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DEVELOPMENT OF A METHOD 
FOR PREDICTING HAZARDOUS SHIP 
TRAJECTORIES UNDER UNCERTAINTY 
OF NAVIGATOR ACTIONS

The object of the research is the automation processes in maritime navigation to ensure the safety of ship movement 
by predicting their trajectories in complex aquatic areas, such as narrow passages, straits, and ports. The research applied 
six key stages to create a comprehensive method for clustering and predicting ship trajectories based on ECDIS data.

In the first stage, ship movement trajectories were constructed according to risk categories, using the LCSS and 
DTW algorithms to compare planned and actual trajectories. This allowed for the accurate identification of course 
deviations and the determination of potentially dangerous sections of the trajectory. The second stage implemented 
clustering using the DBSCAN and GMM algorithms. DBSCAN was used to identify the density of points in space, 
and GMM provided modeling of cluster probabilities, allowing for better risk zone determination. The third stage 
applied the Douglas-Peucker compression algorithm to reduce the number of points in the trajectories, which 
preserved key characteristics and optimized data processing. In the fourth stage, ship movement stability was as-
sessed using the Fourier transform, which allowed the detection of high-frequency oscillations that may indicate 
movement instability caused by changes in course or speed. The fifth stage included fuzzy clustering of trajectories 
using the Gaussian Mixture Model (GMM), which allowed modeling the probabilities of dangerous trajectories, 
considering the uncertainty of navigational parameters. At the final stage, a multilayer neural network (MLP) was 
used to predict future points of ship trajectories. The model accurately predicted the ship’s coordinates, enabling 
timely trajectory adjustments.

Experimental results showed that the developed method increased the accuracy of ship trajectory prediction to 
72–81 % and also significantly reduced the final error, ensuring effective risk management during complex navigation.

Keywords: maneuvering in confined waters, emergencies, operational reliability, optimization of control pro-
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1.  Introduction

Modern maritime navigation faces numerous challenges, 
among which the most important is ensuring the safety of 
ship movement and effective planning of their trajectories 
in conditions of complex water routes, particularly in nar-
row passages, straits, and ports [1]. Automated navigation 
systems  (ECDIS, AIS, ARPA, GPS, etc.) significantly im-
prove these processes’ safety and reliability. However, the 
complexity of processing large amounts of data, especially 
considering the experience and qualification characteristics 
of the navigator [2, 3], and the necessity for accurate real- 
time prediction of ship trajectories require new approaches 
to clustering, prediction, and data analysis.

Considering the above, it is proposed that the issue 
be investigated  by critically analyzing current literature 
sources that describe studies related to the article’s topic.

In work  [4], a detailed review of methods for clus-
tering ship trajectories is provided, including similarity 

measurement and clustering algorithms (DBSCAN, GMM) 
and data preprocessing methods such as reconstruction, 
compression, and segmentation. The authors emphasize 
the effectiveness of the Douglas-Peucker algorithm for 
trajectory compression, which significantly increases cluster-
ing accuracy. Such methods cover ship movement predic-
tion, anomaly detection, and route optimization. Among 
the advantages is the detailed experimental evaluation 
of algorithms; however, the work needs to include more 
coverage of the latest neural networks for clustering and 
the absence of actual examples for emergency response.

The authors of work  [5] propose a new algorithm for 
compressing ship trajectories that preserves the direction 
of movement based on the Open Window algorithm. The 
authors address the problem of excessive AIS (Automatic 
Identification System) data by compressing ship trajectories 
while preserving key direction change points, particularly 
for online and offline modes. A significant advantage is 
reducing trajectory compression time by 87.3  % for port  
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data compared to distance-based algorithms. Experiments 
significantly improve when applying this method for clus-
tering tasks, anomaly detection, and ship trajectory predic-
tion. A drawback is that the algorithm cannot guarantee 
global optimality due to its heuristic nature.

In the research  [6], the problem of predicting ship tra-
jectories under heterogeneous and multimodal movement 
patterns is considered, emphasizing the importance of ac-
curate prediction to prevent collisions at sea. The authors 
propose a new approach to clustering ships based on historical 
AIS data, which allows for  improving prediction accuracy 
using machine learning. Experiments showed a significant 
reduction in forecast errors (370  meters for a horizon of 
10 minutes) when using the Random Forest algorithm. The 
main advantage is the reduction of computational complexity 
by using smaller data sets containing similar trajectories. 
A  drawback of the approach is the complexity of cluster-
ing in places where routes intersect or overlap, which may 
reduce prediction accuracy for some ships.

A method for predicting ship trajectories  [7] is pro-
posed based on the use of graph spatiotemporal neural 
networks  (ASTGCN) in combination with a correlation 
matrix obtained using StemGNN. The model accounts for 
nonlinear spatiotemporal dependencies in large AIS (Auto-
matic Identification System) data sets, which allows for im-
proving prediction accuracy. Experimental results showed 
that ASTGCN has more minor errors compared to other 
models, such as CNN_LSTM_CBAM and TCN, demon-
strating high prediction accuracy. However, the model has 
increased computational complexity due to spatiotemporal 
attention and an adaptive adjacency matrix, which may 
require optimization for working with large volumes of data.

Another model  [8] uses multi-level characteristics of  
ships  (Multi-Rep), which include both surface attribu
tes  (length, width, draft) and deep characteristics (prefe
rences in places of sailing and time). A feature fusion 
module  (FFDM) is applied to predict future trajectories, 
which integrates trajectory data with ship characteristics. 
Experimental results showed that VEPO-S2S outperforms 
other models in both quantitative and qualitative indicators. 
However, the model also has high computational complexity 
due to the integration of multilevel characteristics, which 
may require optimization for working with large data sets.

