ROP when supplied with accurate input data. For example, 
as illustrated in Fig. 5, with input parameters of a compressive 
strength of 30 MPa, rotational pressure of 50 bar, and thrust 
pressure of 70  bar, the model predicts an output ROP of 
2.73  m/min, compared to the measured ROP of 2.61  mm/s.

2.5.  Artificial neural network method. In this section, it 
is possible to utilize ANN to predict ROP in mining opera-
tions by considering the same three primary factors: com-
pressive strength, thrust pressure, and rotational pressure.  
ANNs are adept at modeling the complex, non-linear in-
teractions between these factors and the ROP, offering the 
potential for more accurate and reliable predictions than 
those achieved through conventional statistical methods.

2.5.1.  Data collection. In this study, over 114 data points 
over three months, covering a wide range of conditions, were 
collected including those used in previous models (fuzzy 
logic and DOE). To improve model accuracy, it is possible 
to use data augmentation algorithms to generate additional 
data by slightly altering the original dataset. This increased 
the training data, improved the model’s generalization and 
reduced overfitting.

2.5.2.  ANN architecture. Fig. 6 presents the neural network 
structure employed in this study, illustrating the configura-
tion of the input layer with three input factors (compres-
sive strength, thrust pressure, and rotational pressure), the 
weighted summation of these inputs, the application of the 
Rectified Linear Unit (ReLU) activation function, and the 
error evaluation process used to predict ROP.

 
Fig. 6. Architecture of a neural network employed in this study

2.5.2.1.  Input layer. The input layer consists of three 
neurons, each corresponding to one of the independent vari-
ables: compressive strength, thrust pressure, and rotational 
pressure. These neurons receive the input data and transmit 
it to the hidden layer.

2.5.2.2.  Hidden layers. The architecture includes one 
hidden layer with ten neurons. The configuration of hidden 
layers and the number of neurons were selected based on 
preliminary experiments and a review of relevant literature. 

The weighted sum of its inputs is trans-
formed by each neuron in the hidden layer 
using an activation function. It is possible 
to choose ReLU activation function due to 
its capability to introduce non-linearity and 
prevent the vanishing gradient problem.

2.5.2.3.  Output layer. The output layer 
includes a single neuron that generates 
the predicted rate of penetration. This 
layer utilizes a linear activation function 
to produce continuous prediction values.

2.5.3.  Training the ANN
2.5.3.1.  Data preparation. The dataset 

was divided into training (70  %), valida-
tion (15  %), and testing (15  %) sets to 
assess the model’s performance on unseen 
data. Input data were scaled using the  

 
Fig. 5. Fuzzy rule viewer of the fuzzy model
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min-max normalization technique to ensure that each feature 
had an equal impact during training. This normalization 
process transformed the data to a range of [0,  1].

2.5.3.2.  Training process. The ANN was trained using 
the backpropagation algorithm, which consists of two es-
sential steps:

1.	 Forward Pass: Input data is fed through the network 
to obtain predictions.

2.	 Backward Pass: The error between the 
predicted and actual values is determined 
using the Mean Squared Error (MSE) loss 
function. This error is then propagated back 
through the network to update the weights 
using gradient descent optimization.

The learning rate, batch size, and the 
number of epochs were carefully adjusted 
to achieve optimal results. The Adam op-
timizer, known for its efficiency in finding 
the best learning rate automatically, was 
used to make these adjustments.

2.5.4.  Validation and Testing. To evaluate 
the model’s behaviour and performance, let’s 
use a k-fold cross-validation technique with 
k set to 5. This process involved dividing 
the data into five parts and conducting 
five separate tests, each time using a dif-
ferent part for testing and the remaining 
parts for training. This strategy ensures 
that the model behave well across diffe
rent data subsets and prevents overfitting 
to a specific dataset.

