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TRANSFORMER-BASED MODELS 
APPLICATION FOR BUG DETECTION 
IN SOURCE CODE

This paper explores the use of transformer-based models for bug detection in source code, aiming to better understand 
the capacity of these models to learn complex patterns and relationships within the code. Traditional static analysis 
tools are highly limited in their ability to detect semantic errors, resulting in numerous defects passing through to the 
code execution stage. This research represents a step towards enhancing static code analysis using neural networks.

The experiments were designed as binary classification tasks to detect buggy code snippets, each targeting 
a specific defect type such as NameError, TypeError, IndexError, AttributeError, ValueError, EOFError, SyntaxError,  
and ModuleNotFoundError. Utilizing the "RunBugRun" dataset, which relies on code execution results, the mo
dels – BERT, CodeBERT, GPT-2, and CodeT5 – were fine-tuned and compared under identical conditions and 
hyperparameters. Performance was evaluated using F1-Score, Precision, and Recall.

The results indicated that transformer-based models, especially CodeT5 and CodeBERT, were effective in iden-
tifying various defects, demonstrating their ability to learn complex code patterns. However, performance varied 
by defect type, with some defects like IndexError and TypeError being more challenging to detect. The outcomes 
underscore the importance of high-quality, diverse training data and highlight the potential of transformer-based 
models to achieve more accurate early defect detection.

Future research should further explore advanced transformer architectures for detecting complicated defects, 
and investigate the integration of additional contextual information to the detection process. This study highlights 
the potential of modern machine learning architectures to advance software engineering practices, leading to more 
efficient and reliable software development.
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1.  Introduction

In the realm of commercial software development, the 
capability to deliver high-quality source code within shorter 
time frames is essential to meeting contemporary demands. 
Development assistance tools play a pivotal role in this 
context, particularly in the stage of static code analysis. 
Static code analysis, which does not require code execution, 
provides automatic analysis at the initial stages of code writ-
ing, thereby enhancing resource efficiency [1]. However, the 
effectiveness of this process depends on the quality of the 
alerts it generates, which developers must manage manually.

Traditional rule-based tools for static code analysis usually 
suffer from a high false-positive rate in alerts they raise [2]. 
Furthermore, these tools are limited in their ability to iden-
tify complex patterns within program code, resulting in 
numerous defects passing through to the code execution 
stage. To address these limitations, there is ongoing research 
in enhancing static code analysis techniques, encompassing 
various areas such as defect detection, defect correction, 
code review assistance, code smell detection, and code ex-
planation and documentation.

The emergence of Large Language Models (LLMs) based 
on transformer architectures has brought significant ad-
vancements in various fields. LLMs represent a substantial 
breakthrough in artificial intelligence, marking a  notable 
milestone in natural language processing tasks. Typically 
built on transformer architectures  [3] and self-attention 
mechanisms  [3,  4], these models are trained on exten-
sive datasets comprising vast collections of texts from the 
internet, books, and code repositories. This has allowed 
transformer-based models to establish a robust founda-
tion for their application in various software engineer-
ing  tasks  [5].

Research papers in the field of static code analysis sub-
stantially focus on enhancing tools to reduce false positive 
alerts. Another prominent area of interest is the development 
of code writing and code completion assistance tools. These 
research directions are undeniably crucial and essential for 
the software development industry. However, it is possible 
to notice a slight lack of focus in existing studies regard-
ing the detection of more complex code issues, particularly 
those related to the runtime stage, during the static code 
analysis phase using machine learning techniques.
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Bugs that manifest during the runtime stage are typically 
not associated with static analysis. These bugs often involve 
non-trivial patterns and relationships within the code that are 
not easily detectable by traditional static analysis methods. 
However, it is possible to suggest that modern machine learn-
ing architectures have the capacity to learn and recognize 
these complex patterns, thereby potentially identifying such 
sophisticated issues during the static analysis phase.