In  [9], a new learning model CLAIS is presented for 
computing the similarity of ship trajectories based on graph 
neural networks (GNN). The main goal of CLAIS is to 
solve the problem of limited learning methods for computing 
trajectory similarity in water transport, mainly due to the 
absence of data labels and spatial modeling. CLAIS uses 
graph learning to model spatial dependencies of trajectories 
and introduces a parameterized trajectory extension scheme.  
The model demonstrates high-efficiency thanks to learned 
similar samples and improved contrastive loss. However, 
the model faces several significant drawbacks. Firstly, it 
has high computational complexity due to graph neural 
networks, which increases resource requirements when 
working with large data sets. Secondly, the complexity lies 
in scaling the model to accurate navigation data, espe-
cially in cases with gaps or data distortion due to limited  
AIS signal quality.

The work [10] presents a method for analyzing complex 
trajectories of fishing vessels using the Fourier transform 
for identifying movement characteristics. The authors use 
the Fourier transform and clustering based on Gaussian 

mixtures to solve problems of uncertainty and complexity of 
fishing vessel trajectories. Essential results of the research 
are the identification of behavioral characteristics of vessels 
and the determination of zones of uncertain movement 
with a probability of 80  % within 1,000 meters and 50  % 
within 2,000 meters. This research is very important for 
fishing regulatory authorities to ensure safe navigation. The 
main advantages are an innovative approach to processing 
complex trajectories through the Fourier transform and 
effective clustering to determine danger zones. However, 
the work has certain limitations, particularly in the com-
plexity of scaling this approach for other types of vessels 
and trajectories  and in computational costs for processing 
large data arrays, which may complicate its use in actual 
maritime navigation conditions.

A hybrid approach to predicting ship trajectories  [11] is 
presented, combining graph attention neural networks (GAT) 
and long short-term memory (LSTM). The GAT-LSTM model 
considers both spatial and temporal features, significantly 
improving trajectory prediction accuracy. Using AIS data for 
the port of Xiamen shows that this approach outperforms 
traditional models, reducing mean error by 44.52  % and 
final error by 56.20  %. The main advantages are improved 
accuracy when predicting complex situations, such as col-
lision avoidance, and dynamic determination of the weight 
of neighboring ships affecting the target ship. However, the 
model has certain drawbacks, including high computational 
complexity due to the need to process a large amount of 
AIS data and difficulty scaling the model for a more signifi-
cant number of ships in complex navigation environments.

In work  [12], a new algorithm for compressing ship tra
jectories VATDC_CCRI is presented, which considers criti-
cal regions of the trajectory and uses the Douglas-Peucker 
algorithm together with a "sliding window" for efficient 
compression of AIS data. The main advantage is the ability 
to preserve essential points of course and speed changes of 
the ship, minimizing information loss, improving predic-
tion accuracy and processing large data arrays. Experiments 
showed that VATDC_CCRI outperforms classical algorithms, 
providing higher processing speeds and better compression 
without significant loss of accuracy. The main drawbacks 
are high computational complexity due to the necessity of 
multiple iterations to determine critical regions  and diffi-
culties in scaling the algorithm for large data sets, which 
complicates its application in natural navigation systems.

Also, a new approach to predicting ship trajectories on 
inland waterways  [13] has been studied, combining Gaus
sian mixture models (GMM) with transformers. The main 
idea is to integrate additional data, such as water discharge 
and geometry of waterways, to improve prediction accuracy. 
Research results show that this approach significantly im-
proves prediction accuracy compared to previous models, 
such as N-CSCT, mainly due to considering the navigation 
context. GMM allows accounting for multimodal distributions 
of ship speeds and their positions relative to the fairway, 
which increases prediction accuracy under different water 
discharge conditions. However, drawbacks include considering 
large hydrological data, which may complicate scaling the 
model to other regions where such data may be absent or 
insufficiently accurate.

A method for predicting ship trajectories based on AIS 
data  [14] is proposed, using bidirectional long short-term 
memory  (Bi-LSTM). The main goal of the research is to 
improve prediction accuracy by cleaning data (removing  
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anomalies and normalization) and applying Bi-LSTM to en-
hance forecast quality. Experiments showed that the Bi-LSTM 
method demonstrates lower mean absolute error (MAE), mean 
absolute percentage error  (MAPE), and root mean square 
error  (RMSE) compared to other models  (ETS, ARIMA, 
SVR, RNN, LSTM). A drawback is the necessity to con-
sider that accurate AIS data often have significant errors, 
particularly gaps or unstable signals due to bad weather 
conditions or technical problems. Also, it is only sometimes 
possible to guarantee that all anomalies will be processed 
appropriately, which may affect prediction accuracy.

In work [15], the problem of controlling the trajectory 
of an autonomous ship under unknown dynamic parameters 
and disturbances is considered. The authors propose an 
approach based on a proportional-integral-derivative (PID) 
controller with an adaptive sliding surface to solve the 
problem of tracking a ship’s trajectory moving at low speed. 
The main advantage of the proposed method is its ability 
to ensure system stability through the use of Lyapunov 
theory and saturation functions for stability analysis. The 
model’s drawbacks are its complexity in tuning due to the 
necessity for precise measurement of the ship’s state and 
high resource requirements for accounting for  unknown 
parameters and external disturbances.

The authors of work [16] present a new trajectory tracking 
scheme for underactuated ships with nonlinear dynamics with 
non-minimum phase behavior. The authors use coordinate 
transformation to convert the ship model into a strict feed-
back form with two input and two output signals, allowing 
backstepping control methods to be used. The main innova-
tion is applying the concept of asymptotic modification of 
orientation (AMO), which helps avoiding singularities during 
recursive control design. The drawbacks are that the proposed 
method is complex for application in natural conditions due to 
the necessity for accurate ship dynamic parameters for systems 
with many external disturbances, such as wind or waves.