3.  Results and Discussion

3.1.  Design of experiments
3.1.1.  Effect of various factors on penet

ration rate. Fig. 7, a shows the Pareto chart 
which illustrate the standardized effects of 
various factors used in this study and their 
interactions on the response variable ROP 
with a significance level set at α = 0.05.

Pareto chart in Fig.  7,  a indicates that 
factor B (TP) has the most significant in-
fluence on the response variable. This is 
followed by the interaction between A (CS) 
and C  (RP), and then by factor A (CS) 
alone. Factor C (RP) on its own, does not 
indicate a statistically significant impact on 
the response variable at α = 0.05.

The main effects plot in Fig. 7, b illustrates the fitted means 
of the response variable, rate of penetration (ROP), at varying 
levels of the three used factors: Compressive Strength (CS), 
Thrust Pressure (TP), and Rotational Pressure (RP). The plot 
shows two levels of compressive strength, where the mean 
ROP decreases as compressive strength rises from 8  MPa 
to 52  MPa. This reveals that higher compressive strengths 
correlate with a lower rate of penetration, indicating that 
harder materials are more challenging to penetrate.

In contrast, the plot indicates a notable increase in 
the mean ROP as thrust pressure increases from 30  kN 
to 110  kN. This aligns with the findings from the Pareto 
chart, highlighting thrust pressure as the most significant 

factor on RoP. Higher thrust pressure evidently results 
in a higher rate of penetration, implying that increased 
force more effectively penetrates the material.

The influence of rotational pressure on ROP is positive 
but less significant compared to thrust pressure. The mean 
ROP increases slightly as rotational pressure increases 
from 30 bar to 70  bar, indicating that although rotational 
pressure contributes to the rate of penetration, its impact 
is not as significant as that of thrust pressure.

This analysis of the Main Effects Plot reveals how 
each used factor affects the ROP, highlighting their va
ried impacts on the drilling process in Boukhadhra mine.

3.1.2.  Analysis of the interaction plot for RоP. Fig. 8 pre
sents the interaction plot, showing how various factorscom-
bine to the mean rate of penetration (ROP). Each graph 
shows the mean RoP for two factors at specific levels 
while holding the third factor constant.

Non-parallel lines in the case of CS with TP and CS with 
RP plots indicate significant interaction effects, with increased 
thrust pressure (110  bar) and rotational pressure  (70  bar) 
resulting in higher ROP, particularly at lower compressive 

 
 

 

a

b

Fig. 7. Analysis of factorial effects on response variable:  
a – Pareto chart of standardized effects; b – main effects plot of various factors
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strength  (8  MPa), Fig.  8. The same interaction effects are 
observed in the case of TP with CS plot. In contrast, in 
case of TP with RP and RP with TP plots show nearly 
parallel lines, indicating little to no interaction effects.

These interactions indicate that higher thrust and ro-
tational pressures generally increase ROP, especially at 
lower compressive strengths. Contour plots further illustrate 
these interactions by varying two factors while keeping 
the other one constant.

3.1.3.  Analysis of the contour plots for Rate of Penetra-
tion (RoP). Contour plots reveal the relationship between three 
continuous variables: Rate of Penetration (ROP), Thrust 
Pressure (TP), Rotational Pressure (RP), and Compressive 
Strength (CS), Fig. 9. Contour Plot 1 (Fig. 9, a) shows that 
increasing both TP and RP generally lead to higher ROP. 
Contour Plot  2 (Fig.  9,  b), with RP fixed at 50  bar, and 
indicates that higher TP and lower CS result in higher ROP.  
Contour Plot  3 (Fig.  9,  c), with TP set at 70  bar, indi-

cates that higher RP and lower CS leads to 
greater  ROP. Thrust Pressure has a signifi-
cant impact on ROP, as confirmed by the 
Pareto chart and main effects plot.

