
INFORMATION TECHNOLOGIES

6 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

UDC 004.8+004.41
DOI: 10.15587/2706-5448.2024.310822

TRANSFORMER-BASED MODELS
APPLICATION FOR BUG DETECTION
IN SOURCE CODE

This paper explores the use of transformer-based models for bug detection in source code, aiming to better understand
the capacity of these models to learn complex patterns and relationships within the code. Traditional static analysis
tools are highly limited in their ability to detect semantic errors, resulting in numerous defects passing through to the
code execution stage. This research represents a step towards enhancing static code analysis using neural networks.

The experiments were designed as binary classification tasks to detect buggy code snippets, each targeting
a specific defect type such as NameError, TypeError, IndexError, AttributeError, ValueError, EOFError, SyntaxError,
and ModuleNotFoundError. Utilizing the "RunBugRun" dataset, which relies on code execution results, the mo
dels – BERT, CodeBERT, GPT-2, and CodeT5 – were fine-tuned and compared under identical conditions and
hyperparameters. Performance was evaluated using F1-Score, Precision, and Recall.

The results indicated that transformer-based models, especially CodeT5 and CodeBERT, were effective in iden-
tifying various defects, demonstrating their ability to learn complex code patterns. However, performance varied
by defect type, with some defects like IndexError and TypeError being more challenging to detect. The outcomes
underscore the importance of high-quality, diverse training data and highlight the potential of transformer-based
models to achieve more accurate early defect detection.

Future research should further explore advanced transformer architectures for detecting complicated defects,
and investigate the integration of additional contextual information to the detection process. This study highlights
the potential of modern machine learning architectures to advance software engineering practices, leading to more
efficient and reliable software development.

Keywords: transformers, large language models, bug detection, defect detection, static code analysis, neural networks.

Illia Vokhranov,
Bogdan Bulakh

© The Author(s) 2024

This is an open access article

under the Creative Commons CC BY license

How to cite

Vokhranov, I., Bulakh, B. (2024). Transformer-based models application for bug detection in source code. Technology Audit and Production Reserves,

5 (2 (79)), 6–15. https://doi.org/10.15587/2706-5448.2024.310822

Received date: 22.06.2024

Accepted date: 30.08.2024

Published date: 31.08.2024

1.  Introduction

In the realm of commercial software development, the
capability to deliver high-quality source code within shorter
time frames is essential to meeting contemporary demands.
Development assistance tools play a pivotal role in this
context, particularly in the stage of static code analysis.
Static code analysis, which does not require code execution,
provides automatic analysis at the initial stages of code writ-
ing, thereby enhancing resource efficiency [1]. However, the
effectiveness of this process depends on the quality of the
alerts it generates, which developers must manage manually.

Traditional rule-based tools for static code analysis usually
suffer from a high false-positive rate in alerts they raise [2].
Furthermore, these tools are limited in their ability to iden-
tify complex patterns within program code, resulting in
numerous defects passing through to the code execution
stage. To address these limitations, there is ongoing research
in enhancing static code analysis techniques, encompassing
various areas such as defect detection, defect correction,
code review assistance, code smell detection, and code ex-
planation and documentation.

The emergence of Large Language Models (LLMs) based
on transformer architectures has brought significant ad-
vancements in various fields. LLMs represent a substantial
breakthrough in artificial intelligence, marking a notable
milestone in natural language processing tasks. Typically
built on transformer architectures [3] and self-attention
mechanisms [3, 4], these models are trained on exten-
sive datasets comprising vast collections of texts from the
internet, books, and code repositories. This has allowed
transformer-based models to establish a robust founda-
tion for their application in various software engineer-
ing tasks [5].

Research papers in the field of static code analysis sub-
stantially focus on enhancing tools to reduce false positive
alerts. Another prominent area of interest is the development
of code writing and code completion assistance tools. These
research directions are undeniably crucial and essential for
the software development industry. However, it is possible
to notice a slight lack of focus in existing studies regard-
ing the detection of more complex code issues, particularly
those related to the runtime stage, during the static code
analysis phase using machine learning techniques.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

7TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

Bugs that manifest during the runtime stage are typically
not associated with static analysis. These bugs often involve
non-trivial patterns and relationships within the code that are
not easily detectable by traditional static analysis methods.
However, it is possible to suggest that modern machine learn-
ing architectures have the capacity to learn and recognize
these complex patterns, thereby potentially identifying such
sophisticated issues during the static analysis phase.