In work  [17], a new approach to clustering ship tra-
jectories based on AIS data is described, using a combina-
tion of the Douglas-Peucker (DP) algorithm for trajectory 
compression, Longest Common Subsequence (LCSS) for 
similarity measurement, and DBSCAN for clustering. The 
main goal is to accelerate the similarity measurement pro-
cess and improve the accuracy of ship clustering in tight 
waterways. However, the main difficulties lie in the  high 
computational costs that arise while processing large volumes 
of AIS data, as well as the need to adjust parameters for 
each of the algorithms, which complicates the automation 
of the process and scaling for different water zones.

In  [18], an improved ship trajectory prediction model 
based on multilayer bidirectional recurrent neural networks 
with GRU blocks (Stacked-BiGRUs) is presented. The authors  
integrated several innovations, including an algorithm for  
removing anchored trajectories and restoring abnormal 
points and a two-stage clustering algorithm D-KMEANS for 
classifying ship behavior. Thanks to this, the model signifi-
cantly reduced mean squared error (MSE) and mean absolute 
error  (MAE) by 27  % and 46  %, respectively, indicating 
its high efficiency. The main advantages of the model are 
its ability to work under conditions of high traffic density 
and improved prediction in complex navigation conditions. 
However, problems may arise when working with abnormal 
trajectories or ships with different behavior patterns, which 
complicates the scaling and generalization of the model for 
different navigation conditions.

Thus, based on the analysis, it can be assumed that 
existing clustering and predicting ship trajectories, mainly 
based on AIS and ECDIS data, have significant advantages, 
including high prediction accuracy, efficient data compression, 
and the ability to detect anomalies. However, many of these 
approaches face problems of high computational complexity, 
insufficient optimization for working with large data volumes, 
and difficulties in scaling models for different navigation condi-
tions. Other limitations include the complexity of clustering 
at route intersections, processing abnormal trajectories, data 
gaps or distortions, and adapting to navigator actions under 
risk conditions, i.  e., considering the human factor. This 
indicates the need to develop comprehensive solutions that 
combine modern clustering algorithms with machine learning 
methods for more efficient and adaptive data processing.

The research aims to develop and implement a compre-
hensive method, whose stages will involve clustering and 
predicting ship trajectories based on ECDIS data to ensure 
navigation safety in narrow passages and complex aquatic areas.

The main task of the research is to develop software that 
will work in online mode and, according to the algorithms 
of the developed comprehensive method, will have the fol-
lowing sequential functionality capable of:

–	 constructing ship movement trajectories according to 
risk categories by analyzing ECDIS data to assess risk 
based on distance to the shoreline;
–	 performing clustering of ship trajectories using DB-
SCAN and D-KMEANS, relying on algorithms for 
classifying ship behavior based on historical data and 
trajectory clustering;
–	 using the trajectory compression procedure using 
the Douglas-Peucker algorithm to improve clustering 
efficiency and reduce computational costs;
–	 assessing ship movement stability using Fourier analy-
sis by identifying characteristic trajectory oscillations 
to improve prediction accuracy;
–	 performing fuzzy clustering of trajectories using fuzzy 
logic to assess the degree of risk and classify dangerous 
situations;
–	 predicting ship trajectories using neural networks in two 
possible directions. Analyzing ship movement data to op-
timize future trajectories and improve prediction accuracy.

2.  Materials and Methods

The object of the research is the processes of automation 
in maritime navigation aimed at ensuring the safety of ship 
movement by predicting their trajectories in complex aquatic 
areas (narrow passages, straits, ports). Particular attention is 
paid to automated ship control and monitoring systems such as 
ECDIS, AIS, ARPA, and GPS, which are used for collecting 
and analyzing navigation data, as well as factors influenc-
ing the navigator’s decision-making under risk conditions.

The research focuses on developing a comprehensive 
method that includes clustering, compression, and prediction 
of ship trajectories to improve the accuracy and speed of 
data processing, considering the human factor, the naviga-
tor’s qualifications, and ensuring effective voyage planning.

A systematic approach was used in the research, along 
with data analysis and synthesis methods. Clustering me
thods (DBSCAN, D-KMEANS) were applied for processing 
and analyzing ship trajectories, numerical integration for 
assessing movement stability using Fourier analysis, and 
prediction methods using neural networks (multilayer  
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perceptron (MLP) with subsequent activation through the 
ReLU function). A personal computer with a Windows  10 
operating system, Anaconda environment, and Python were 
used for implementation. The analysis software included 
modules for processing ECDIS data of the Bosporus Strait 
and custom-developed algorithms for clustering, trajectory 
compression, and prediction based on navigation system 
data. This allows working with large volumes of data and 
ensures accuracy in risk classification and dangerous situation 
prediction using an interactive web map in online mode.

The development of the method involved performing 
a series of sequential research tasks through mathematical 
description and software implementation, which will be 
described in this section. Additionally, existing modeling 
results will be presented as screenshots of the interac-
tive web map.

The initial operation was creating and selecting reports 
using the ECDIS TRANSAS NTPRO 4000/5000 server, 
which stores current ship movement data and navigation 
data at intervals of 5 seconds. Then, based on a control 
report optimized to CSV format, mathematical processing 
of big data was conducted using the developed software in 
Python.The stages of the method and the corresponding 
points are outlined below.

2.1.  Construction of ship movement trajectories accord-
ing to risk categories

2.1.1.  Application of the LCSS algorithm to determine 
similarity between the actual and reference trajectory. This is  
done using the formula:
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where LCSS(T1,  T2) is the metric that measures similarity 
between two trajectories T1 and T2, t1i, t2j are points on 
trajectories T1 and T2, respectively, which can be ignored 
if they deviate insignificantly.

When comparing the planned ship movement trajec-
tory with the control one, there are two trajectories T1 = 
= {t11, t12,…, t1m} and T2 = {t21, t22,…, t2n}, where t1i and t2j  
represent the coordinates of points on trajectories T1 and T2,  
respectively.

This allows the LCSS algorithm to determine the length 
of the longest common subsequence between T1 and T2 
using the following recursive formula:

where LCSS(i,  j) is the length of the longest common sub-
sequence between the first i points of trajectory T1 and the 
first j points of trajectory T2; t1i, t2j are the coordinates of 
the i-th point on trajectory T1 and the j-th point on tra-
jectory T2, respectively; δ is the allowable spatial-temporal 
distance between points t1i and t2j, which allows for con-
sidering deviations.