In light of this, let’s aim to further explore the capa-
bilities of modern transformer-based models in detecting 
bug-related patterns in code retrieved from code execution. 
Specifically, this paper evaluates the ability of these models 
to learn and identify various patterns of defects in real-
world code snippets. By fine-tuning pre-trained transformer 
models and comparing their performance, let’s seek to better 
understand their effectiveness in predicting errors that occur 
at the run-time stage. The aim of this research is to provide 
insights into the potential and limitations of transformer-
based models in enhancing the accuracy of bug detection 
in software development processes.

2.  Materials and Methods

2.1.  Dataset selection. In training neural networks for 
source code processing tasks, data plays a critical role in 
determining the generalization ability, effectiveness, and 
performance of the resulting models [6]. In recent years, the 
demand for source code datasets has increased significantly. 
Today, there are various datasets collected using different 
methods and obtained from different sources. From the per-
spective of data availability, we have reached a point where 
the quantity of data is no longer a pressing issue. However, 
aside from quantity, the quality of data is equally important. 
Considerable effort is being made to obtain high-quality 
datasets for various software engineering tasks. Researchers 
and commercial companies employ diverse approaches to 
build and annotate source code datasets.

For instance, some datasets are based on manually crafted 
and annotated data, while others are annotated by scraping 
and categorizing information from sources such as Stack 
Overflow and GitHub. The latter ones are often enhanced 
by researchers who manually or automatically add specific 
labels, such as bug types. Industrial datasets may also in-
clude proprietary annotations derived from user behavior 
logs or business data, frequently requiring strict confidentia
lity agreements. Each dataset possesses distinct advantages 
and disadvantages that must be carefully considered when 
selecting data for a specific task  [5].

As previously stated, our current research is focused 
on data labeled based on code executions. At the same 
time, let’s aim to avoid synthetic data and focus on code 
from real-world projects. A dataset that meets these re-
quirements is the "RunBugRun" dataset, created by Julian 
Aron Prenner and Romain Robbes in their work titled 
"RunBugRun – An Executable Dataset for Automated Pro-
gram Repair" [7]. In their work, the authors highlight that 
incorporating real code executions in datasets bridges the 
gap between theoretical models and practical applications. 
This approach enables semantic-level evaluation, enhances 
fault localization, improves data quality and reliability, and 
provides much more realistic benchmarking  [7].

It is important to mention that the appropriate use of 
synthetic data can be a powerful tool for model training 
and development. However, the availability of real and 

reliable data is essential for achieving high-quality valida-
tion in software engineering tasks  [8–12].

2.2.  Experiment’s structure. Our experiments were de-
signed as binary classification tasks to evaluate the perfor-
mance of a few basic state-of-the-art models in detecting 
buggy code snippets. For each type of defect, we fine-tuned 
the selected models for 10 epochs under identical conditions. 
Each run was executed in the same environment, using the  
same hyperparameters, and on the same data specific to each  
defect type.

Fine-tuning of the models was performed using LoRA [8], 
a technique that accelerates the fine-tuning of large models  
while consuming less memory, thereby enhancing resource ef-
ficiency. The selected LoRA hyperparameters were: rank = 16, 
alpha = 32, and dropout = 0.1.

The experiments were conducted in the Kaggle envi-
ronment, utilizing GPU P100 computing units.

Evaluation metrics were tracked for both training and 
test datasets to ensure a better understanding of the results.  
This was particularly important for experiments with rela-
tively low validation data.

2.3.  Models selection. To study the capabilities of trans-
former-based models for the given task, the BERT, CodeBERT, 
GPT-2, and CodeT5 models were chosen as representatives 
of this architecture. These classic models were selected in 
their lighter versions to correspond with task complexity 
and data size.

For this study, two text-based models (BERT and GPT-2)  
and two models specifically trained on programming lan-
guage data (CodeBERT and CodeT5) were selected.

The BERT and CodeBERT models represent a sim-
pler architecture, consisting solely of the encoder compo-
nent of the transformer architecture, whereas GPT-2 and  
CodeT5 feature more complex, generation-oriented encoder-
decoder architectures. While the bug detection tasks do 
not necessarily require more complex generative architec-
tures, understanding the potential of these models in bug 
detection remains of similar interest, since error detection 
is frequently accompanied by error correction.

