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CONTRIBUTION TO THE ASSESSMENT OF 
EFFECT DISTANCES OF ATMOSPHERIC 
DISPERSION: CASE STUDY

Storage tanks are vital to the oil industry, functioning as essential components in the operation of oil fields. 
However, their strategic importance is accompanied by significant environmental risks, particularly due to atmo-
spheric dispersion events. These events, characterized by the release and spread of pollutants such as aerosols, gases, 
and dust into the atmosphere, can stem from both human activities and accidental releases. The consequences are 
often severe, leading to considerable human, material, and ecological damage. Atmospheric dispersion of pollu-
tants has emerged as a major environmental concern, especially within industries where storage tanks are integral 
to operations. This concern is magnified by increasingly stringent regulatory frameworks. Industries, particularly 
those operating within classified facilities subject to environmental protection laws, are now mandated to thorough-
ly identify, analyze, and assess potential accidental risks associated with their operations. These regulations are 
designed to mitigate the adverse impacts of such incidents, and this forms the object of this study.

In this study, we concentrated on the T-403A/B/C storage spheres at the ALRAR gas complex. Utilizing dy-
namic consequence modelling with ALOHA software, it was possible to conduct a comprehensive assessment of 
potential pollutant releases in the processing area. This approach allowed to meticulously map out the hazardous 
phenomena linked to these scenarios and to develop targeted preventive and protective measures. The findings 
from this study highlight the critical need for rigorous risk assessments and the implementation of proactive safety 
strategies. By doing so, the environmental and operational risks associated with storage tanks in the oil industry can 
be significantly reduced. This research underscores the imperative of integrating advanced modelling techniques 
and stringent safety protocols to safeguard both the environment and industry operations.

Keywords: environmental risks, spread of pollutants, atmospheric dispersion of storage tanks, safety, modeling, 
protection and prevention.
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1.  Introduction

Atmospheric dispersion refers to the movement and be-
havior of particles such as aerosols, gases, and dust that are 
released into the atmosphere over time and space [1–3]. These 
emissions can be either anthropogenic-resulting from human 
activities or accidental, occurring due to unforeseen incidents. 
The dispersion of pollutants in the atmosphere is a major 
environmental concern, particularly for industries, as it has 
the potential to cause severe harm to human health, safety, 
and the environment [4–6]. Pollutants of anthropogenic origin, 
once present in the atmosphere, can lead to a wide range of 
health issues, including respiratory problems, cardiovascular 
diseases, and even cancers [7]. In addition to their health 
implications, these pollutants can pose serious safety risks, as 
they may serve as catalysts for fires and explosions [8–11]. 
Furthermore, their environmental impact is profound, with 
significant adverse effects on wildlife and vegetation [12–17].

Given the potential consequences of atmospheric disper-
sion, it is crucial to understand and control these emissions. 
This understanding is essential not only for quantifying their 

impact but also for reducing their environmental footprint 
wherever possible. Effective management of these emissions 
is particularly important in industrial settings, where the risk 
of accidental releases is higher [18–21]. Addressing these 
risks requires a proactive approach, particularly during the 
early stages of design and planning for industrial installa-
tions. One of the most effective ways to mitigate the risks 
associated with atmospheric dispersion is through the early 
estimation of potential accidental consequences. By analysing 
the likely outcomes of events such as explosions, fires, and 
toxic dispersions, industries can make informed decisions 
about the placement of facilities, the technologies they em-
ploy, and the safety measures they need to implement. This 
proactive approach enables the selection of optimal locations 
for new installations, minimizing the potential impact on 
surrounding communities and the environment. Additionally, 
it aids in the identification of key safety constraints that 
must be considered to ensure the well-being of workers and 
the public [22–26].

The data generated from such studies are invaluable not 
only for industries but also for public authorities. Accurate  
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assessments of effect distances for explosions, fires, and toxic 
dispersions provide crucial information for emergency plan-
ning and response [27–31]. Public authorities can use this 
data to develop more effective regulations and guidelines for 
industrial activities, ensuring that safety and environmental 
considerations are adequately addressed. For industries, this 
information is essential for the design and operation of fa-
cilities that meet regulatory requirements while minimizing 
their environmental impact [32–37].