2.1.2.  Dynamic time warping (DTW), accounting for time 
shifts when comparing trajectories:
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where DTW(T1,  T2) is the metric that measures the diffe
rence between trajectories T1 and T2, considering time shifts; 
t t

k k1 21 2π π( ) ( ),  are points on the trajectories that are aligned 
with each other using π (permutation); d t t

k k
( , )1 21 2π π( ) ( )  is the  

distance function between points t t
k k1 21 2π π( ) ( ), ; π is the optimal 

alignment of points on the trajectories; K is the number 
of steps in the alignment (path).

2.2.  Clustering of ship trajectories using DBSCAN and 
K-MEANS

2.2.1.  DBSCAN clustering algorithm (Density-based spa-
tial clustering of applications with noise). The DBSCAN 
algorithm  [19] performs clustering based on the density 
of points in space, using two main parameters: neighbor-
hood radius (ε) and minimum number of points (MinPts).

Main parameters of the algorithm:
–	 ε – neighborhood radius: the maximum distance bet
ween two points for one point to be considered a neigh-
bor of the other;
–	 MinPts – minimum number of points: the minimum 
number of points that must be within the radius ε for 
a point to be considered a "core" point and become 
part of a cluster.
For calculations, it is necessary to operate with the fol-

lowing parameters:
The distance between two points is chosen depending 

on the situation (Euclidean distance, Manhattan distance, 
or Chebyshev distance).

The neighborhood of point p is defined as the set of 
all points located at a distance not greater than ε from 
point p:

N p q dist p qε ε( ) = ≤{ }| ( , ) ,	 (4)

where dist(p, q) is the selected distance metric.
Core point: A point p is a core point if the number of 

points in its neighborhood Nε(p) exceeds or equals MinPts:

N p MinPtsε ( ) ≥ .	 (5)

Border point: A point q is a border point if it is in the 
neighborhood of a core point but is not itself a core point.

Noise point: A point p that is neither a core nor 
a border point is considered noise:

p cluster p N q for all q∉ ∉ ( ), .ε 	 (6)

2.2.2.  D-KMEANS algorithm combining DBSCAN 
and K-Means for better trajectory clustering. DBSCAN 
is used to identify initial clusters, and K-Means is 
used to compute the centroid μk of the k-th cluster:
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where Ck is the set of points belonging to the k-th cluster; 
xi is the coordinates of the i-th observation point; μk is the  
centroid of the k-th cluster.
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Cluster updating procedure: After initial cluster formation 
by DBSCAN, K-Means refines the boundaries by minimiz-
ing the sum of squared distances from each point to the 
nearest centroid:

arg min , ,C i k
x Ck

K

dist x
i k

μ( )
∈=
∑∑ 2

1

	 (8)

where C is the current distribution of points among clus-
ters; μk is the centroid of the k-th cluster; dist(xi, μk) is 
the distance from the end to the centroid.

Thus, the D-KMEANS algorithm allows a more ac-
curate classification of ship trajectories into groups based 
on their behavior. This can help identify trajectories with 
increased risk, focus on the most important routes, and, 
if necessary, take measures for their correction.

2.3.  Compression of trajectories using the Douglas-Peucker 
algorithm without losing key characteristics

2.3.1.  Distance from a point to a line. Let P1(x1, y1) 
and Pn(xn, yn) be the first and last points of the trajec-
tory, and Pi(xi,  yi) be any other point of the trajectory. 
The distance di from point Pi to the line connecting P1 
and Pn is calculated using the formula:

d
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2.3.2.  Selection of the point with maximum distance dmax.  
Determine the point Pk with the maximum distance:

d di
i n

max max .=
< <1

2.3.3.  Threshold value ε. If dmax > ε, the point Pk, where 
k = argmax1 < i < ndi, remains in the trajectory, and the algo-
rithm is recursively applied to two parts of the trajectory: 
from P1 to Pk and from Pk to Pn.

The Douglas-Peucker algorithm  [20] effectively reduces 
the number of points in a trajectory while preserving its main 
characteristics. This reduces the amount of data for further 
processing and analysis, facilitates visualization, and preserves 
essential information about the shape of the ship’s trajectory.

2.4.  Assessment of ship movement stability using Fou-
rier analysis

2.4.1.  Fourier transform for analyzing frequency Compo-
nents of oscillations to assess movement stability. Analyzing 
the stability of a ship’s trajectory is critical for ensuring 
navigational safety. Fluctuations in course, speed, and ac-
celeration can indicate instability arising from insufficient 
qualification or experience in operating the ship. The applica-
tion of the Fourier transform  [21] allows for the detection 
of the frequency components of these fluctuations and the 
assessing their impact on the overall stability of the trajectory.  
To enhance the accuracy and reliability of the analysis, 
additional aspects are added to the model, such as noise 
filtering, nonlinear analysis, correlation analysis, and others.

Let’s describe the sequence of mathematical calculations  
for this stage.

2.4.1.1.  Temporal trajectory. For each ship, there is a set  
of data that includes the following variables: Time (s) – 
time interval t; Speed – ship speed v(t); Course – ship 
course θ(t); Latitude and Longitude – coordinates of the 

ship’s trajectory x(t), y(t); Mamdani Acceleration, Sugeno 
Acceleration, ANFIS Acceleration – accelerations calculated 
by different methods.

The ship’s trajectory can be represented as a complex 
signal in the time domain:

z t x t jy t( ) = ( ) + ( ).

2.4.1.2.  Fourier transform. To convert the time signal into 
the frequency domain, the discrete Fourier transform is used:
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where Z(f) is the frequency spectrum of the signal z(t), 
showing the intensity of oscillations at different frequencies f.