3.1.4.  Penetration rate prediction using 
Multiple Regression Analysis (MRA). Regres-
sion equations are essential for predicting 
the Rate of Penetration (ROP) in drill-
ing operations, as they reflect the effect of 
Compressive Strength (CS), Thrust Pres-
sure (TP), and Rotational Pressure (RP). 
These equations help enhancing drilling 
parameters for better efficiency. For in-
stance, a regression model demonstrated 
the significant impact of these factors on 
RoP, highlighting the practical application 
of regression analysis in improving drilling 
performance through analytical insights [9].

 
Fig. 8. Interaction plot for various factors  

 

 
 

 

 
 

 
 

 

a b

 
 

 
 

 
c

Fig. 9. Contour plots of factorial effects on response surface:  
a – contour plot ROP vs TP, RP; b – contour plot of ROP vs TP, CS; c – contour plot of ROP vs RP, CS
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The MRA was carried out with the same datasets and 
input parameters as previously mentioned.

The MRA prediction equation for ROP is:

ROP CS TP

RP CS R

= − + ⋅ + ⋅ +

+ ⋅ − ⋅ ⋅

1 275 0 0539 0 01709

0 04932 0 001384

. . .

. . PP.

This regression equation estimates the Rate of Penet
ration (ROP) based on the three factors: Compressive 
Strength (CS), Thrust Pressure (TP), and Rotational 
Pressure (RP), including an interaction term between 
CS and RP. The intercept (–1.275) serves as a baseline 
reference. For each unit increase in CS, TP, and RP, 
ROP increases by 0.0539; 0.01709; and 0.04932 units, 
respectively, showing positive relationships. The interaction  
term  (–0.001384) indicates that increasing both CS and 
RP decreases ROP by 0.001384 units for each unit increase 
in their product, indicating a reduction in ROP when  
both CS and RP are high.

3.2.  Fuzzy logic. When the fuzzy logic system receives 
crisp inputs for CS, RP, and TP, it evaluates the rules 
in the rule base to create a fuzzy output for ROP. This 
fuzzy output is then converted using the centroid de-
fuzzification method to provide a single value prediction 
for the rate of penetration. This prediction can help un-
derstand or control the drilling process. The following 
three-dimensional plots illustrate the relationship between  

the inputs and the ROP prediction in the Boukhadra min-
ing drilling operation.

3.2.1.  Plot Interpretations
a)  First Plot (CS vs. RP). Fig.  10,  a shows the rela-

tionship between Compressive Strength (CS) and Rota-
tional Pressure (RP) with respect to the Rate of Penetra-
tion  (PR). As CS increases, PR decreases, indicating that 
harder materials reduce the penetration rate. In contrast, 
higher RP increases ROP, suggesting that increased ro-
tational pressure improves penetration. The slope of the 
surface as CS increases indicates a direct or nearly direct 
relationship between these factors and PR.

b)  Second Plot (RP  vs.  TP). Fig.  10,  b illustrates the 
relationship between Rotational Pressure (RP) and Thrust 
Pressure (TP) with respect to PR. The curved surface 
indicates a nonlinear connection between these variables 
and the output. A peak in PR reveals an optimal combina-
tion of RP and TP that maximizes the penetration rate. 
Beyond this peak, increasing TP or RP does not further 
enhance PR, suggesting inefficiencies at excessive pressures.

c)  Third Plot (CS  vs.  TP). Fig.  10,  c illustrates the 
combined impact of Compressive Strength (CS) and Thrust 
Pressure  (TP) on ROP. The surface slopes downward as 
CS increases, confirming that harder materials decrease the 
penetration rate. Although PR increases with higher TP, 
the relationship is not linear. The non-flat surface indicates 
that the effect of TP on PR varies with different CS values, 
indicating an interaction between these variables.