In light of this, let’s aim to further explore the capa-
bilities of modern transformer-based models in detecting
bug-related patterns in code retrieved from code execution.
Specifically, this paper evaluates the ability of these models
to learn and identify various patterns of defects in real-
world code snippets. By fine-tuning pre-trained transformer
models and comparing their performance, let’s seek to better
understand their effectiveness in predicting errors that occur
at the run-time stage. The aim of this research is to provide
insights into the potential and limitations of transformer-
based models in enhancing the accuracy of bug detection
in software development processes.

2.  Materials and Methods

2.1.  Dataset selection. In training neural networks for
source code processing tasks, data plays a critical role in
determining the generalization ability, effectiveness, and
performance of the resulting models [6]. In recent years, the
demand for source code datasets has increased significantly.
Today, there are various datasets collected using different
methods and obtained from different sources. From the per-
spective of data availability, we have reached a point where
the quantity of data is no longer a pressing issue. However,
aside from quantity, the quality of data is equally important.
Considerable effort is being made to obtain high-quality
datasets for various software engineering tasks. Researchers
and commercial companies employ diverse approaches to
build and annotate source code datasets.

For instance, some datasets are based on manually crafted
and annotated data, while others are annotated by scraping
and categorizing information from sources such as Stack
Overflow and GitHub. The latter ones are often enhanced
by researchers who manually or automatically add specific
labels, such as bug types. Industrial datasets may also in-
clude proprietary annotations derived from user behavior
logs or business data, frequently requiring strict confidentia
lity agreements. Each dataset possesses distinct advantages
and disadvantages that must be carefully considered when
selecting data for a specific task [5].

As previously stated, our current research is focused
on data labeled based on code executions. At the same
time, let’s aim to avoid synthetic data and focus on code
from real-world projects. A dataset that meets these re-
quirements is the "RunBugRun" dataset, created by Julian
Aron Prenner and Romain Robbes in their work titled
"RunBugRun – An Executable Dataset for Automated Pro-
gram Repair" [7]. In their work, the authors highlight that
incorporating real code executions in datasets bridges the
gap between theoretical models and practical applications.
This approach enables semantic-level evaluation, enhances
fault localization, improves data quality and reliability, and
provides much more realistic benchmarking [7].

It is important to mention that the appropriate use of
synthetic data can be a powerful tool for model training
and development. However, the availability of real and

reliable data is essential for achieving high-quality valida-
tion in software engineering tasks [8–12].

2.2.  Experiment’s structure. Our experiments were de-
signed as binary classification tasks to evaluate the perfor-
mance of a few basic state-of-the-art models in detecting
buggy code snippets. For each type of defect, we fine-tuned
the selected models for 10 epochs under identical conditions.
Each run was executed in the same environment, using the
same hyperparameters, and on the same data specific to each
defect type.

Fine-tuning of the models was performed using LoRA [8],
a technique that accelerates the fine-tuning of large models
while consuming less memory, thereby enhancing resource ef-
ficiency. The selected LoRA hyperparameters were: rank = 16,
alpha = 32, and dropout = 0.1.

The experiments were conducted in the Kaggle envi-
ronment, utilizing GPU P100 computing units.

Evaluation metrics were tracked for both training and
test datasets to ensure a better understanding of the results.
This was particularly important for experiments with rela-
tively low validation data.

2.3.  Models selection. To study the capabilities of trans-
former-based models for the given task, the BERT, CodeBERT,
GPT-2, and CodeT5 models were chosen as representatives
of this architecture. These classic models were selected in
their lighter versions to correspond with task complexity
and data size.

For this study, two text-based models (BERT and GPT-2)
and two models specifically trained on programming lan-
guage data (CodeBERT and CodeT5) were selected.