2.4.  Data preprocessing
2.4.1.  Programming Language Focus. It was decided to 

conduct our experiments on Python code snippets. Python 
submissions are among the most prevalent in the dataset, 
alongside C++.

2.4.2.  Exceptions filtering. For our experiments, it is 
necessary only records that represent bug fixes of a single 
defect in the code, marked as one of the Python Excep-
tions [9]. To retrieve this information, let’s read the "excep-
tions" field in the execution results. Entries lacking specified 
exceptions or containing multiple exceptions are excluded.

2.4.3.  Filtering by tokenized length. To maintain consistency 
across different models, let’s exclude records with code snip-
pets exceeding 512 input tokens, tokenized for each selected 
model (BERT, CodeBERT, GPT-2, CodeT5). This restric-
tion allows to run experiments under the same conditions 
without having to implement a Sliding Window approach 
and ensures that none of our code snippets are truncated for 
input. The vast majority of code snippets are less in size, so  
we are not losing much data.
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2.4.4.  Data labeling. Let’s construct a balanced binary 
classification dataset with a 50/50 distribution of correct 
and buggy code snippets. This formation is performed as 
follows: each entry that has passed the selection criteria 
from previous steps is divided into two records. The ini-
tial buggy code fragment is marked to have defects with 
a label of 1, whereas the corrected code fragment is la-
beled  as  0. Since the "RunBugRun" dataset contains only 
those submissions where the patched code was executed 
without errors, it is reasonably possible to assume that these 
code snippets are free of defects (at least in the known 
context). By providing such data, let’s expect models to 
learn about the exact differences between code snippets 
that lead to particular defects.

2.4.5.  Training samples selection. Certain types of defects 
are more prevalent in the dataset than others. To ensure 
that the fine-tuning process yields representative results, 
it is not possible to run our experiments for defects that 
are not sufficiently represented in the dataset. The starting 
point is with at least 200 buggy examples in the training 
data (which results in 400 records in the training set). Also, 
let’s limit training data to 4000 records for each defect type. 
This threshold, determined through practical experiments, 
balances the need for sufficient data for fine-tuning and 
the execution time within our available resources.

2.5.  Evaluation metrics. In source code bug detection 
tasks, selecting appropriate evaluation metrics is crucial. 
For example, the metric of Accuracy can be misleading in 
cases where defects are much rarer than correct code. A 
model that consistently predicts no defects may achieve 
high accuracy, yet fail to identify any actual defects.

One of the most convenient options for monitoring the 
performance of models in bug detection is to rely on the 
Precision and Recall metrics. While Precision indicates the 
model’s ability to correctly identify true positives, Recall 
reflects the model’s ability to capture the majority of existing 
defects. In addition to applying these metrics, let’s employ 
the F1-Score. The F1-Score is the harmonic mean of Preci-
sion and Recall, providing a single, balanced measure that 
accounts for both false positives and false negatives. This 
makes it particularly suitable for defect detection scenarios.

3.  Results and Discussions

3.1.  Experiment 1: NameError detection. NameError excep
tion meaning: The exception is raised when the identifier 
being accessed is not found in the local or global scope [9].

Code snippet example representing the NameError defect 
and its correction:

Train data samples: 4000.
Test data samples: 1278.
Fine-tuning results are shown in Fig.  1–3.
The best epoch selection based on the models’ perfor

mance is represented in Table  1.

 Fig. 1. F1-score fine-tuning results for NameError detection

 Fig. 2. Precision fine-tuning results for NameError detection

 Fig. 3. Recall fine-tuning results for NameError detection

Table 1
Best epochs metric values for NameError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.94 0.98 0.97 0.99 0.89 0.98

CodeBERT 0.92 0.99 0.95 0.99 0.91 0.97

GPT2 0.83 0.96 0.88 0.98 0.79 0.93

BERT 0.67 0.68 0.50 0.52 1.00 1.00
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Discussion: Upon detecting a NameError, only the BERT 
model failed to produce acceptable results. Its Precision score 
did not rise significantly above 0.5, indicating the model’s 
inability to learn the error patterns. In contrast, the CodeT5 
and CodeBERT models demonstrated excellent performance.

