
INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

24 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

UDC 004.046
DOI: 10.15587/2706-5448.2024.310031

ORCHESTRATION OF SERVICE-
ORIENTED APPLICATIONS WITH
REACTIVE PROGRAMMING TECHNIQUES

The object of research is the modular approach to application development using SOA, as well as the comparison
of synchronous and asynchronous request processing methodologies using a reactive programming architecture.
SOA allows applications to be divided into independent components, ensuring easy integration and scalability
in distributed computing environments. With SOA, it is possible to create a network of loosely coupled services,
providing users with the flexibility to develop applications tailored to specific needs.

One of the main issues is thread blocking and system instability under heavy loads when using synchronous
methods. The study compares synchronous and asynchronous request processing methodologies using WebFlux,
and examines key components of SOA, such as service discovery mechanisms and interaction models, particularly
orchestration and choreography.

The results show that asynchronous approaches, using a non-blocking, event-driven architecture, reduce the
number of active threads, increase system resilience, and improve performance. This is because the proposed non-
blocking, event-driven approach has several features, including reducing thread blocking and enhancing system
stability under heavy loads. Synchronous methods, while straightforward, have drawbacks such as thread blocking
and system instability under excessive loads.

As a result, there is a high efficiency in processing a large number of requests in real-time. Compared to similar
known approaches, this provides advantages such as increased system resilience and efficient resource utilization,
making this approach particularly useful for scalable application architectures in distributed computing environments.

Keywords: service-oriented architecture (SOA), reactive programming, event loop, asynchronous requests.

Ihor Kasianchuk

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Kasianchuk, I. (2024). Orchestration of service-oriented applications with reactive programming techniques. Technology Audit and Production Reserves,

4 (2 (78)), 24–29. https://doi.org/10.15587/2706-5448.2024.310031

Received date: 10.06.2024

Accepted date: 14.08.2024

Published date: 16.08.2024

1.  Introduction

The growing importance of the services sector in business
and the information technology industry makes the study of
interactions between services highly significant. Designing
a system based on SOA (Service-Oriented Architecture)
allows for the separation of responsibilities of individual
components (domains) of the application, making their logic
decoupled and independent. Based on SOA, it is possible to
build a globally scaled network of loosely coupled services
that can be easily composed by users according to their
scenarios into flexible applications with a dynamic structure,
running in a distributed computing infrastructure.

In a broad sense, SOA is an approach to application de-
velopment where the application is broken down into separate
parts [1]. These parts are generally distributed throughout
the system and interact with each other over a network
or through APIs. Throughout the brief history of service
science, management, and engineering, a general scheme for
forming «on-demand» applications has been proposed. This
scheme includes three participants: the service provider, the
broker, and the service consumer.

The basic procedure for service discovery is illustrated in
Fig. 1, which shows a comparison between the user’s request

and the service description in the registry advertised by the
provider [2]. Client requests for necessary services, sent to
the service registry, contain parameterized descriptions of
tasks in the form of a finite set of input parameters. After
processing the client’s requests, the service returns the result
to the client, formatted as a finite set of output parameters.

Information about the service’s input and output para
meters, which is necessary for the client to interact with the
service, is contained in the published service description or
provided by the service upon the client’s request. A service
can be used by multiple different applications. Conversely,
several services can be used within a single application.

The functionality of SOA is most easily implemented using
web services. Web services are understood to be software
systems that use the XML (Extensible Markup Language)
data format, Web Services Description Language (WSDL)
standards to describe their interfaces, Simple Object Access
Protocol (SOAP) to describe the format of received and
sent messages, and the Universal Description Discovery
and Integration (UDDI) standard to create catalogues of
available services [3]. Although the principles of service-
oriented architecture for creating information systems do
not necessarily require the use of web service technologies,
the connection between these two areas in the development

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

25TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

of information technology is quite close. Web services
are technological specifications, whereas service-oriented
architecture (SOA) is a design principle for software sys-
tem architecture. The combination of WSDL, UDDI, and
SOAP facilitates the application of service-
oriented concepts on the Internet, particu-
larly for publishing, discovering, binding, and
executing services.

