
INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

43TECHNOLOGY AUDIT AND PRODUCTION RESERVES — No. 1/2(81), 2025

ISSN-L 2664-9969; E-ISSN 2706-5448

UDC 004.04:623.746.519 

DOI: 10.15587/2706-5448.2025.323322

EVALUATION OF THE PERFORMANCE 

OF DATA CLASSIFICATION MODELS 

FOR AERIAL IMAGERY UNDER 

RESOURCE CONSTRAINTS

The object of the study is the process of aerial imagery data processing under limited computational resources, particularly onboard 
unmanned aerial vehicles (UAVs) using classification models.

One of the most challenging issues is the adaptation of classification models to scale variations and perspective distortions that occur 
during UAV maneuvers. Additionally, the high computational complexity of traditional methods, such as sliding window approaches, 
significantly limits their applicability on resource-constrained devices.

The study utilized state-of-the-art neural network classifiers, including ResNet50v2, DenseNet121, and MobileNetV2, which were 
fine-tuned on a specialized aerial imagery dataset.

An experimental evaluation of the proposed neural network classifiers was conducted on Raspberry Pi 4 Model B and OrangePi 5 Pro 
platforms with limited computational power, simulating the constrained resources of UAV systems. To optimize performance, a stripe-
based processing approach was proposed for streaming video, ensuring a balance between processing speed and the amount of analyzed 
data for surveillance applications. Specific execution time evaluations were obtained for different types of classifiers running on single-
board computers suitable for UAV deployment.

This approach enables real-time aerial imagery processing, significantly enhancing UAV system autonomy. Compared to tradi-
tional methods, the proposed solutions offer advantages such as reduced power consumption, accelerated computations, and improved 
classification accuracy. These results demonstrate high potential for implementation in various fields, including military operations, 
reconnaissance, search-and-rescue missions, and agricultural technology applications.
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1. Introduction

One of the key challenges in aerial imagery data processing is ensur-
ing high-performance image processing systems under limited com-
putational resources onboard unmanned aerial vehicles (UAVs)  [1]. 
Traditional approaches to camera data analysis require significant pro-
cessing time, making real-time applications infeasible, particularly in 
critical situations [2]. For instance, in military operations, delays in ob-
ject detection may lead to the loss of crucial tactical advantages, while 
in search and rescue missions, such delays can reduce the effectiveness 
of locating victims [3].

This issue becomes particularly relevant under the constraints of 
UAV autonomy, which necessitates energy-efficient solutions. The use 
of efficient models for real-time object classification and segmenta-
tion can significantly reduce the need for data transmission to ground 
stations, thereby improving both the autonomy and functionality of 
the system [4].

In this work , the most widely used deep learning models for 
addressing the task of target object detection in UAV camera data 
are reviewed.

YOLO ( You Only Look Once) is one of the most popular deep 
learning architectures for real-time object detection tasks  [5, 6]. The 
core idea of YOLO is to simplify the detection process by simultane-

ously predicting object boundaries and classifications in a single pass 
through the network, significantly improving performance compared 
to traditional approaches such as R-CNN and Fast R-CNN.

YOLO demonstrates high accuracy in object detection tasks, achiev-
ing a Mean Average Precision (mAP) of 65–75 % in YOLOv8 on data
sets such as COCO. However, accuracy may degrade under poor light-
ing conditions, high object density, or when detecting small objects that 
require finer details. YOLO also exhibits a low false positive rate due to 
its optimized loss function and a well-balanced trade-off between object 
localization and classification.

Furthermore, YOLO can operate on mid-range GPUs (e.  g .,  
NVIDIA  GTX  1660) and even on CPUs with reduced performance. 
The affordability of such hardware makes it a viable option for most 
research and commercial projects.

Despite its significant advantages, the YOLO model has notable 
limitations when applied to UAV-mounted cameras, primarily due to 
the unique characteristics of aerial imagery and computational con-
straints. UAVs operate in a three-dimensional space, where the camera 
continuously changes its tilt angle due to maneuvers or altitude adjust-
ments. This results in complex perspective distortions and unusual 
viewing angles, to which YOLO is not well adapted.