Code defects that lead to a NameError exception can often 
be successfully identified by classical static analysis tools.  
Therefore, the strong results observed in this experiment 
are, to some extent, expected.

3.2.  Experiment 2: TypeError detection. TypeError excep
tion meaning: The exception is raised when an operation 
or function is applied to an incorrect/unsupported object 
type  [9].

Code snippet example representing the TypeError defect 
and its correction:

Train data samples: 4000.
Test data samples: 1134.
Fine-tuning results are shown in Fig.  4–6.
The best epoch selection based on the models’ perfor

mance is represented in Table  2.

 Fig. 4. F1-score fine-tuning results for TypeError detection

 Fig. 5. Precision fine-tuning results for TypeError detection

 
Fig. 6. Recall fine-tuning results for TypeError detection

Table 2
Best epochs metric values for TypeError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.67 0.71 0.69 0.76 0.66 0.67

CodeBERT 0.79 0.96 0.79 0.95 0.79 0.97

GPT2 0.69 0.81 0.66 0.80 0.72 0.82

BERT 0.67 0.66 0.50 0.49 1.00 1.00

Discussion: The results indicated that detecting Train-
Error was somewhat challenging. The models did not per-
form exceptionally well when evaluated on the test set; 
however, they showed some ability to identify patterns of 
such defects, as evidenced by their reasonable performance 
on the training set. This suggests that under better con-
ditions,  (e.  g., slightly different data in the dataset) the 
models might have achieved better results. Nevertheless, 
this type of error is undoubtedly difficult to detect dur-
ing simple code analysis due to its complex dependencies 
within the code. To reliably detect such errors in various 
conditions and contexts, models need to be trained on 
a  very large and diverse set of code snippets.

3.3.  Experiment 3: IndexError detection. IndexError excep-
tion meaning: The exception is raised when attempting to 
access an element in a list, tuple, or any other sequence with 
an index that is out of the range of available indices  [9].

Code snippet example representing the IndexError defect 
and its correction:

Train data samples: 4000.
Test data samples: 588.
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Fine-tuning results are shown in Fig.  7–9.
The best epoch selection based on the models’ perfor

mance is represented in Table  3.

 Fig. 7. F1-score fine-tuning results for IndexError detection

 Fig. 8. Precision fine-tuning results for IndexError detection

 Fig. 9. Recall fine-tuning results for IndexError detection

Table 3
Best epochs metric values for IndexError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.58 0.58 0.62 0.61 0.55 0.54

CodeBERT 0.66 0.66 0.5 0.5 1 1

GPT2 0.64 0.71 0.57 0.63 0.74 0.82

BERT 0.66 0.66 0.5 0.5 1 1

Discussion: Detecting IndexError proved to be a par-
ticularly challenging task. For this defect, the difference 
between buggy and correct code snippets often comes  
down to small details like "+1" and the results of arithme- 
tic calculations, making such defects highly challenging 
to identify. The CodeT5 and GPT models performed 
slightly better than random guessing. Given this and 
the nature of these defects, it is possible to infer that 
models with greater capacity and potentially newer ar-
chitectures are needed to capture such complex depen-
dencies in the code.

3.4.  Experiment 4: AttributeError detection. AttributeError  
exception meaning: The exception is raised when an attri
bute reference or assignment fails  [9].

Code snippet example representing the AttributeError 
defect and its correction:

Train data samples: 3114.
Test data samples: 214.
Fine-tuning results are shown in Fig.  10–12.
The best epoch selection based on the models’ perfor

mance is represented in Table  4.

 Fig. 10. F1-score fine-tuning results for AttributeError detection

 
Fig. 11. Precision fine-tuning results for AttributeError detection



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

11TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/2(79), 2024

ISSN 2664-9969

 Fig. 12. Recall fine-tuning results for AttributeError detection

Table 4
Best epochs metric values for AttributeError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.91 0.93 0.97 0.99 0.86 0.87

CodeBERT 0.95 0.99 0.96 1 0.93 0.97

GPT2 0.87 0.93 0.88 0.97 0.86 0.9

BERT 0.89 0.96 0.94 0.97 0.84 0.94

Discussion: In AttributeError detection, all models demon
strated excellent results. This suggests that this type of 
defect requires only a sufficient amount of suitable train-
ing data to enable models to learn which attributes and 
references are correct for specific modules.