Applications for business processes that
integrate various services are built on loosely
coupled services. The necessity of invoking
multiple services to meet a need requires spe-
cific coordination approaches. SOA initiated
this trend using Remote Procedure Call (RPC)
technology over a network, while maintain-
ing control over the access component. The
main approaches to web service coordination
are known as orchestration and choreography,
the implementation of which resembles the
programming process.

The classical approach to service choreography is mostly
based on synchronous calls [4]. The client that initiates
a business process «freezes» the execution of the software
code until a response is received from the invoked service.
This necessitates the programming of additional logic to
handle errors at the invocation stage.

It makes sense to propagate expected business logic
errors through the process so that the user can address
the cause and retry the request in the future. However,
errors of an infrastructural nature must be corrected at
the software level, complicating the process. Such errors
include long wait times (due to service unavailability),
input data read errors (connection termination), and so
on. During synchronous execution, the request may be
retried up to a certain threshold of repetitions or until
a timeout occurs. Only then is the error propagated to
a higher level – the business process – and further steps
are blocked.

This behavior pattern is called a «circuit breaker», similar
to an electrical circuit that interrupts execution if the signal
voltage exceeds a certain threshold (Fig. 2). It represents
a finite state machine with three states. The initial state of
the object controlling the service call is «closed». If a certain
condition that defines the call threshold is met (e. g., the
number of failures exceeds 3), the circuit breaker transi-
tions to the «open» state, initiating a timeout period that

blocks further calls. When the timeout period elapses, the
state changes to «half-open», the request is retried, and
the next state depends on the result – «closed» for a suc-
cessful result or back to «open» for a failure.

In the worst-case scenario (where calling
an external service fails), such an approach
generates a sequence of workflows that cease
execution with an error state. For small data
volumes, after resolving the infrastructure issue,
the processes can be restarted and continue exe
cution from the point where the error occurred.

The choreography of erroneous processes
becomes more complex with increasing data vo
lumes. For instance, an application that processes
new data as it arrives (implemented on the
«publisher-subscriber» principle) will instantly
launch processes in large quantities. Using tra-
ditional synchronous data transfer protocols, the
process creator’s resources will be limited by the
number of threads available in the application
instance, managed by the operating system.

This leads to the generation of exceptions, which also
stop the workflow execution with an error result.

In an application that processes an infinite stream of
data, choreography and orchestration based on services man-
aged by synchronous requests can lead to a large number of
threads, whose execution becomes frozen. An architectural
solution that allows for asynchronous execution can prevent
most of these situations. The goal of this approach is to
delegate to the system the further processing of requests
that halted due to infrastructure errors, leaving the process
designer with only the burden of managing the business logic.

The aim of research is to identify the relationship between
the architectural patterns for processing service requests
and the load on system resources. This will allow for the
selection of the appropriate approach for designing service-
oriented applications based on the expected workload.

2.  Methods and Materials

In general, SOA is a model for component interac-
tion that connects different functional modules of ap-
plications (services) through clearly defined interfaces.
These interfaces are independent of hardware platforms,
operating systems, or programming languages used in the
development of these applications. This allows individual
services to interact with each other in a standardized yet

Fig. 1. Service Discovery Structure

Fig. 2. Pattern «Circuit breaker»

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

26 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

universally applicable manner, a characteristic known as
«loose coupling».

The main approaches to coordinating web
services are known as orchestration and choreo
graphy. Orchestration, when seeking a single
service, is associated with implementing a syn-
chronous «request-response» pattern, while
choreography involves interaction between
a service and its consumer using a «publish-
subscribe» pattern.

The proposed method for web service inter-
action is based on using reactive programming.
Integrating a reactive system reduces the number
of active application threads, creating condi-
tions for improved reliability and fault tolerance.

Fig. 3 depicts a traditional architecture
of an application using resources (endpoints)
based on the REST protocol. According to the
nature of this architecture, each request creates
a separate thread. Requests that do not find
available threads typically enter an internal
queue and wait for a thread to become available.
If no threads are available within a certain
timeframe, the request returns an error.

In the traditional model of handling requests, when
a thread reaches the Request handler and executes an
operation that blocks further execution (such as a data-
base call or cache retrieval), the thread enters a waiting
state. This consumes hardware resources and blocks the
execution of new requests. As the number of requests in-
creases, this model can lead to a large number of blocked
threads, which in turn freezes the execution of processes
and degrades system responsiveness.