The BERT and CodeBERT models represent a sim-
pler architecture, consisting solely of the encoder compo-
nent of the transformer architecture, whereas GPT-2 and
CodeT5 feature more complex, generation-oriented encoder-
decoder architectures. While the bug detection tasks do
not necessarily require more complex generative architec-
tures, understanding the potential of these models in bug
detection remains of similar interest, since error detection
is frequently accompanied by error correction.

2.4.  Data preprocessing
2.4.1.  Programming Language Focus. It was decided to

conduct our experiments on Python code snippets. Python
submissions are among the most prevalent in the dataset,
alongside C++.

2.4.2.  Exceptions filtering. For our experiments, it is
necessary only records that represent bug fixes of a single
defect in the code, marked as one of the Python Excep-
tions [9]. To retrieve this information, let’s read the "excep-
tions" field in the execution results. Entries lacking specified
exceptions or containing multiple exceptions are excluded.

2.4.3.  Filtering by tokenized length. To maintain consistency
across different models, let’s exclude records with code snip-
pets exceeding 512 input tokens, tokenized for each selected
model (BERT, CodeBERT, GPT-2, CodeT5). This restric-
tion allows to run experiments under the same conditions
without having to implement a Sliding Window approach
and ensures that none of our code snippets are truncated for
input. The vast majority of code snippets are less in size, so
we are not losing much data.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

8 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

2.4.4.  Data labeling. Let’s construct a balanced binary
classification dataset with a 50/50 distribution of correct
and buggy code snippets. This formation is performed as
follows: each entry that has passed the selection criteria
from previous steps is divided into two records. The ini-
tial buggy code fragment is marked to have defects with
a label of 1, whereas the corrected code fragment is la-
beled as 0. Since the "RunBugRun" dataset contains only
those submissions where the patched code was executed
without errors, it is reasonably possible to assume that these
code snippets are free of defects (at least in the known
context). By providing such data, let’s expect models to
learn about the exact differences between code snippets
that lead to particular defects.

2.4.5.  Training samples selection. Certain types of defects
are more prevalent in the dataset than others. To ensure
that the fine-tuning process yields representative results,
it is not possible to run our experiments for defects that
are not sufficiently represented in the dataset. The starting
point is with at least 200 buggy examples in the training
data (which results in 400 records in the training set). Also,
let’s limit training data to 4000 records for each defect type.
This threshold, determined through practical experiments,
balances the need for sufficient data for fine-tuning and
the execution time within our available resources.

2.5.  Evaluation metrics. In source code bug detection
tasks, selecting appropriate evaluation metrics is crucial.
For example, the metric of Accuracy can be misleading in
cases where defects are much rarer than correct code. A
model that consistently predicts no defects may achieve
high accuracy, yet fail to identify any actual defects.

One of the most convenient options for monitoring the
performance of models in bug detection is to rely on the
Precision and Recall metrics. While Precision indicates the
model’s ability to correctly identify true positives, Recall
reflects the model’s ability to capture the majority of existing
defects. In addition to applying these metrics, let’s employ
the F1-Score. The F1-Score is the harmonic mean of Preci-
sion and Recall, providing a single, balanced measure that
accounts for both false positives and false negatives. This
makes it particularly suitable for defect detection scenarios.

3.  Results and Discussions

3.1.  Experiment 1: NameError detection. NameError excep
tion meaning: The exception is raised when the identifier
being accessed is not found in the local or global scope [9].

Code snippet example representing the NameError defect
and its correction:

Train data samples: 4000.
Test data samples: 1278.
Fine-tuning results are shown in Fig. 1–3.
The best epoch selection based on the models’ perfor

mance is represented in Table 1.