Fig. 10. Surface viewer of: a – penetration rate (PR) versus compressive strength (CS) and rotational pressure (RP);  
b – penetration rate (PR) versus (RP) and (TP); c – penetration rate (PR) versus (CS) and (TP)
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3.3.  Artificial neural network
3.3.1.  Model training, validation and testing. The training 

process involved splitting the data into 70  % for training, 
15  % for validation, and 15  % for testing to optimize the 
model’s learning, validation, and testing performance. The 
training set, consisting of 70  % of the data, was used 
to adjust the neural network’s weights and biases based 
on feedback from the loss function, creating a reliable 
dataset for detecting complex patterns. Fig.  11,  a shows 
that the training data points are very close to the line, 
indicating high prediction accuracy and a high R2 value, 
which reflects the model’s effectiveness.

a

b

c

Fig. 11. Comparison of predicted and actual values across  
different data sets: a – training data step; b – validation data step;  

c – test data step

The validation set, consisting of 15 % of the data, offers 
an impartial evaluation of the model fit on the training 
dataset while adjusting the model parameters. This set 
is crucial for monitoring the model’s performance during 
training, allowing for necessary adjustments without using 
the test set data. Reserving 15  % for validation ensures 
adequate statistical verification and adjustment of the 
model’s performance, without reducing the data available 
for training. This proportion is sufficient to validate the 
model’s effectiveness and detect issues like overfitting or 
underfitting. Fig. 11, b Validation Data Step shows points 
closely aligned with the line, indicating that the model 
generalizes well to unseen data in the validation set.

The test set, consisting of 15 % of the data, is essential 
for assessing the final model’s performance. This data is 
never used during training and serves as a new dataset for 
evaluating the model’s predictive accuracy on new data. 
Reserving 15  % to the test set ensures thorough test-
ing of the model after training and validation, providing 
a  balanced evaluation of its ability to generalize with-
out reducing the training data size. Fig.  11,  c Test Data  
Step shows that the test data points closely follow the 
trendline, with a slight divergence compared to the train-
ing and validation sets, which is expected as the test data 
represents completely new conditions, yet still demonstrates 
good predictive performance by the model.

3.3.2.  Backpropagation learning algorithms. Backpropa-
gation is a key learning algorithm for neural networks, 
involving a forward pass to generate outputs and a backward 
pass to calculate and propagate errors. These errors are 
used to update the network’s weights and biases through 
an optimization technique. The goal is to minimize predic-
tion errors by adjusting the model parameters, ensuring 
accurate correlation of inputs to outputs.

3.3.3.  Evaluation and performance metrics. The perfor-
mance metric used is the R-Squared Error (R2), which 
measures the proportion of variance in the dependent vari-
able predictable from the independent variables (Table 3). 
R2  ranges from 0 to 1, with higher values indicating a bet-
ter fit. The R2 values are 0.9908 for training, 0.9883 for 
validation, and 0.9926 for testing, indicating excellent model 
performance across all datasets.

Table 3

R2 error for each step of training process

Training Validation Test

ROP ROP ROP

Measures Value Measures Value Measures Value

Rsquare 0.9908197 Rsquare 0.9883359 Rsquare 0.9926174

3.3.4.  Prediction profiler. Fig. 12 presents the relation-
ships between each input variable (CS, RP, TP) and the 
output variable (ROP). For Compressive Strength (CS), 
RoP initially decreases as CS increases and then stabilizes, 
indicating a nonlinear relationship. For Rotational Pres-
sure  (RP), a linear relationship is observed, with RoP 
increasing as RP increases. Similarly, for Thrust Pres-
sure (TP), ROP increases with TP, though the relationship 
is slightly less linear, suggesting a limit beyond which the 
rate of increase in RoP slows down.
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Fig. 12. Plots showing the relationship between each input variables  

and the output variable (ROP)

3.4.  Evaluation of the predictive models. The methods’ 
accuracies are compared in terms of RMSE (root mains 
square error), and it gave us these results (Fig.  13).

 
Fig. 13. Comparison between measured and prediction ROP

The following equation was used:

RMS
n

x xi i
i

n

= −( )
=
∑

1 2

1



,

where n is the number of observations, xi is the observed 
value, 



xi is the predicted value.