2.4.1.3.  Spectrum analysis. The spectrum of the signal 
Z(f) contains information about the frequency components 
of the ship’s course and speed:

z t A f tk k k
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where Ak is the amplitude of oscillations, fk is the fre-
quency of oscillations, and fk is the phase shift.

2.4.1.4.  Low-frequency filtering. To remove low-frequen-
cy noise that is not associated with control instability, 
a  Butterworth filter is used:
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where fc is the cutoff frequency; n is the filter order.
2.4.1.5.  Stability assessment. To assess the level of insta

bility, it is possible to calculate the mean energy of the high- 
frequency components:

E
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Z fhigh k
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The qualification coefficient Q is defined as:

Q
Ehigh

=
1

.	 (14)

A low value of Q indicates a high level of instability, 
which may indicate insufficient navigator qualification.

This stage of the method allows for a comprehensive 
analysis of the ship’s trajectory stability, taking into ac-
count both the main frequency components and additional 
aspects such as external factors and nonlinear oscillations.

2.5.  Fuzzy clustering of trajectories using fuzzy logic
2.5.1.  Gaussian mixture models (GMM). GMM models 

data as a combination of several Gaussian distributions:
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where p(x) is the probability that point x belongs to 
a  certain mixture component; πk is the weight of the k-th 
mixture component; N(xμk, Σk) is a Gaussian distribu-
tion with mean μk and covariance matrix Σk; K is the 
number of mixture components; μk is the mean value for 
the k-th component; Σk is the covariance matrix for the 
k-th component; d is the number of dimensions (space 
dimensionality).

The GMM algorithm  [22] will allow modeling the 
probability of the ship being in a dangerous zone, taking 
into account variable navigation parameters. This helps 
predict risks associated with approaching the shoreline 
or other objects.

2.5.2.  Expectation-maximization (EM) algorithm for GMM. 
The EM algorithm consists of two main stages that repeat 
until convergence.

2.5.2.1.  Expectation step (E-step). For each observa-
tion xi, the probability that it belongs to each mixture 
component k is calculated:
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π μ
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k i k k
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where γik is the responsibility of component k for point xi.
2.5.2.2.  Maximization step (M-step). The model parame

ters are updated based on the calculated responsibilities:
–	 Updating the weight:
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The algorithm repeats until the parameter changes be-
come insignificant.

The Gaussian Mixture Model (GMM) will allow assess-
ing risks in maritime navigation, considering a multitude 
of parameters.

2.6.  Prediction of ship trajectories using a multilayer 
perceptron (MLP) model with subsequent activation through 
the ReLU function

Prediction stages:
1.	 Dense layers: The prediction model uses several fully  

connected (Dense) layers, where each layer applies a linear 
combination of input data.

2.	 ReLU activation function  [23]: Each layer applies 
the ReLU (Rectified Linear Unit) activation function, 
which cuts off negative values, especially useful for pre-
dicting physical processes such as ship trajectories. This 
allows the network to consider only positive changes in 
parameters such as speed or course.

3.	 Dropout to prevent overfitting: To avoid overfitting, 
the model uses Dropout  – randomly turning off neurons 
during training. This allows the model to avoid excessive 
adaptation to noise or features of the training data set.

4.	 Data normalization: To ensure that ship parameters 
such as coordinates and speed are on the same scale, norma
lization is applied through BatchNormalization(). This allows 
stabilizing the training and accelerating its convergence.

5.	 Trajectory prediction: The model uses the output layer 
to predict future values of the ship’s coordinates.

6.	 Loss function: For training the model, the mean 
squared error (MSE) loss function is used, which mi
nimizes the distance between the predicted and actual 
ship  trajectory.

This model allows predicting deviations from the ship’s 
course, taking into account current and previous movement 
parameters such as coordinates, speed, and course. The 
model is optimized for working with large data volumes 
due to the application of Dropout and normalization, which 
prevents overfitting and improves training convergence. 
The loss function based on mean squared error minimizes 
the difference between the actual and predicted trajectory, 
which is critically important for accurate modeling and 
enhancing navigational safety.

3.  Results and Discussion

3.1.  Development of software corresponding to Stage 2.1, 
describing on an interactive map the ship’s movement tra-
jectory and the Bosporus shoreline trajectory

Thanks to the developed software, the ship’s move-
ment trajectory and the Bosporus shoreline trajectory are 
compared based on the proximity of their coordinates, and, 
according to this criterion, the risk of collision of the ship 
with the contours of the strait’s shoreline is determined.

3.1.1.  Data loading and preparation. Data on ship tra-
jectories and the shoreline are loaded from Excel files 
using pandas. The method to_numpy() converts the data 
into arrays for convenient computations.

3.1.2.  Calculating the minimum distance to the shore-
line. For each point of the ship’s trajectory, the minimum 
distance to the shoreline is calculated using geodesic() 
from the geopy library. The program iterates through each 
point of the trajectory in a loop and stores the minimum 
distance value.

3.1.3.  Updating risk levels. Depending on the obtained 
distances, the program assigns risk levels for each point of 
the trajectory. An if conditional statement is used, which 
distributes risk levels (e.  g., "Critical", "Safe") depending 
on the distance to the shore.

3.1.4.  Saving data. The updated data are saved to a CSV 
Excel file using the to_excel() method.

3.1.5.  LCSS algorithm. The LCSS algorithm uses dynamic 
programming. A matrix dp is created, where for each pair 
of points of the two trajectories, their correspondence is 
checked according to the parameter delta.

3.1.6.  DTW algorithm. The DTW algorithm creates 
a  matrix filled with minimal alignment options for trajec-
tory points. The cost of alignment is determined as the 
Euclidean distance between points.