 Fig. 1. F1-score fine-tuning results for NameError detection

 Fig. 2. Precision fine-tuning results for NameError detection

 Fig. 3. Recall fine-tuning results for NameError detection

Table 1
Best epochs metric values for NameError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.94 0.98 0.97 0.99 0.89 0.98

CodeBERT 0.92 0.99 0.95 0.99 0.91 0.97

GPT2 0.83 0.96 0.88 0.98 0.79 0.93

BERT 0.67 0.68 0.50 0.52 1.00 1.00

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

9TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

Discussion: Upon detecting a NameError, only the BERT
model failed to produce acceptable results. Its Precision score
did not rise significantly above 0.5, indicating the model’s
inability to learn the error patterns. In contrast, the CodeT5
and CodeBERT models demonstrated excellent performance.

Code defects that lead to a NameError exception can often
be successfully identified by classical static analysis tools.
Therefore, the strong results observed in this experiment
are, to some extent, expected.

3.2.  Experiment 2: TypeError detection. TypeError excep
tion meaning: The exception is raised when an operation
or function is applied to an incorrect/unsupported object
type [9].

Code snippet example representing the TypeError defect
and its correction:

Train data samples: 4000.
Test data samples: 1134.
Fine-tuning results are shown in Fig. 4–6.
The best epoch selection based on the models’ perfor

mance is represented in Table 2.

 Fig. 4. F1-score fine-tuning results for TypeError detection

 Fig. 5. Precision fine-tuning results for TypeError detection

Fig. 6. Recall fine-tuning results for TypeError detection

Table 2
Best epochs metric values for TypeError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.67 0.71 0.69 0.76 0.66 0.67

CodeBERT 0.79 0.96 0.79 0.95 0.79 0.97

GPT2 0.69 0.81 0.66 0.80 0.72 0.82

BERT 0.67 0.66 0.50 0.49 1.00 1.00

Discussion: The results indicated that detecting Train-
Error was somewhat challenging. The models did not per-
form exceptionally well when evaluated on the test set;
however, they showed some ability to identify patterns of
such defects, as evidenced by their reasonable performance
on the training set. This suggests that under better con-
ditions, (e. g., slightly different data in the dataset) the
models might have achieved better results. Nevertheless,
this type of error is undoubtedly difficult to detect dur-
ing simple code analysis due to its complex dependencies
within the code. To reliably detect such errors in various
conditions and contexts, models need to be trained on
a very large and diverse set of code snippets.

3.3.  Experiment 3: IndexError detection. IndexError excep-
tion meaning: The exception is raised when attempting to
access an element in a list, tuple, or any other sequence with
an index that is out of the range of available indices [9].

Code snippet example representing the IndexError defect
and its correction:

Train data samples: 4000.
Test data samples: 588.

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

10 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

Fine-tuning results are shown in Fig. 7–9.
The best epoch selection based on the models’ perfor

mance is represented in Table 3.

 Fig. 7. F1-score fine-tuning results for IndexError detection

 Fig. 8. Precision fine-tuning results for IndexError detection

 Fig. 9. Recall fine-tuning results for IndexError detection

Table 3
Best epochs metric values for IndexError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.58 0.58 0.62 0.61 0.55 0.54

CodeBERT 0.66 0.66 0.5 0.5 1 1

GPT2 0.64 0.71 0.57 0.63 0.74 0.82

BERT 0.66 0.66 0.5 0.5 1 1

Discussion: Detecting IndexError proved to be a par-
ticularly challenging task. For this defect, the difference
between buggy and correct code snippets often comes
down to small details like "+1" and the results of arithme-
tic calculations, making such defects highly challenging
to identify. The CodeT5 and GPT models performed
slightly better than random guessing. Given this and
the nature of these defects, it is possible to infer that
models with greater capacity and potentially newer ar-
chitectures are needed to capture such complex depen-
dencies in the code.

3.4.  Experiment 4: AttributeError detection. AttributeError
exception meaning: The exception is raised when an attri
bute reference or assignment fails [9].

Code snippet example representing the AttributeError
defect and its correction:

Train data samples: 3114.
Test data samples: 214.
Fine-tuning results are shown in Fig. 10–12.
The best epoch selection based on the models’ perfor

mance is represented in Table 4.