Eventually, the atmospheric dispersion of pollutants is  
a complex and significant challenge that requires careful con-
sideration and management. By understanding the behavior 
of emissions and their potential consequences, industries can 
take proactive steps to reduce their environmental impact 
and enhance safety. The early estimation of accidental con-
sequences plays a critical role in this process, enabling the 
selection of optimal facility locations, the implementation of 
appropriate technologies, and the identification of essential 
safety measures. This approach not only benefits industries 
by ensuring compliance with regulations but also serves the 
broader public interest by protecting health, safety, and the 
environment. Thus, the aim of the research is to assess of 
effect distances of atmospheric dispersion using case study.

2.  Materials and Methods

To assess the atmospheric dispersion of gases, a numerical 
simulation was employed. This simulation serves as an ad-
vanced analytical tool designed to evaluate hazardous scenarios 
and model dangerous phenomena [38–42]. In contemporary 
industry practices, atmospheric dispersion modelling has 
become indispensable, providing critical insights into the 
physical processes at play and supporting the development 
of effective pollution control strategies. Atmospheric disper-
sion modelling enables a comprehensive understanding of 
how pollutants disperse in the environment, which is vital 
for devising strategies to mitigate their impact. For this  
purpose, let’s utilize the ALOHA program to simulate the 
dispersion of emissions from a storage tank, specifically focus-
ing on toxic or flammable substances. The ALOHA software 
facilitates the prediction of how these substances behave once  
released into the atmosphere, helping to estimate their po-
tential impact on health and safety [43–45].

The use of a computer model in this context enhances 
project management by forecasting various variables and 
assessing associated risks. Typically, such simulations present 
risk in probabilistic terms, offering a quantifiable measure 
of potential hazards [46, 47].

In this study, we applied this approach to the T-403A/B/C 
storage spheres at the ALRAR gas complex. This case study 
provided a practical example of how numerical simulations can 
be used to evaluate and manage risks related to atmospheric 
dispersion. By analyzing the dispersion patterns and potential 
consequences, it is possible to gain valuable insights into the 
behavior of hazardous substances and improve safety protocols.

2.1.  Overview of the ALOHA simulation software. CAMEO-
ALOHA is a software tool designed for situations in emer-
gency. It was developed collaboratively by two American 
agencies: the Environmental Protection Agency’s Office of 
Emergency Prevention, Preparedness, and Response (EPA) 
and the National Oceanic and Atmospheric Administration’s 
Office of Response and Restoration (NOAA) [48]. ALOHA 
models atmospheric dispersion of gases using two primary 

approaches: a Gaussian-based module for neutral gases and 
a dense gas module for heavier-than-air gases. The software 
supports the modelling of emissions from various sources, 
including boiling or non-boiling spills, pressurized gas or 
liquid storage tanks, unpressurized liquid tanks, tanks con-
taining liquefied gases, and pressurized gas pipelines.

2.2.  Scenario  parameters  and  source  description
Input Parameters: Input parameters encompass details such 

as the accident’s location, the chemical substance involved, 
atmospheric conditions, site characteristics, and specifics of 
the release scenario. This comprehensive data is crucial for ac-
curate modelling and effective assessment of potential impacts.

Site Location: AIN AMENAS, ILLIZI, ALGERIA.
Chemical Product: PROPANE.
Atmospheric Conditions: Detailed in Table 1.

Table 1
Input parameters

Characteristics Values

Wind speed 8 m/s

Air temperature 45 °C

Humidity 5 %

Surface roughness Free terrain

The source: It identifies the origin of the pollutant and 
the type of leak. Additionally, it requires information on the 
storage temperature, volume, and the container of the tank.

2.3.  Accident  scenario. For the atmospheric disperse on 
modelling of gas and emissions from pressurized tanks contain-
ing liquefied gases, a specific scenario was developed: Due to hu-
man error during maintenance on valve PSV502A/507A/508A, 
compounded by the aging factor of the valve, an explosion oc-
curred. As a result, a simulation of the dispersion of the evapo-
rated gas can be conducted, as to simulate the most common 
phenomenon in such cases, known as BLEVE (Boiling Liquid  
Expanding Vapour Explosion), as shown in Fig. 1.