3.4.1.  RMS error analysis
3.4.1.1.  RMS error between measured ROP and regres-

sion model predictions. The regression model’s predictions 
show a moderate error compared to the actual measured 
ROP, with an RMS error of 0.37493. This indicates that 
the regression model is less accurate than other methods, 
due to its inability to effectively represent complex rela-
tionships or patterns in the data.

3.4.1.2.  RMS error between measured ROP and fuzzy 
logic predictions. The fuzzy logic model shows a lower 
RMS error of 0.28354, suggesting it is more accurate in 
predicting the ROP compared to the regression model. 
Fuzzy logic systems are better at handling uncertainty and 
modeling complex processes, which explains the improved 
accuracy. However, some variation still exists between the 
fuzzy logic predictions and actual measurements.

3.4.1.3.  RMS error between measured ROP and ANN 
predictions. The Artificial Neural Network (ANN) pro-
vides the most accurate predictions, with an RMS error  
of 0.069055. This relatively small error indicates high pre-
dictive accuracy, as ANNs are highly effective at identifying 
the fundamental patterns in the dataset that impact ROP. 

Their ability to model nonlinear and complex relationships 
contributes to this high level of accuracy.

3.5.  Practical significance and conditions for using re-
search. This study’s findings and methodologies, particularly 
the predictive models developed for drilling operations, have 
the potential to be adapted and applied to various mining 
environments globally. By adjusting the models to different 
geological settings and mining conditions, these tools could 
significantly improve drilling efficiency and cost-effectiveness 
in mines worldwide. This potential for global applicabi
lity emphasizes the broader value of the research, reaching  
beyond its initial focus on the Boukhadra iron mine.

While the study provides valuable insights, there are 
several limitations that need to be acknowledged. Firstly, 
the accuracy of the models is heavily dependent on the 
quality and quantity of the available data, which could 
affect their reliability. Additionally, both Fuzzy Logic and 
Artificial Neural Networks (ANN) models are computa-
tionally intensive, which may pose challenges for practical 
implementation. Lastly, there is a risk of overfitting with 
the ANN model, where it may perform well on training data 
but struggle to generalize effectively to new, unseen data.

4.  Conclusions

It is possible to conclude that for Boukhadra mining 
drilling operations, where the Rate of Penetration (ROP) 
is a crucial parameter, the Artificial Neural Network (ANN) 
model stands out as the most effective predictive tool. 
Through our comprehensive comparison involving regres-
sion models, fuzzy logic, and ANN, it is found that the 
ANN model consistently achieved the lowest Root Mean 
Square (RMS) error values. This indicates that its predic-
tions are significantly closer to the actual measurements 
compared to the other methods.

The Regression Model produced an RMS Error of 0.37493, 
indicating a moderate level of prediction accuracy. In contrast, 
the Fuzzy Logic model demonstrated enhanced predictive 
performance with an RMS Error of 0.28354. Notably, the 
ANN model surpassed both, achieving the highest accuracy 
with a significantly lower RMS Error of 0.069055.

The ANN model’s superior performance is attributed 
to its ability to capture complex, non-linear relationships 
between the factors influencing ROP, which traditional 
regression models and fuzzy logic systems might not ad-
equately address. The adaptability of the ANN model make  
it particularly suited for the dynamic conditions encoun-
tered in mining operations.

Given these findings, the ANN model not only provides 
the most accurate ROP predictions but also offers a reliable  
basis for making informed planning and operational deci-
sions. Its implementation in Boukhadra mining could lead 
to optimized drilling strategies, reduced operational costs, 
and improved overall efficiency. Therefore, it is possible 
to recommend adopting the ANN model for future pre-
dictive tasks in this context, ensuring better alignment 
with actual drilling performance and enhanced decision-
making capabilities.
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