 Fig. 10. F1-score fine-tuning results for AttributeError detection

Fig. 11. Precision fine-tuning results for AttributeError detection

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

 Fig. 12. Recall fine-tuning results for AttributeError detection

Table 4
Best epochs metric values for AttributeError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.91 0.93 0.97 0.99 0.86 0.87

CodeBERT 0.95 0.99 0.96 1 0.93 0.97

GPT2 0.87 0.93 0.88 0.97 0.86 0.9

BERT 0.89 0.96 0.94 0.97 0.84 0.94

Discussion: In AttributeError detection, all models demon
strated excellent results. This suggests that this type of
defect requires only a sufficient amount of suitable train-
ing data to enable models to learn which attributes and
references are correct for specific modules.

It is important to understand that such straightforward
detection is feasible only with widely used modules and
libraries, as the models need to "learn how to use them
correctly". But at the same time, this definitely can be
enhanced with additional context for models (like lists of
available attributes for particular modules or other essential
information retrieved with AST parsing).

3.5.  Experiment 5: ValueError detection. ValueError excep-
tion meaning: The exception is raised when an operation
or function receives an argument that has an inappro
priate/invalid value, and the IndexError was not raised [9].

Code snippet example representing the ValueError defect
and its correction:

Train data samples: 2913.
Test data samples: 210.
Fine-tuning results are shown in Fig. 13–15.
The best epoch selection based on the models’ perfor

mance is represented in Table 5.

Fig. 13. F1-score fine-tuning results for ValueError detection

Fig. 14. Precision fine-tuning results for ValueError detection

Fig. 15. Recall fine-tuning results for ValueError detection

Table 5
Best epochs metric values for ValueError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.57 0.61 0.64 0.68 0.51 0.56

CodeBERT 0.6 0.63 0.71 0.7 0.51 0.52

GPT2 0.58 0.62 0.68 0.7 0.51 0.55

BERT 0.61 0.67 0.72 0.79 0.53 0.58

Discussion: Detecting the ValueError exception is quite
challenging, as it requires both an understanding of the
argument’s value and knowledge about the functions and

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

12 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

operations to which it is passed. Surprisingly, the models
demonstrated some ability to handle this detection. In this
case, it’s primarily attributed to the data consistency, which
enabled the models to effectively learn the context of pro-
vided code snippets. For reliable detection of such defects
in practice, a large amount of diverse data is needed, as
well as additional context about the functions and opera-
tions being used.

3.6.  Experiment 6: EOFError detection. EOFError exception
meaning: The exception is raised when the input() func-
tion hits an end-of-file condition (EOF) without reading
any data [9].

Code snippet example representing the EOFError defect
and its correction:

Train data samples: 1014.
Test data samples: 76.
Fine-tuning results are shown in Fig. 16–18.
The best epoch selection based on the models’ perfor

mance is represented in Table 6.

Fig. 16. F1-score fine-tuning results for EOFError detection

Fig. 17. Precision fine-tuning results for EOFError detection

Fig. 18. Recall fine-tuning results for EOFError detection

Table 6
Best epochs metric values for EOFError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.39 0.42 0.58 0.6 0.29 0.33

CodeBERT 0.71 0.77 0.74 0.77 0.68 0.78

GPT2 0.69 0.69 0.56 0.57 0.89 0.9

BERT 0.41 0.49 0.52 0.56 0.34 0.43

Discussion: The EOFError exception is highly related to
the data passed into the input() function by users, making
direct detection of the issue itself unavailable. However,
similar to many other tasks in static code analysis, it is
possible to identify the presence or absence of certain
structures for handling input data in the code. In our
experiment, the CodeBERT model demonstrated a slightly
better performance in detecting such dependencies. However,
it is possible to believe that addressing such defects requires
more focused data that can highlight specific patterns in
source code. Approaches utilizing synthetic training data
may be particularly useful in such cases.

3.7.  Experiment 7: SyntaxError detection. SyntaxError
exception meaning: The exception is raised when the in-
terpreter encounters a syntax error in the code. This may
also occur when certain identifiers are used in unexpected
contexts, such as calling ‘return’ outside a function or
‘break’ outside a loop.