Objects are captured from varying altitudes, leading to significant 
scale variations within images (poor scale invariance). Although YOLO  
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supports multi-scale processing , it relies on a fixed grid-based parti-
tioning of the image, making it less accurate for objects that signifi-
cantly vary in scale. Unlike stationary cameras or vehicle-mounted 
cameras operating in predictable environments, UAV cameras cap-
ture images in complex and dynamic settings. These conditions may 
include rapid lighting changes, moving objects within the frame, 
and a highly variable background. YOLO does not always perform 
effectively in such scenarios due to its lack of context-aware adapta-
tion mechanisms.

Furthermore, even optimized YOLO versions (e. g., Tiny-YOLO) 
may still be too computationally demanding for typical single-board 
computers such as Raspberry Pi or OrangePi, limiting the feasibility of 
integrating this model.

Several modern architectures are worth considering, given their 
specific features that may be beneficial for various computer vision 
tasks, particularly when processing UAV camera data.

EfficientNet is a modern model that employs automated archi-
tecture optimization to achieve a balance between performance and 
computational cost  [6]. It provides high accuracy with significantly 
fewer parameters compared to other large models, making it suitable 
for resource-constrained systems such as UAVs. The model demon-
strates efficient scaling of depth, width, and resolution, as well as 
relatively high detection accuracy, but requires specialized optimiza-
tion for real-time operation.

Vision Transformers (ViT) [7] utilize a self-attention mechanism 
that effectively captures long-range dependencies between different 
parts of an image. They perform well in tasks requiring the analysis of 
complex structures and exhibit high accuracy on large datasets. How-
ever, their high computational demands limit their usability on low-
power platforms, such as those used in UAVs.

NASNet (Neural Architecture Search Network) is the result of an 
automated architecture search optimized for classification and detec-
tion tasks [8]. Its flexibility allows for adaptation to various computa-
tional resources. The model achieves high accuracy due to automated 
optimization. However, its drawbacks include long training times and 
high resource costs for initial optimization.

Faster R-CNN is a classic model for object detection tasks. Its ac-
curacy and flexibility in handling different data types make it a valuable 
tool for researchers. A key advantage of the model is its high accuracy 
in detection tasks, making it applicable to complex environments with 
high object density. However, significant computational costs hinder its 
real-time deployment on UAVs.

SqueezeNet is specifically designed for operation in resource-con-
strained environments. It features a compact architecture (~1.2 million 
parameters), allowing for high performance with minimal resource 
consumption, making it suitable for embedded systems. However, its 
main drawback is lower recognition accuracy compared to other mo
dern models [9].

Thus, each of the reviewed models de
monstrates distinct advantages but also has 
significant limitations. The primary chal-
lenges include high computational complexi
ty, limited scale and perspective distortion 
invariance, and reduced performance in dy-
namic conditions or on resource-constrained 
platforms typical of UAVs. Considering these 
limitations, the aim of this study is to enhance 
the efficiency of aerial image processing on-
board UAVs under restricted computational 
resources. This will be achieved through 
the investigation, adaptation, and optimiza-
tion of modern classification models such as 
ResNet50v2, DenseNet121, and MobileNetV2.  
Additionally, let’s aim to develop methods  

for reducing computational costs, including information filtering and 
linear path analysis.

2. Materials and Methods

In this study, let’s examine the following neural network models.
ResNet50, or Residual Network-50, is one of the most well-known 

deep neural networks developed for image classification. This architec-
ture was designed to address the vanishing gradient problem that arises 
when training very deep networks. The core idea is the introduction of 
residual blocks, which include direct connections or shortcut connec-
tions that bypass one or more layers, allowing gradients to propagate 
more easily through the network during backpropagation.

ResNet50v2 is an improved version of ResNet50 [10]. The primary 
differences between ResNet50 and ResNet50v2 lie in the placement 
of batch normalization and ReLU activation. In ResNet50v2, these 
operations are performed before each convolution, improving network 
stability and training efficiency. Additionally, in ResNet50v2, shortcut 
connections are added after activation, enhancing gradient flow. The 
placement of batch normalization before activation and convolution is  
a key improvement that results in better performance and faster training.

DenseNet121, or Densely Connected Convolutional Network 121 [11], 
is a deep neural network distinguished by its densely connected layer 
architecture. This design improves information flow and training ef-
ficiency compared to traditional convolutional neural networks.

The core idea of DenseNet121 is that each layer in the network 
receives input from all preceding layers and passes its features to all 
subsequent layers. This means that the network consists of dense blocks, 
where each layer is connected to every other layer within the block. 
This approach mitigates the vanishing gradient problem, enhances 
feature reuse, and reduces the number of parameters, as layers do not 
need to recompute the same features repeatedly.