2.4.  Presentation  of  the  study  area
2.4.1.  Geographical  situation  of  the  region. The gas com-

plex is situated in a region characterized by a hot desert 
climate, specifically classified as K ppen BWh, emblematic of 
the vast Sahara. This environment is marked by prolonged, 
scorching summers and brief, mild winters. The climate is 
predominantly hyper-arid, with extremely low humidity and 
minimal annual precipitation, averaging just 23 mm. Summers 
are intensely hot, with maximum temperatures consistently 
exceeding 40 °C from mid-May to late September, often 
peaking around 45 °C. In contrast, winter days are pleasantly 
warm, though night-time temperatures can drop sharply 
to around 4 °C, a consequence of the desert’s inability to 
retain heat. The skies over this region are typically clear, 
with cloud cover being a rare occurrence throughout the 
year. Overcast days are virtually non-existent, allowing for 
abundant sunlight year-round. The average daily temperature 
across the year is approximately 23.7 °C in Amenas. This 
extreme climate, with its intense heat and lack of moisture, 
presents significant challenges for both human activity and 
industrial operations, necessitating specialized infrastructure 
and rigorous safety measures to ensure continuous and safe 
functioning of the gas complex.
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2.4.2.  Tank  characteristics. Liquefied Petroleum Gas 
(LPG), a liquid primarily consisting of propane and butane, 
is stored and managed with precision to ensure safety and 
quality. The storage sphere T-403A is typically filled to 
two-thirds of its 3,978 m3 capacity, with the remaining 
space occupied by fuel gas from the gas processing units. 
This LPG product, which meets stringent specifications, 
is produced at the top of column V-163 across four pro-
cessing trains. The LPG that meets quality standards is 
stored in three identical spheres – T-403A, T-403B, and 
T-403C – each maintained at a pressure of 3 bars and  
a temperature of 2 °C. In contrast, off-specification LPG 
is stored separately in sphere T-404, which has a capacity 
of 949 m3, under higher-pressure conditions of 6.5 bars 
and temperatures ranging from 2 °C to 60 °C.

When LPG does not meet the required specifications, 
it is pumped by either the P-421A or P-421B pumps 
to one of the E-104 reprocessing units (01, 02, 03,  
or 04) or to the vaporizer E-177 for reinjection into the  
sy stem. Additionally, LPG can be transferred between the 
spheres using pumps P-411A or P-411B, as illustrated  
in Fig. 2.

Booster pumps P-407A, P-407B, and P-407C are used 
to discharge LPG to the HEH terminal via shipment pumps 

P-408A, P-408B, or P-408C [49]. The specific characte-
ristics of these storage tanks, including their capacities, 
pressures, and temperatures, are detailed in Table 2.

The impact distances were determined using opera-
tional data collected directly from the installation sites. 
The subsequent analysis of these effects is shown in the 
next section, where presented the consequences of the 
identified hazardous phenomena.

3.  Results and Discussion

3.1.  Pollutant  and  flame  concentration
The concentration of pollutants and flames poses signifi-

cant risks, with impacted zones extending up to 200 meters 
for butane and 750 meters for propane, as illustrated in Fig. 3.  
These distances highlight the extensive reach of the threat, 
underscoring the need for effective mitigation measures 
within these critical areas.

The Threat of flames. In terms of fire hazards, the im-
pact zones for both propane and butane are equivalent, 
with pollutant exposure extending beyond 750 meters, 
as illustrated in Fig. 4. The threat posed by flames is 
substantial, demonstrating the need for stringent safety 
measures across the entire affected area.

 
Fig. 1. Accident scenarios

 
Fig. 2. The three spheres studied T-403A/B/C (identical)

Table 2
Characteristics of the tanks

Tanks Capacity (m3) Volume (m3) Diameter (m) 

T-403A/B/C 3978 2652 19.7

T-404 948 633 12.5
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3.2.  Impacts of overpressure waves. The data presented 
in Fig. 5 highlight the extensive effects of overpressure 
waves on surrounding areas. Buildings situated within 
a 400-meter radius from the explosion source are at 
significant risk of destruction when exposed to a pres-
sure of 8.0 psi. Furthermore, individuals in the southern 
400-meter zone may experience severe injuries if sub-
jected to a pressure of 3.5 psi. Glass and other fragile 
materials within a 600-meter radius are likely to shatter 
under a pressure of 1.0 psi. These findings, as illustrated 
in Fig. 5, underscore the potential for substantial dam-
age and safety risks associated with overpressure waves, 
emphasizing the need for stringent safety measures and 
strategic planning to mitigate such hazards.