Code snippet example representing the SyntaxError defect
and its correction:

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

13TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

Train data samples: 588.
Test data samples: 42.
Fine-tuning results are shown in Fig. 19–21.
The best epoch selection based on the models’ perfor

mance is represented in Table 7.

 Fig. 19. F1-score fine-tuning results for SyntaxError detection

 Fig. 20. Precision fine-tuning results for SyntaxError detection

 Fig. 21. Recall fine-tuning results for SyntaxError detection

Table 7
Best epochs metric values for SyntaxError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.95 0.97 0.91 0.96 0.98 1

CodeBERT 1 1 1 1 1 1

GPT2 0.95 0.97 0.91 0.97 1 0.97

BERT 0.93 0.96 0.9 0.97 0.95 0.95

Discussion: Syntax errors are a primary focus in static
code analysis. Most of these errors are effectively detected
by traditional static analysis tools. However, identifying
more complex dependencies requires more sophisticated
rules. As a result, there is no single advanced analyzer
capable of detecting all possible syntax errors.

In our experiment, all models demonstrated strong per-
formance despite the limited amount of training data. Given
the small size of the test set for this type of error, it is
important to also consider the evaluation of the training
set while analyzing results.

3.8.  Experiment 8: ModuleNotFoundError detection. Module-
NotFoundError exception meaning: The exception is a subclass
of ImportError and is raised by import when a module
cannot be located [9].

Code snippet example representing the ModuleNot-
FoundError defect and its correction:

Train data samples: 489.
Test data samples: 22.
Fine-tuning results are shown in Fig. 22–24.

Fig. 22. F1-score fine-tuning results for ModuleNotFoundError detection

Fig. 23. Precision fine-tuning results for ModuleNotFoundError detection

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

14 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

Fig. 24. Recall fine-tuning results for ModuleNotFoundError detection

The best epoch selection based on the models’ perfor
mance is represented in Table 8.

Table 8

Best epochs metric values for ModuleNotFoundError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 1 0.97 1 0.96 1 0.98

CodeBERT 1 1 1 1 1 1

GPT2 1 0.98 1 0.99 1 0.96

BERT 0.95 1 1 1 0.9 0.99

ModuleNotFoundError detection has shown good re-
sults with all models. Despite the relatively small amount
of data, the models were able to identify patterns of the
existing errors. This type of defect, similar to some of
the previous ones, also requires knowledge about the pos-
sible modules. Therefore, to detect such defects in prac-
tice, it is desirable to have additional input information.
For example, such information could be obtained from
package managers like "pip", or similar sources.

This study confirms that transformer-based models,
with their ability to capture and understand intricate code
patterns, offer promising solutions for static code analysis
and bug detection. Nevertheless, achieving reliable results
in practical applications necessitates not only high-quality
and diverse datasets but also careful consideration of the
types of defects targeted for detection. Collectively, these
factors underscore the importance of data quality and
diversity in enhancing the effectiveness of software engi
neering tasks.

This research represents a preliminary step towards
developing a method to enhance static code analysis
using neural networks in the future. Our future work
will include exploring advanced transformer architectures
for detecting defects that rely on complicated depen-
dencies, as well as investigating the integration of ad-
ditional contextual information for improved code under-
standing.

4.  Conclusions

The experiments conducted on detecting various types
of defects using transformer-based models demonstrate their
robust capabilities in learning complex patterns within

source code. Achieving effective detection results depends
on two key factors:

1) performing detection on defect types that have
a genuine reflection in code dependencies (even if they
are complex);

2) having a sufficient quantity of representative data
in the training set.

Furthermore, while it may seem evident, we want to
highlight once again the paramount importance of data
quality. Working with source code demands high precision,
and insufficient quality of training data can significantly
impair model performance. Simultaneously, if we aim to get
closer to real-world tasks, diversity in training examples is
critical to ensuring good model generalization in practice.
Collectively, these factors make software engineering tasks
highly sensible to data quality.

In the experiments, models like CodeT5 and CodeBERT
generally outperformed others. However, complex defects
like IndexError and TypeError presented significant chal-
lenges, suggesting the need for more sophisticated models
or additional contextual information for reliable detection.