MobileNetV2 is an extension of the MobileNet architecture, spe-
cifically designed for mobile and embedded systems where limited 
resources necessitate efficient neural networks. MobileNetV2 is based 
on novel concepts such as inverted residual blocks and linear bottle-
necks, which enable high performance while reducing computatio
nal costs [12].

Inverted residual blocks are the key innovation of MobileNetV2. 
In traditional residual networks (e. g., ResNet), channel expansion is 
performed at the end of the block. In contrast, MobileNetV2 first in-
creases the number of channels and then reduces them. This approach 
preserves more useful information throughout the network.

A comparison of the described models is presented in Table 1 [10–12].
For the deployment and testing of models, single-board computers 

Raspberry Pi 4 Model B and OrangePi 5 Pro were selected to evaluate 
their suitability for onboard integration in UAVs.

A comparison of their specifications is presented in Table 2 [13].

Тable 1

Comparison of neural network model characteristics

Parameter ResNet50v2 [10] DenseNet121 [11] MobileNetV2 [12]

Network depth 50 layers 121 layers 53 layers

Connection approach Residual blocks Dense connections Inverted residual blocks

Feature growth rate Not used 32 Not used

Number of parameters ~23.5 M ~8 M ~3.4 M

Computational complexity High Medium Low

Mobile optimization No No Yes

Primary application Large datasets General-purpose Mobile and embedded systems

Training time Long Medium Fast

Real-time performance Medium High Very high
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For model training, software was implemented in Python using 
TensorFlow and Keras. The models ResNet50v2, DenseNet121, and 
MobileNetV2 were fine-tuned on the "Aerial Imagery" dataset  [14], 
which contains images captured from UAVs with a resolution of  
64×64 pixels. The dataset consists of more than 260,000 images and 
includes 43 classes (Fig. 1).

To address the issue of prolonged classification time using the slid-
ing window method, approaches based on horizontal or vertical line 
traversal were proposed, along with the application of information 
filtering to discard non-informative fragments.

Specifically, if the UAV ’s navigation system includes a flight control-
ler with an autopilot system, the flight mission planning involves defin-
ing the trajectory as a sequence of waypoints (coordinates) within the 
flight zone. Consequently, the UAV ’s flight path is essentially a polyline 
consisting of straight-line segments between predefined key points. 
Given this, processing the entire frame at each step is not necessary.

Each new video frame contains a significant portion of the infor-
mation present in the previous frames, with only a relatively "narrow" 
strip of new data appearing due to the UAV ’s forward movement. Thus, 
for identifying objects of interest, the classifier model can be fed with 

a minimal amount of new information, allowing the model’s attention 
to focus exclusively on the dynamic parts of the image. In other words, 
previously analyzed frame regions remain unchanged or provide mini-
mal new information, ensuring that the model primarily processes only 
the varying segments of the image.

This optimization reduces the number of classification operations 
at each step, decreasing overall processing time and power consump-
tion – an essential factor for real-time operation under the limited 
computational resources of UAVs.

Considering the arguments presented above, the horizontal line 
traversal method was selected for the experiment, with a line width  
of 64 pixels. This corresponds to the size of the input images on which the 
model was previously trained. Such an approach ensures consistency bet
ween the input data format and the requirements of the neural network.

All classification time measurements were performed on single-
board computers Raspberry Pi 4 Model B and OrangePi 5 Pro, which 
simulate the constraints of onboard computational resources typical for 
unmanned aerial vehicle (UAV ) systems. These platforms have signifi-
cant limitations in processor power, RAM, and energy consumption, 
ensuring a realistic simulation of real-time operations.

Тable 2

Comparison of the specifications of single-board computers Raspberry Pi 4 Model B and OrangePi 5 Pro [13]

Characteristic Raspberry Pi 4 Model B OrangePi 5 Pro

Processor ARM Cortex-A72, 4 cores, 1.5 GHz Rockchip RK3588, 8 cores (4x Cortex-A76, 4x Cortex-A55)

RAM Up to 8 GB LPDDR4 Up to 32 GB LPDDR4/4x

Graphics processor (GPU) VideoCore VI (supports OpenGL ES 3.0) Mali-G610 (high performance in graphics and AI)

Power consumption 5–10 W 10–15 W

Operating system Raspberry Pi OS, Linux support Debian, Ubuntu, Android

Performance Suitable for basic computing and educational projects High performance, suitable for AI and multimedia

Cost Relatively low Medium (higher than Raspberry Pi)

Advantages Accessibility, ease of use, low cost High performance, support for modern standards

Disadvantages Limited performance for complex tasks Higher power consumption, higher price

 
Fig. 1. Classes of the "Aerial Imagery" dataset [14]
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For classification, video with a resolution of 1920×1080 pixels (Full 
HD) was used. The classification was performed using the horizontal 
line traversal method with different step sizes: 32 pixels (50  % over-
lap between adjacent lines), 48 pixels (approximately 67  % overlap),  
64 pixels (no overlap).