3.1.7.  Visualization on the map. Visualization of risks on 
the map is performed using the folium library. Points are 
displayed as markers with corresponding colors depending 
on the risk level in HTML format (Fig.  1).
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3.2.  Development of software corresponding to Stage 2.2
It involves the following automation steps:
3.2.1.  Data loading and preparation. The program loads 

ship trajectory data from an Excel file using pandas. Risk-
level data are converted to numerical values using the 
map() method to ensure their further processing. This 
allows clustering to be applied  based on the ship’s speed, 
risk level, and minimum distance to the shoreline.

3.2.2.  DBSCAN algorithm. DBSCAN detects clusters 
based on density. The main parameters are the radius ε and 
the minimum number of points MinPts.  
All data are scaled before clustering using 
StandardScaler(). The DBSCAN algo-
rithm, implemented via the DBSCAN() 
function, classifies trajectory points into 
clusters based on Euclidean distance. 
The clustering result is stored in the 
variable dbscan_clusters.

3.2.3.  Gaussian mixture model (GMM) 
Algorithm. After executing the DBSCAN 
algorithm, the GaussianMixture() (GMM)  
model is used for additional refinement 
of clusters. This clustering method al-
lows evaluating the probability of points 
belonging to a specific cluster. The num-
ber of components (clusters) is set to 9, 
and probabilistic clustering is performed 
via fit_predict(). The result is stored in 
a  new column Cluster.

3.2.4.  Visualization of clusters on the 
map. To visualize clusters on an inter-
active map, the folium library is used. 
Each cluster is displayed in a specific 
color based on its value. 

The program also adds a legend division for convenient 
display of clusters on the map. For each cluster, naviga-
tion tips and COLREG rules relevant to that cluster are 
output. The map is saved in HTML format.

3.2.5.  D-KMEANS algorithm. DBSCAN is combined with 
K-Means for further refinement of clusters. First, DBSCAN 

forms initial clusters, and K-Means calculates centroids 
for each cluster, allowing minimizing the sum of squared 
distances from each point to the nearest centroid. This 
makes clustering more accurate, especially for complex 
trajectories. Centroids are calculated using formula (7), 
and the cluster updating procedure occurs by minimizing 
the sum of squared distances to the centroid (8).

3.2.6.  Saving results. The updated report with cluster-
ing results is saved in Excel format using the to_excel() 
method (Fig.  2).

3.3.  Algorithm of the developed program corresponding 
to Stage 2.3

3.3.1.  Data loading. The program loads data using the 
pd.read_excel() function from the pandas library, which reads 
data from an Excel file. Data such as Latitude, Longitude, 
Speed, Risk Level, Min Distance to Shore (m), and Cluster  

  
Fig. 1. Visualization of the movement trajectory, considering the proximity to the shoreline as a risk criterion

 
Fig. 2. Visualization of cluster analysis regarding the criticality of the situation
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are converted into a DataFrame format. This provides a struc-
ture for further processing, where each row corresponds 
to a separate point of the ship’s trajectory.

3.3.2.  Douglas-Peucker algorithm for trajectory comp
ression. The Douglas-Peucker algorithm, implemented via 
the rdp function from the rdp library, is used to reduce 
the number of points in the trajectory. The main parameter 
of the algorithm is epsilon, which defines the allowable 
distance between a point and the segment connecting two 
other trajectory points. The algorithm recursively removes 
points if their distance to the line connecting the end 
points of the segment is less than epsilon.

3.3.3.  Saving compressed coordinates. After compres-
sion, the coordinates are saved into a new DataFrame 
using the pd.DataFrame() function. Other attributes of 
the points, such as Speed, Risk Level, Min Distance to 
Shore (m), and Cluster, are copied from the original data 
set via the loc[] method. This ensures that compressed 
trajectories retain all important metadata associated with 
each point.

3.3.4.  Removal of anchored trajectories. To filter out 
"anchored" points (points with low speed), a conditional 
operator is used with a threshold value of Speed. Using  
the loc[] method, points with speed less than the set thresh-
old are removed from the DataFrame. This reduces the 
amount of unnecessary data and helps focus on the main 
movements of the ship.

3.3.5.  Ordering points by proximity. The geodesic() func-
tion from the geopy library is used to calculate geodesic 
distances between points, taking into account the curvature 
of the Earth’s surface. To order points by their proximity, 
a procedure is applied where each point is compared with 
others to determine the nearest point. The nearest points 
are added to a list of ordered points, ensuring a  logical 
sequence of the ship’s movement.

3.3.6.  Visualization of the compressed trajectory. For 
trajectory visualization, the folium library is used. The 
folium.Map() function creates an interactive map where 
the center of the map is defined by the mean value of the 

trajectory points’ coordinates. Trajectory points are added 
to the map as markers using the folium.CircleMarker()  
method, where each point is marked with a color cor-
responding to its cluster. Straight lines between points 
are added using folium.PolyLine().

3.3.7.  Saving results. The results of compression and 
trajectory cleaning are saved into a new Excel file us-
ing the to_excel() function from pandas. The interactive 
map is saved in HTML format using the save() function 
from folium. This allows saving both the data for further 
analysis and the trajectory visualization for future use or 
viewing (Fig.  3).

3.4.  Algorithm of the developed program corresponding 
to Stage 2.4

This algorithm operates as follows:
3.4.1.  Data loading and preparation. Ship trajectory data 

are loaded from two Excel files using the pd.read_excel() 
method from pandas. One file contains compressed and 
cleaned ship trajectories, and the other contains risk data. 
After loading, the data are stored in DataFrame format 
for further analysis. In particular, ship coordinates are 
presented as Latitude and Longitude and additional data 
such as ship speed (Speed).

3.4.2.  Coordinate transformation using multidimensional 
scaling (MDS). To simplify spatial analysis, Multidimen-
sional Scaling (MDS) is used via the MDS() method from 
sklearn. This transformation reduces the dimensionality of 
the data from two spatial coordinates (latitude and longi-
tude) to new MDS coordinates (MDS_X and MDS_Y), 
simplifying analysis and visualization.