Reactive programming enables the structuring of ap-
plications around data streams and the propagation of
changes [5]. This paradigm, when implemented in a fully
non-blocking environment, can lead to improved concur-
rency and more efficient use of system resources.

In reactive programming (Fig. 4), synchronous opera-
tions transform into asynchronous event streams [6]. For
example, a database read doesn’t block the thread while
fetching data. Instead, it immediately returns a publisher
that others can subscribe to. Subscribers process events
as they occur and may generate further events, creating
a chain of reactive interactions. This approach enhances

concurrency and resource efficiency, allowing systems to
handle multiple operations simultaneously without waiting
for each to complete [7].

At a higher level of abstraction using business processes,
this approach allows controlling data exchange events and
signaling processes about changes in requests accordingly.
This enables monitoring the stages of process execution,
tracking states, understanding potential problem areas in
case of errors, and helping to build more flexible metrics [8].

The proposed signaling implementation in Fig. 5 is based
on sending «ACK» signals each time a specific stage of the
process is completed. Such a signal may contain minimal
information about the process (process ID), the execution
stage (step ID), and the state of that stage (pending, ac-
tive, blocked, etc.).

The chosen model for implementing asynchronous re-
quests is based on the Event Loop (Fig. 6):

–	 Request registration: the request is placed in the
event queue, from which events are processed using
the event loop.
–	 Single-Threaded Execution: an event loop operates
continuously within a single thread. Multiple event
loops can run concurrently, typically one per available
CPU core.

Fig. 5. Signaling stages of reactive requests execution

Fig. 3. Typical model of REST requests handling

Fig. 4. Reactive model of REST requests handling

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

27TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

–	 Non-Blocking Event Processing: the event loop sequen-
tially processes events from an event queue. It registers
callbacks with the underlying platform and returns im-
mediately, without waiting for operations to complete.
–	 Platform-Driven Completions: the platform (e. g., ope
rating system, runtime environment) manages long-
running operations like database queries or external
service calls. It notifies the event loop upon operation
completion.
–	 Callback Invocation: when notified of an operation’s
completion, the event loop triggers the associated call-
back. This mechanism allows the system to process
results and propagate them back to the original caller
asynchronously.
This model enables efficient handling of concurrent opera-

tions without the complexity of traditional multi-threading,
forming the foundation of reactive systems.

3.  Results and Discussion

As an experiment, a business process was developed to
estimate the losses of the Russian occupation army dur-
ing the war from 2022 to 2024 in terms of personnel and
equipment, summarizing the total amount. Due to a lack
of precise data, approximate figures were interpolated using
data from the Ukrainian Ministry of Finance website [9].
The goal of the experiment is to assess the direct load on
the system depending on its architecture. The following
conditions were set:

–	 although resource [9] provides losses in personnel on
a daily basis (e. g., +1130 personnel as of June 1, 2024),
these losses are simulated by submitting one request
per person to increase the load. The same approach
applies to losses in equipment such as aircraft and
artillery systems;
–	 the immediate number of losses up to the current
moment is evaluated, meaning the application consumes
a data stream where data arrives instantly.

This experiment aims to test how well the system
handles a high volume of real-time data inputs, simulating
ongoing updates and calculations based on available but
interpolated data. The implementation of service discovery
is not within the scope of this article. The article sup-
ports two services: soldiers and tanks, with an example
ontology depicted in Fig. 7.

Fig. 8 depicts the architecture of the application. As men-
tioned earlier, the idea is to create artificial load on the
Business Process Orchestrator service. Its task is to gene
rate a large number of processes that will be managed
through synchronous and asynchronous requests.

The application was implemented in the Java program-
ming language. To simulate a limited number of threads
for each service, the Executors.newFixedThreadPool method
was used, which creates a thread pool and provides ac-
cess to process the next request once a thread becomes
available [10].

The Task Price DB and Soldier Rank DB are block-
ing resources. When handling synchronous requests, the
number of blocked threads was significant, posing a threat
to system stability. In the case of asynchronous requests,
the system was continuously ready to accept new threads,
allowing for less thread time spent on processing requests
and incoming data frames.

Fig. 9, 10 depict the number of active threads in the
application under uniform load (approximately 55,000 re-
quests per second). The visualization shows the maximum
number of threads during the specified interval.