At each step, image fragments were transmitted to the classifier, 
grouped into batches ranging from 30 to 240 images. To evaluate per-
formance, the median classification time (in seconds) was calculated for 
each platform. The use of the median was justified by the fact that the 
classification time distribution does not follow a normal distribution.

To simulate real-time operation, the Python Threading library 
was used, enabling the execution of video streams in parallel processes, 
which improves system efficiency.

Thus, the Aerial Imagery dataset (Fig.  1) was used as training 
material for classifier model training (Table 2), applied for processing 
data from UAV onboard cameras in real-time directly on embedded 
computers. The core of this study is the evaluation of classification 
speed under different classifier application modes.

3. Result and Discussion

The results of the first experiment are illustrated in Tables  3–6.

Тable 3

Results of Experiment 1 on the Raspberry Pi 4 Model B platform 

(horizontal traversal)

Step Batch

Line traversal Line

DenseNet
Mobile-

Netv2
ResNet DenseNet

Mobile-

Netv2
ResNet

32

30 69.723 23.046 71.56 2.123 0.697 2.109

60 62.466 18.156 58.877 3.427 1.069 3.534

120 56.958 15.365 53.086 6.305 1.821 5.473

240 55.362 15.459 57.273 11.713 3.342 12.182

48

30 47.857 15.904 50.099 2.083 0.699 2.194

60 41.052 12.763 43.913 3.439 1.096 3.636

120 43.719 11.317 43.304 6.357 1.875 6.586

240 42.734 11.481 41.763 11.742 3.724 12.587

64

30 34.358 13.045 36.427 2.069 0.799 2.203

60 29.9 10.234 32.441 3.447 1.221 3.657

120 29.178 8.771 30.809 6.297 2.111 6.671

240 23.73 7.785 24.716 11.573 3.715 12.258

Тable 4

Results of Experiment 1 on Orange Pi 5 pro platform (horizontal traversal)

Step Batch

Line traversal Line

DenseNet
Mobile-

Netv2
ResNet DenseNet

Mobile-

Netv2
ResNet

32

30 14.684 6.936 17.36 0.452 0.214 0.534

60 10.366 4.638 11.479 0.642 0.281 0.71

120 9.159 3.517 9.08 1.136 0.429 1.119

240 8.616 2.989 7.859 2.12 0.728 1.951

48

30 10.044 4.682 11.882 0.452 0.212 0.532

60 7.221 3.134 7.963 0.651 0.277 0.713

120 6.088 2.322 6.237 1.136 0.398 1.12

240 6.393 2.254 6.027 2.143 0.755 2.008

64

30 7.318 3.545 8.705 0.453 0.218 0.539

60 5.255 2.354 5.75 0.65 0.287 0.712

120 4.516 1.618 4.583 1.121 0.396 1.13

240 4.232 1.528 3.961 2.105 0.748 1.965

As seen from the results of the experiment in Tables 3 and 4, the 
processing time decreases as the line step increases. This is due to 
the reduction in the number of image fragments transmitted to the 
classifier. The fastest classification time is observed for the 64-pixel 
step. Increasing the batch size leads to longer classification times but 
optimizes the utilization of computational resources for larger data 
volumes. However, OrangePi 5 Pro demonstrates significantly better 
results compared to Raspberry Pi 4 Model B. This is due to its more 
powerful processor and enhanced RAM capabilities, which allow for 
better handling of large datasets.

The objective of the second experiment was to evaluate the clas-
sification performance when changing the orientation of the analyzed 
line from horizontal to vertical. This approach allows for an assess-
ment of the impact of the geometric orientation of the input data on 
system speed under constrained computational resources. As in Ex-
periment 1, classification was performed on video with a resolution of 
1920×1080  pixels (Full HD). The line traversal was vertical, and the 
number of images transmitted to the classifier per batch ranged from 
30 to 240. The line step sizes were 32, 48, and 64 pixels.