3.4.3.  Coordinate transformation into polar system. The 
coordinates obtained after MDS (MDS_X and MDS_Y) 
are transformed into a polar coordinate system to better 
represent and interpret the ship’s trajectory. The radial 
distance r is calculated using the np.sqrt() function, and the 
angle theta is calculated using np.arctan2(). This allows for 
building polar plots of the ship’s trajectory, adding a  new  
dimension for visualization and analysis.

 
Fig. 3. Visualization of the trajectory compression function to accelerate real-time data processing
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3.4.4.  Evaluation of distance to the shoreline. The dis-
tance to the shoreline is stored in the "Min Distance to 
Shore (m)" column to analyze the ship’s movement stability.  
The program calculates the mean, maximum, and mini-
mum values of this distance using the mean(), max(), and  
min() methods. This information is used to assess navi-
gation safety.

3.4.5.  Analysis of frequency components using Fourier 
transform. To analyze the frequency components of the ship’s 
speed oscillations, the Discrete Fourier Transform  (DFT) 
is used. This allows the conversion of ship speed data 
from the time domain to the frequency domain. Using the 
np.fft.fft() function from the numpy library, the frequency 
spectrum for speed is calculated, enabling visualization 
of which frequencies dominate in the ship’s speed signal.

First, a frequency array is created using the np.fft.fftfreq()  
function, where the number of data points and the time 
interval between them are set. Then, the np.fft.fft() func-
tion is applied to the ship’s speed data to obtain the 
frequency spectrum. Oscillation amplitudes are calculated 
via the modulus of complex numbers in the frequency 
spectrum using np.abs(). An amplitude spectrum plot is 
constructed to visualize the main frequency components 
affecting the ship’s movement.

3.4.6.  Filtering low-frequency noise. A Butterworth fil-
ter is used to remove low-frequency noise that may not 
be associated with the ship’s 
control stability. This allows 
cleaning the signal from noise 
and focusing on the frequency 
components responsible for mo- 
vement instability. The filter is 
configured through the cutoff 
frequency (fc) and filter or-
der  (n) parameters.

3.4.7.  Stability assessment. 
The ship’s movement stability 
is assessed based on the fre-
quency spectrum. 

High-frequency components  
may indicate movement insta-
bility caused by abrupt changes 
in course or speed. The energy 
of these oscillations is calcu-
lated by summing the squares 
of the amplitudes using the 
np.sum() function, allowing 
determination of the level of 
instability.

3.4.8.  Calculation of amplitudes. Amplitudes are calcu-
lated via np.abs() to obtain the moduli of complex numbers 
and are normalized by multiplying by 2.0/N.

3.4.9.  Stability assessment. High-frequency components 
are extracted using np.where(), and the sum of their am-
plitudes is calculated using np.sum() to assess stability.

3.4.10.  Evaluation of regularity and speed influence. 
Maximum amplitudes are calculated via np.max(), and 
the variation of speed is calculated via np.var(), providing 
regularity and speed influence estimates.

3.4.11.  Visualization of results. The analysis results are 
presented in several plots (Fig.  4 and Fig.  5), built using 
the matplotlib library. Visualizations include: a plot of 
coordinates after MDS for spatial analysis (plt.scatter());  
a polar plot of the ship’s trajectory (plt.polar()); a plot of  

the change in distance to the shoreline to assess the tra-
jectory relative to the shore (plt.plot()); and an ampli-
tude spectrum of the ship’s speed for analyzing frequency 
components (plt.plot()).

 Fig. 4. Polar plot of the ship’s movement trajectory

3.5.  Automation elements corresponding to Stage 2.5
Gaussian Mixture Model (GMM): In the program code 

for clustering, K-Means is initially applied for the initial 
distribution of points into clusters using KMeans(n_clus-
ters = k).fit(). After that, probability modeling is conducted 
using Gaussian Mixture Models (GMM), where each cluster 
is modeled as a multivariate normal distribution.

Data are standardized using StandardScaler().fit_trans-
form(), allowing accurate probability modeling for each 
cluster. To calculate the probability density, the function 
multivariate_normal(mean = μk, cov = Σk) is used, which esti-
mates the probability that a point belongs to a specific cluster 
based on the mean values μk and covariance matrices Σk.

EM Algorithm (Expectation-Maximization): The EM al-
gorithm is applied to refine cluster parameters. The E-step  

 

MDS coordinates 

Fig. 5. MDS coordinate plot for spatial analysis
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is implemented by calculating the responsibility for each 
point via multivariate_normal.pdf(). The M-step involves 
updating each cluster’s mean values and covariance matri-
ces, although this needs to be more detailed in the code. 
The initial clustering by K-Means helps quickly approach 
the solution.

Visualization of Results: For visualization, contour plots 
are used via plt.contour() to display cluster boundaries based 
on probability density and plt.scatter() to show the trajec-
tory points themselves labeled by clusters. 
This allows for assessing the distribution of 
trajectories and possible dangerous zones.

At this stage, input data are created for 
further prediction using neural networks.

3.6.  Automation using a multilayer neural 
network (MLP) corresponding to Stage 2.6

Data preparation: First, data are loaded 
from an Excel file, which includes ship 
trajectory parameters: latitude, longitude, 
speed, and  course. Data are scaled using 
StandardScaler() to reach the same range.

MLP model: The model is built as  
a multilayer neural network (MLP) via  
the Sequential() class. It consists of seve
ral layers:

First layer: Dense(128, activation = ‘relu’), 
uses 128 neurons and the ReLU activation 
function.

Normalization layers: Added via Batch-
Normalization(), which helps stabilize  
training.

Dropout layers with a probability of 
0.2  (Dropout(0.2)): Prevent overfitting.

Final layer: Has two neurons for pre-
dicting the latitude and longitude of the 
next trajectory point.

Model training: The model is compiled using the adam 
optimizer and the mean_squared_error loss function, which 
minimizes the difference between actual and predicted 
points. Early stopping (EarlyStopping) is applied during 
training to avoid overfitting if the model does not im-
prove for ten epochs.