As can be seen, the asynchronous model with a maximum
of 8 active threads allowed for handling a larger number
of incoming requests. This was achieved by using a Sub-
scriber to wait for the completion event of the blocking
resource, thus not occupying space in the active threads.

Based on this, it can be concluded that asynchronous
request processing based on reactive system architecture
does not exhaust all available CPU resources, does not
block the system, and is therefore ready for further loads.

Fig. 6. Event loop model of asynchronous requests

Fig. 7. Example ontology for Service Discovery

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

28 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

This is useful in systems with a continuous data flow
and under conditions where the load is unstable. The pro-
posed example of accounting for enemy losses is just a part
of a large battle management system, where data on troop
movements will be received in real-time, and under such
conditions, the system must be highly reliable and resilient.
It should be noted that the complexity of implementing this
architecture is too high, therefore, for systems with small
or linear loads, it is recommended to adhere to traditional
synchronous interaction.

Further research will focus on implementing a reactive
architecture in a network of services managed by semantic
descriptions using OWL-S or WSDL. The reactive approach
will make the service discovery operation non-blocking,

which is an important optimization of the architecture
as a whole.

4.  Conclusions

The article explored request processing models using
synchronous and asynchronous approaches with an Event
Loop based on the WebFlux framework. Both methods
were tested using an application that processes data from
the Ministry of Finance website regarding the number of
destroyed personnel and equipment of the Russian army,
returning their cost. This was done using two services gov-
erned by semantic description and orchestrated by a dedi-
cated orchestration service. Service discovery processes

Fig. 8. Application architecture for calculating army damage costs

Fig. 9. Active threads during synchronous requests

Fig. 10. Active threads during asynchronous requests

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

29TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 4/2(78), 2024

ISSN 2664-9969

were simplified due to the presence of only two services
for orchestration, which was not the focus of this article.

The thread activity was compared between traditional
request handling and reactive programming. Since the
reactive programming architecture is less CPU-intensive, it
showed 45 % less active threads, avoided system overload
situations (where the thread count equals the maximum)
comparing to traditional one (that had 8 milliseconds of
downtime), and demonstrated better resilience.

Conflict of interest

The author declares that he has no conflict of interest
in relation to this research, whether financial, personal,
authorship or otherwise, that could affect the research
and its results presented in this paper.

Financing

The study was performed without financial support.

Data availability

Manuscript has no associated data.

Use of artificial intelligence

The author confirms that he did not use artificial intel-
ligence technologies when creating the current work.

References

1.	 Lewis, J., Fowler, M. (2017). Microservices: A definition of this
new architectural term. Martin Fowler. Available at: https://
martinfowler.com/articles/microservices.html

2.	 Erl, T. (2005). Service-Oriented Architecture: Concepts, Techno
logy, and Design. Prentice Hall PTR.

3.	 Peng, H., Shi, Z., Qiu, L. (2007). Matching Request Profile and
Service Profile for Semantic Web Service Discovery. Available at:
https://www.researchgate.net/publication/239813737_Match-
ing_Request_Profile_and_Service_Profile_for_Semantic_Web_
Service_Discovery

4.	 Deakin, T., Cook, R. (2018). Service-Oriented Architecture
and Web Services: Concepts, Technologies, and Tools. Journal
of Systems and Software, 137, 116–130.

5.	 Reactive Streams (2013). Reactive Streams Initiative. Available
at: http://www.reactive-streams.org

6.	 Hohpe, G., Woolf, B. (2003). Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Ad-
dison-Wesley.

7.	 Pardon, G., De Backer, R. (2011). Building Scalable Appli-
cations with Event-Driven Architecture. Proceedings of the
International Conference on Software Engineering.

8.	 Hohpe, G., Woolf, B. (2003). Enterprise Integration Patterns:
Designing, Building, and Deploying Messaging Solutions. Addison-
Wesley, 736.

9.	 Ministry of Finance of Ukraine (2024). Available at: https://
mof.gov.ua/uk/

10.	 Richards, M. (2006). Pro Java EE 5 Performance Management
and Optimization.

Ihor Kasianchuk, PhD Student, Department of System Design,
National Technical University of Ukraine «Igor Sikorsky Kyiv
Polytechnic Institute», Kyiv, Ukraine, e-mail: kasyk3@gmail.com,
ORCID: https://orcid.org/0009-0000-2215-149X