As seen from the results in Tables 5 and 6, the classification time for 
the vertical line is generally higher than for the horizontal line across 
all platforms and models. This result can be explained by the increased 
number of line traversals required in the vertical orientation due to the 
frame size (1920×1080 pixels) and the limited batch size.

Regarding the comparison of models, the following conclusions 
can be drawn.

MobileNetV2 is the fastest model among all tested configurations. 
It demonstrates the shortest classification time regardless of line step 
size or batch size. Its lightweight architecture makes it ideal for re-
source-constrained platforms. It is recommended for tasks where high 
speed and acceptable accuracy are crucial.

ResNet has the longest classification time among the considered 
models, indicating its high computational complexity. Its high accuracy 
makes it useful for tasks where precise recognition is critical, but it 
requires powerful hardware. It is less suitable for real-time systems on 
platforms with limited resources.

DenseNet shows an intermediate classification time, balancing 
between MobileNetV2 and ResNet. It offers reasonable performance 
for tasks requiring a trade-off between speed and accuracy. It is suitable 
for applications with moderate computational requirements.

Тable 5

Results of Experiment 1 on the Raspberry Pi 4 Model B platform 

(horizontal traversal)

Step Batch

Line traversal Line

DenseNet
Mobile-

Netv2
ResNet DenseNet

Mobile-

Netv2
ResNet

32

16 20.447 7.762 19.613 0.691 0.262 0.667

32 15.315 5.295 15.029 1.014 0.351 1.0

64 12.024 3.882 11.279 1.529 0.51 1.597

128 10.188 3.175 10.925 2.545 0.789 2.717

256 9.62 2.851 10.451 4.799 1.407 5.205

48

16 11.721 5.148 12.816 0.605 0.266 0.664

32 8.917 3.541 10.017 0.894 0.352 1.005

64 7.537 2.586 8.002 1.504 0.512 1.596

128 5.181 1.688 5.54 2.535 0.807 2.718

256 4.938 1.523 5.232 4.854 1.469 5.181

64

16 9.433 4.483 10.05 0.614 0.295 0.66

32 7.19 3.101 6.989 0.902 0.394 0.862

64 6.051 2.296 5.403 1.501 0.569 1.347

128 5.134 1.776 5.448 2.551 0.875 2.709

256 4.864 1.519 5.209 4.847 1.506 5.182
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Тable 6

Results of Experiment 1 on Orange Pi 5 pro platform (vertical traversal)

Step Batch

Line traversal Line

DenseNet
Mobile-

Netv2
ResNet DenseNet

Mobile-

Netv2
ResNet

32

16 20.214 11.078 25.713 0.335 0.185 0.425

32 13.915 6.771 17.194 0.463 0.226 0.574

64 9.999 4.504 10.911 0.661 0.294 0.722

128 8.53 3.171 8.655 1.179 0.418 1.205

256 9.47 3.268 8.463 2.389 0.814 2.116

48

16 13.484 7.412 17.228 0.337 0.187 0.431

32 9.396 4.526 11.329 0.472 0.226 0.573

64 6.449 3.078 7.103 0.651 0.301 0.707

128 5.778 2.283 6.135 1.152 0.446 1.218

256 4.972 1.789 4.431 2.36 0.783 2.133

64

16 10.33 5.712 12.528 0.336 0.187 0.405

32 7.063 3.413 8.248 0.464 0.223 0.543

64 4.959 2.365 5.41 0.672 0.267 0.687

128 4.85 1.803 4.796 1.212 0.449 1.19

256 4.645 1.657 4.173 2.317 0.815 2.069

When comparing hardware platforms, the following conclusions 
were made.

OrangePi 5 Pro demonstrated the highest performance among the 
tested platforms, with significantly faster classification times compared 
to Raspberry Pi 4 Model B, especially in complex scenarios (large batch 
sizes, small line steps). Thanks to its powerful processor and larger 
RAM capacity, the platform can efficiently process resource-intensive 
models such as ResNet. This platform is ideal for tasks with high-per-
formance requirements. Its main drawback is the higher cost compared 
to Raspberry Pi 4 Model B. Using such a platform is justified only when 
performance is critical and complex models must be deployed. There-
fore, OrangePi 5 Pro is recommended for tasks where performance is 
the key factor, such as equipping high-tech UAVs for reconnaissance or 
specialized missions.