3.3.  Thermal  radiation. Fig. 6 illustrates the effects 
of thermal radiation from propane or butane. Within 
a 1,500-meter radius, thermal radiation can reach up 
to 10.0 kW/m2, which is intense enough to be poten-
tially fatal within 60 seconds. In a 2,000-meter radius, 
the radiation level decreases to 5.0 kW/m2, still high 
enough to cause second-degree burns within the same 
60-second period. Furthermore, at a radiation inten-
sity of 2.0 kW/m2, exposure for just 60 seconds can 
result in significant pain. These data highlight the se-
vere and escalating risks associated with thermal radia-
tion at varying distances from the source, underscoring  
the critical need for effective safety measures and re-
sponse strategies.

  
a b

Fig. 3. Concentration areas of pollutants: a – propane; b – butane

  
a b

Fig. 4. Areas threatened by pollutants from flames: a – propane; b – butane

  
a b

Fig. 5. Areas at risk of overpressure: a – propane; b – butane



CHEMICAL ENGINEERING:
ECOLOGY AND ENVIRONMENTAL TECHNOLOGY

22 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — № 5/3(79), 2024

ISSN 2664-9969

Proximity of the sphere. By examining 
the sphere’s circumference, let’s determine 
the following insights:

1. The three spheres T-403A/B/C.
2. The sphere T-404.
3. The fuel cicadas.
4. Four decommissioned tanks.
5. Pipeline to the flares.
6. Pipelines to the spheres.
7. The pumps.
Based on the satellite imagery and si-

mulation results presented in Fig. 7, the 
analysis reveals significant overheating is-
sues affecting the walls of the T-403A/B 
and T-404 storage spheres. Additionally, 
the fuel cicadas, which serve as pressure 
regulators to prevent depressurization or 
system failure, are also experiencing ele-
vated temperatures. This overheating poses 
potential risks to the structural integrity 
of the spheres and the effectiveness of the 
pressure regulation system, highlighting  
a critical area of concern for ongoing safety 
and maintenance protocols.

These findings enable to estimate the necessary safety 
distances to avert potential future incidents, particularly 
concerning the impacts of pollution, flames, and thermal 
radiation. By understanding these effect distances, it is 
possible to establish effective preventive measures to safe-
guard against the risks associated with leaks, ensuring 
enhanced safety and mitigation strategies for any future 
occurrences.

The risks associated with storage activities are notably 
greater than other risks generated by other operations, 
underscoring the need for rigorous management and height-
ened vigilance. Accidents in storage can escalate into di-
sasters with potentially devastating consequences, including 
significant human and material losses, along with severe 
and often irreversible environmental damage. This study 
highlights the critical importance of comprehensive hazard 
assessments and the implementation of robust preventive 
measures. By focusing on these aspects, it is significantly 
possible to enhance safety in storage operations, thereby 
ensuring stability, security, and sustainability. Ongoing 
vigilance and proactive risk management are essential to 
mitigate potential hazards and protect both people and 
the environment.

4.  Conclusions

This study highlights the grave potential for catastrophic 
harm to human life, property, and the environment due to 
storage tank accidents. Through comprehensive simulations 
of various scenarios and a detailed analysis of their out-
comes, there are critical insights into the required safety 
distances essential for effective primary prevention. Thermal 
radiation levels are assessed for each threat scenario. For 
example, at a distance of 1.500 meters, the radiation inten-
sity reaches 10.0 kW/m2, potentially fatal within 60 sec-
onds. At 2,000 meters, it decreases to 5.0 kW/m2, causing 
second-degree burns in the same time frame. At 2.0 kW/m2,  
radiation induces pain within 60 seconds. Our findings 
underscore the crucial need for a well-trained and proac-
tive maintenance team to ensure the safe operation and 
ma nagement of industrial facilities. In future applications, 
the determined impact distances will form the foundation 
for elaborating guidelines on the strategic placement of 
storage tanks and similar installations. This approach aims 
to shield surrounding communities from the severe conse-
quences of accidental incidents, thereby enhancing overall 
protection and improving risk mitigation strategies.

   a b

Fig. 6. Areas threatened by thermal radiation: a – propane; b – butane

 
Fig. 7. Thermal radiation threat area superimposed on a satellite photo
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