It is important to understand that such straightforward 
detection is feasible only with widely used modules and 
libraries, as the models need to "learn how to use them 
correctly". But at the same time, this definitely can be 
enhanced with additional context for models (like lists of 
available attributes for particular modules or other essential 
information retrieved with AST parsing).

3.5.  Experiment 5: ValueError detection. ValueError excep-
tion meaning: The exception is raised when an operation 
or function receives an argument that has an inappro
priate/invalid value, and the IndexError was not raised [9].

Code snippet example representing the ValueError defect 
and its correction:

Train data samples: 2913.
Test data samples: 210.
Fine-tuning results are shown in Fig.  13–15.
The best epoch selection based on the models’ perfor

mance is represented in Table  5.

 
Fig. 13. F1-score fine-tuning results for ValueError detection

 
Fig. 14. Precision fine-tuning results for ValueError detection

 
Fig. 15. Recall fine-tuning results for ValueError detection

Table 5
Best epochs metric values for ValueError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.57 0.61 0.64 0.68 0.51 0.56

CodeBERT 0.6 0.63 0.71 0.7 0.51 0.52

GPT2 0.58 0.62 0.68 0.7 0.51 0.55

BERT 0.61 0.67 0.72 0.79 0.53 0.58

Discussion: Detecting the ValueError exception is quite 
challenging, as it requires both an understanding of the 
argument’s value and knowledge about the functions and  
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operations to which it is passed. Surprisingly, the models 
demonstrated some ability to handle this detection. In this 
case, it’s primarily attributed to the data consistency, which 
enabled the models to effectively learn the context of pro-
vided code snippets. For reliable detection of such defects 
in practice, a large amount of diverse data is needed, as 
well as additional context about the functions and opera-
tions being used.

3.6.  Experiment 6: EOFError detection. EOFError exception 
meaning: The exception is raised when the input() func-
tion hits an end-of-file condition (EOF) without reading 
any data  [9].

Code snippet example representing the EOFError defect 
and its correction:

Train data samples: 1014.
Test data samples: 76.
Fine-tuning results are shown in Fig.  16–18.
The best epoch selection based on the models’ perfor

mance is represented in Table  6.

 
Fig. 16. F1-score fine-tuning results for EOFError detection

 
Fig. 17. Precision fine-tuning results for EOFError detection

 
Fig. 18. Recall fine-tuning results for EOFError detection

Table 6
Best epochs metric values for EOFError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.39 0.42 0.58 0.6 0.29 0.33

CodeBERT 0.71 0.77 0.74 0.77 0.68 0.78

GPT2 0.69 0.69 0.56 0.57 0.89 0.9

BERT 0.41 0.49 0.52 0.56 0.34 0.43

Discussion: The EOFError exception is highly related to 
the data passed into the input() function by users, making 
direct detection of the issue itself unavailable. However, 
similar to many other tasks in static code analysis, it is 
possible to identify the presence or absence of certain 
structures for handling input data in the code. In our 
experiment, the CodeBERT model demonstrated a slightly 
better performance in detecting such dependencies. However, 
it is possible to believe that addressing such defects requires 
more focused data that can highlight specific patterns in 
source code. Approaches utilizing synthetic training data 
may be particularly useful in such cases.

3.7.  Experiment 7: SyntaxError detection. SyntaxError 
exception meaning: The exception is raised when the in-
terpreter encounters a syntax error in the code. This may 
also occur when certain identifiers are used in unexpected 
contexts, such as calling ‘return’ outside a function or 
‘break’ outside a loop.

Code snippet example representing the SyntaxError defect 
and its correction:
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Train data samples: 588.
Test data samples: 42.
Fine-tuning results are shown in Fig.  19–21.
The best epoch selection based on the models’ perfor

mance is represented in Table  7.