Prediction: After training, the model uses input da-
ta, which are scaled, to predict the following trajectory 
points. Predictions are restored to the original scale via  
scaler_y.inverse_transform().

Visualization: Prediction results are displayed on a map 
using the folium library (Fig.  6). Predicted points are 
marked with red markers, and the original trajectory is 
shown with a blue line.

As can be seen, using the method of predicting dangerous 
ship movement trajectories, it was possible to identify two pos-
sible forecast branches in the most dangerous zone of the route, 
where the distance to the shore was less than 100  meters.  
The safe forecast branch had three points, indicating that 
it is less probable than the dangerous one, which had 
over 10  points. Such a state of affairs forced a switch 
to emergency automatic control of the ship’s movement 
using the automatic control module, which corrected the 
situation until the watch was reinforced and the ship’s 
position in the strait became less critical.

Limitations of the Research. The approaches and methods 
proposed in the research have limitations that may affect 

the relative effectiveness of implementing the developed 
prediction method. Automated clustering algorithms (DB-
SCAN, D-KMEANS) and machine learning methods (MLP), 
which require significant computational power, complicate 
real-time operation when processing large volumes of ECDIS 
navigation data. The reduction of this factor’s impact is 
achieved by applying the Douglas-Peucker algorithm for 
trajectory compression. Still, the effect of this approach 
does not exceed 24–27  % in terms of reducing total time.

Another limitation is the quality of input data, mainly 
if ECDIS display recognition is applied using computer 
vision methods in this process, which may contain gaps 
or anomalies requiring additional cleaning procedures to 
improve prediction accuracy.

Impact of Martial Law Conditions. One of the conditions 
of martial law is the necessity for Ukraine to maintain 
the export of products, mainly agricultural and partially 
industrial. The term "grain corridor" is associated with 
the safety of maritime transportation from the ports of 
Pivdennyi (Odesa) and Ochakiv (Mykolaiv). Clarity in 
the navigator’s actions, readiness to avoid sudden dan-
ger zones from the aggressor country, and the ability to 
perform maneuvers to diverge from the trajectories of 
drones and ballistic missiles are necessities that require 
special skills (Fig.  7).

In Fig.  7, it can be seen that the navigator recei
ved warnings via communication means about zones not  
displayed on the ECDIS and radar screens, made notes 
using the Man Corr panel tools, and performed a di-
vergence maneuver, orienting by the fairway bounda
ries and the values of safe Under Keel Clearance and  
Deep contour.

Prospects for Further Research. For further research, 
it is a priority to expand three key aspects: increasing 
the volume of data, improving prediction methods, and 
integrating real-time decision support mechanisms.

 
Fig. 6. Prediction of waypoints in a hazardous zone
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In particular, to achieve more accurate navigation, more 
information about sea conditions, depth fluctuations, and 
current dynamics should be added. Collecting historical 
data on ship trajectories in different weather conditions 
(data from company servers, IMO, IHO) is important, as 
it will help identify patterns of risky zones and typical 
navigator errors.

Additionally, machine learning algorithms such as re-
current neural networks or convolutional neural networks 
should be improved to create adaptive models that will 
consider variable navigation factors in real-time, particu-
larly military threats. This will allow for faster responses 
to changes in the navigation situation and reduce the 
likelihood of navigator-operator errors in conditions of 
limited visibility and complex routes.

4.  Conclusions

In this research, a comprehensive method for predict-
ing dangerous ship trajectories was developed and applied, 
encompassing six key stages. Each of these stages was based 
on modern clustering algorithms, data analysis, and machine 
learning, which ensured effective resolution of the set tasks.

The first stage involved constructing ship movement 
trajectories according to risk categories, using the LCSS 
algorithm to compare planned and actual trajectories. This 
allowed assessing the degree of their similarity and iden-
tifying potentially dangerous deviations. Additionally, the 
application of the DTW algorithm to account for time shifts 
contributed to a more accurate analysis of changes in the 
ship’s trajectory, increasing the effectiveness of trajectory 
classification by risk level.

At the second stage, trajectory clustering was imple-
mented using the DBSCAN and D-KMEANS algorithms. 
DBSCAN was applied to identify clusters based on the 
density of points in space, considering the distance to the 
shoreline, while D-KMEANS refined cluster boundaries and 
improved classification accuracy. This enabled the isolation  

of dangerous zones based on spatiotemporal characteristics 
of ship movement.

At the third stage, the Douglas-Peucker algorithm was 
used for trajectory compression. This algorithm provided 
a reduction in the number of points in the trajectories 
without losing key characteristics, significantly improv-
ing the efficiency of processing large data volumes and 
preserving clustering accuracy.

The fourth stage involved assessing ship movement 
stability using Fourier analysis. The Fourier transform 
allowed detecting frequency components of ship movement 
oscillations, helping identify instability caused by changes 
in course or speed. Analyzing the frequency characteristics 
of the ship’s movement allowed identifying oscillations that 
may indicate a lack of experience or navigator qualification.

At the fifth stage, fuzzy trajectory clustering was used 
with the Gaussian Mixture Model (GMM). The applica-
tion of GMM allowed modeling the probabilities of points 
belonging to specific clusters, enabling the prediction of 
dangerous trajectories and identifying high-risk zones, 
considering the uncertainty of navigation parameters.

The final, sixth stage concerned trajectory prediction 
using a multilayer neural network (MLP). The MLP model 
predicted future ship coordinates based on current data 
such as speed, course, and position. The prediction proved 
effective and allowed timely correction of the ship’s move-
ment, ensuring safety under complex navigation conditions.

The proposed comprehensive method for predicting 
dangerous ship trajectories under uncertainty of navigator 
actions confirmed its effectiveness, providing ship trajectory 
prediction and dangerous zone detection at an accuracy 
level of 72–81 %, which allows improving navigation safety 
under complex conditions.
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Fig. 7. Avoiding potential threats near Kinburn Spit
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