Conflict of interest

The authors declare that they have no conflict of inte
rest in relation to this study, including financial, personal,
authorship, or any other, that could affect the study and
its results presented in this article.

Financing

The study was conducted without financial support.

Data availability

The paper has no associated data.

Use of artificial intelligence

The authors confirm that they did not use artificial
intelligence technologies when creating this work.

References

1.	 Tassey, G. (2002). The Economic Impacts of Inadequate Infra-
structure for Software Testing (NIST Planning Report 02-3). RTI
International. National Institute of Standards and Technology.
Available at: https://www.nist.gov/system/files/documents/di-
rector/planning/report02-3.pdf Last accessed: 22.07.2024.

2.	 Nachtigall, M., Schlichtig, M., Bodden, E. (2022). A large-scale
study of usability criteria addressed by static analysis tools.
Proceedings of the 31st ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis. https://doi.org/10.1145/
3533767.3534374

3.	 Vaswani, A., Shazeer, N. M., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A. N. et al. (2017). Attention is All you Need. Neu-
ral Information Processing Systems. https://doi.org/10.48550/
arXiv.1706.03762

4.	 Bahdanau, D., Cho, K., Bengio, Y. (2014). Neural Machine
Translation by Jointly Learning to Align and Translate. CoRR,
abs/1409.0473. https://doi.org/10.48550/arXiv.1409.0473

5.	 Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L. et al.
(2023). Large Language Models for Software Engineering: A Sys-
tematic Literature Review. ArXiv, abs/2308.10620. https://doi.org/
10.48550/arXiv.2308.10620

6.	 Sun, Z., Li, L., Liu, Y., Du, X. (2022). On the Importance of Build-
ing High-quality Training Datasets for Neural Code Search. 2022
IEEE/ACM 44th International Conference on Software Engineer-
ing (ICSE), 1609–1620. https://doi.org/10.1145/3510003.3510160

INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

15TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

7.	 Prenner, J. A., Robbes, R. (2023). RunBugRun – An Executable
Dataset for Automated Program Repair. ArXiv, abs/2304.01102.
https://doi.org/10.48550/arXiv.2304.01102

8.	 Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S.,
Chen, W. (2021). LoRA: Low-Rank Adaptation of Large Lan-
guage Models. ArXiv, abs/2106.09685. https://doi.org/10.48550/
arXiv.2106.09685

9.	 Built-in exceptions. Python Documentation. Python Software
Foundation. Available at: https://docs.python.org/3/library/
exceptions.html Last accessed: 22.07.2024.

10.	 Marjanov, T., Pashchenko, I., Massacci, F. (2022). Machine
Learning for Source Code Vulnerability Detection: What Works
and What Isn’t There Yet. IEEE Security & Privacy, 20 (5),
60–76. https://doi.org/10.1109/msec.2022.3176058

11.	 Fang, C., Miao, N., Srivastav, S., Liu, J., Zhang, R., Fang, R. et al.
(2023). Large Language Models for Code Analysis: Do LLMs
Really Do Their Job? ArXiv, abs/2310.12357. https://doi.org/
10.48550/arXiv.2310.12357

12.	 Xiao, Y., Zuo, X., Xue, L., Wang, K., Dong, J. S., Beschastnikh, I.
(2023). Empirical Study on Transformer-based Techniques for
Software Engineering. ArXiv, abs/2310.00399. https://doi.org/
10.48550/arXiv.2310.00399

*Illia Vokhranov, PhD Student, Department of System Design,
National Technical University of Ukraine "Igor Sikorsky Kyiv Poly-
technic Institute", Kyiv, Ukraine, e-mail: vokhranov@gmail.com,
ORCID: https://orcid.org/0009-0000-1702-0460

Bogdan Bulakh, PhD, Associate Professor, Department of System
Design, National Technical University of Ukraine "Igor Sikorsky Kyiv
Polytechnic Institute", Kyiv, Ukraine, ORCID: https://orcid.org/
0000-0001-5880-6101

*Corresponding author