 Fig. 19. F1-score fine-tuning results for SyntaxError detection

 Fig. 20. Precision fine-tuning results for SyntaxError detection

 Fig. 21. Recall fine-tuning results for SyntaxError detection

Table 7
Best epochs metric values for SyntaxError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 0.95 0.97 0.91 0.96 0.98 1

CodeBERT 1 1 1 1 1 1

GPT2 0.95 0.97 0.91 0.97 1 0.97

BERT 0.93 0.96 0.9 0.97 0.95 0.95

Discussion: Syntax errors are a primary focus in static 
code analysis. Most of these errors are effectively detected 
by traditional static analysis tools. However, identifying 
more complex dependencies requires more sophisticated 
rules. As a result, there is no single advanced analyzer 
capable of detecting all possible syntax errors.

In our experiment, all models demonstrated strong per-
formance despite the limited amount of training data. Given 
the small size of the test set for this type of error, it is 
important to also consider the evaluation of the training 
set while analyzing results.

3.8.  Experiment 8: ModuleNotFoundError detection. Module-
NotFoundError exception meaning: The exception is a subclass 
of ImportError and is raised by import when a module 
cannot be located  [9].

Code snippet example representing the ModuleNot-
FoundError defect and its correction:

Train data samples: 489.
Test data samples: 22.
Fine-tuning results are shown in Fig.  22–24.

 
Fig. 22. F1-score fine-tuning results for ModuleNotFoundError detection

 
Fig. 23. Precision fine-tuning results for ModuleNotFoundError detection
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Fig. 24. Recall fine-tuning results for ModuleNotFoundError detection

The best epoch selection based on the models’ perfor
mance is represented in Table  8.

Table 8

Best epochs metric values for ModuleNotFoundError detection

Model
F1 Precision Recall

Eval Train Eval Train Eval Train

CodeT5 1 0.97 1 0.96 1 0.98

CodeBERT 1 1 1 1 1 1

GPT2 1 0.98 1 0.99 1 0.96

BERT 0.95 1 1 1 0.9 0.99

ModuleNotFoundError detection has shown good re-
sults with all models. Despite the relatively small amount 
of data, the models were able to identify patterns of the 
existing errors. This type of defect, similar to some of 
the previous ones, also requires knowledge about the pos-
sible modules. Therefore, to detect such defects in prac-
tice, it is desirable to have additional input information.  
For example, such information could be obtained from 
package managers like "pip", or similar sources.

This study confirms that transformer-based models, 
with their ability to capture and understand intricate code 
patterns, offer promising solutions for static code analysis 
and bug detection. Nevertheless, achieving reliable results 
in practical applications necessitates not only high-quality 
and diverse datasets but also careful consideration of the 
types of defects targeted for detection. Collectively, these 
factors underscore the importance of data quality and 
diversity in enhancing the effectiveness of software engi
neering tasks.

This research represents a preliminary step towards 
developing a method to enhance static code analysis 
using neural networks in the future. Our future work 
will include exploring advanced transformer architectures 
for detecting defects that rely on complicated depen-
dencies, as well as investigating the integration of ad-
ditional contextual information for improved code under- 
standing.

4.  Conclusions

The experiments conducted on detecting various types 
of defects using transformer-based models demonstrate their 
robust capabilities in learning complex patterns within 

source code. Achieving effective detection results depends 
on two key factors:

1)  performing detection on defect types that have 
a  genuine reflection in code dependencies (even if they 
are complex);

2)  having a sufficient quantity of representative data 
in the training set.

Furthermore, while it may seem evident, we want to 
highlight once again the paramount importance of data 
quality. Working with source code demands high precision, 
and insufficient quality of training data can significantly 
impair model performance. Simultaneously, if we aim to get 
closer to real-world tasks, diversity in training examples is 
critical to ensuring good model generalization in practice. 
Collectively, these factors make software engineering tasks 
highly sensible to data quality.

In the experiments, models like CodeT5 and CodeBERT 
generally outperformed others. However, complex defects 
like IndexError and TypeError presented significant chal-
lenges, suggesting the need for more sophisticated models 
or additional contextual information for reliable detection.
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