Compared to OrangePi 5 Pro, Raspberry Pi 4 Model B has a sig-
nificantly lower cost, making it more accessible for mass production. 
It can run optimized models such as MobileNetV2 with an acceptable 
classification time under proper configuration (64-pixel line step, batch 
size 64–128). Due to its low cost, this platform is an attractive choice 
for mass deployment, such as for a large fleet of kamikaze UAVs where 
cost minimization is essential. However, its drawbacks include longer 
classification times in complex scenarios (large batch size, small line 
step), which may affect real-time performance. Its limited computa-
tional resources make it difficult to use high-complexity models such 
as ResNet or DenseNet.

Thus, Raspberry Pi 4 Model B is the optimal choice for systems with 
less strict performance requirements but with a focus on cost efficiency.

It was established that the accuracy of the ResNet50v2 model on 
target objects was 78 % (0.78), the highest among the models considered. 
Other models demonstrated slightly lower results for this parameter.

On the test dataset for target objects, the false positive rate was 23 %, 
while the false negative rate was 22 %. These results indicate the im-
proved effectiveness of the updated models in reducing classification 
and identification errors.

Practical significance. The findings of this study can be applied to 
enhance the efficiency of real-time aerial imagery processing, particu-
larly in fields requiring rapid image analysis, such as military operations, 
reconnaissance, search-and-rescue missions, infrastructure inspection, 
agrotechnology, and logistics. The proposed approaches, including the 

use of the MobileNetV2 model combined with information filtering 
and an optimized line traversal algorithm, significantly reduce com-
putational costs and improve the autonomy of UAV onboard systems. 
Furthermore, these results can be integrated into existing monitoring 
and data analysis platforms to enhance their performance and adapt-
ability to dynamic conditions.

Research limitations. The primary limitations of this study stem 
from the dependence of the proposed solutions on hardware perfor-
mance. The use of single-board computers such as Raspberry Pi 4 Mo
del B and OrangePi 5 Pro imposes constraints on the complexity and 
depth of the models that can be integrated. Practical implementation of 
the results across different fields may require additional model tuning 
for specific datasets and operating conditions.

Future research prospects. Further research could focus on improv-
ing models to enhance their adaptability to dynamic environments, 
such as changes in scale and perspective of objects. A promising direc-
tion is the implementation of modern transformer architectures, which 
may improve the accuracy of analyzing complex image structures.  
Additionally, expanding experiments on more powerful platforms 
would allow for an investigation of the relationship between perfor-
mance and power consumption. Another important avenue is the in-
tegration of AI-based algorithms with UAV flight path optimization 
technologies, enabling the development of fully autonomous systems 
for real-time analysis and decision-making.

4. Conclusions

Based on the results of the experimental studies, the following 
recommendations can be provided for using the analyzed models and 
hardware for processing Full HD video (from cameras with a resolu-
tion of 1920×1080) using the line traversal algorithm when searching 
for target objects.

On Raspberry Pi 4 Model B, it is recommended to use line tra-
versal with the MobileNetV2 model, a line step of 64 pixels, and a batch 
size of (60; 240) if the UAV is moving at a low speed. In this case, the 
processing speed will be up to one second. If information filtering of 
non-informative fragments is applied, the MobileNetV2 model with 
batch-30 can be used.

On OrangePi 5 Pro, it is recommended to use line traversal with 
DenseNet121 and ResNet50v2 models, a line step of (32; 64) pixels, 
and a batch size of (60; 240) if the UAV is moving at a low speed, as 
well as MobileNetV2 with a line step of (32; 64) pixels and a batch size  
of (30; 120). If information filtering of non-informative fragments is 
applied, models with batch sizes of (30; 60) can be used.

The obtained research results demonstrate the possibility of im-
proving the processing speed of aerial imagery under constrained com-
putational resources. The proposed approach, which combines modern 
neural network models with an optimized line-scanning algorithm, 
significantly reduces computational load, thereby increasing system 
autonomy, particularly for UAV onboard systems.

The application of these findings is relevant in fields requiring 
rapid image analysis, such as military operations, reconnaissance, 
search-and-rescue missions, critical infrastructure inspection, agro-
technology, and logistics. Additionally, the results can be integrated 
into modern monitoring and data analysis platforms, enhancing their 
performance, adaptability to dynamic conditions, and overall efficiency 
in real-time operation.
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