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MODEL DEVELOPMENT OF 

DYNAMIC RECEPTIVE FIELD 

FOR  REMOTE SENSING IMAGERIES

The object of research is the integration of a dynamic receptive field attention module (DReAM) into Swin Transformers to enhance 
scene localization and semantic segmentation for high-resolution remote sensing imagery. The study focuses on developing a model that 
dynamically adjusts its receptive field and integrates attention mechanisms to enhance multi-scale feature extraction in high-resolution 
remote sensing data.

Traditional approaches, particularly convolutional neural networks (CNNs), suffer from fixed receptive fields, which hinder their 
ability to capture both fine details and long-range dependencies in large-scale remote sensing images. This limitation reduces the ef-
fectiveness of conventional models in handling spatially complex and multi-scale objects, leading to inaccuracies in object segmentation 
and scene interpretation.

The DReAM-CAN model incorporates a dynamic receptive field scaling mechanism and a composite attention framework that 
combines CNN-based feature extraction with Swin Transformer self-attention. This approach enables the model to dynamically adjust 
its receptive field, efficiently process objects of various sizes, and better capture both local textures and global scene context. As a result, 
the model significantly improves segmentation accuracy and spatial adaptability in remote sensing imagery.

These results are explained by the model’s ability to dynamically modify receptive fields based on scene complexity and object 
distribution. The self-attention mechanism further optimizes feature extraction by selectively enhancing relevant spatial dependencies, 
mitigating noise, and refining segmentation boundaries. The hybrid CNN-Transformer architecture ensures an optimal balance between 
computational efficiency and accuracy.

The DReAM-CAN model is particularly applicable in high-resolution satellite and aerial imagery analysis, making it useful for 
environmental monitoring, land-use classification, forestry assessment, precision agriculture, and disaster impact analysis. Its ability to 
adapt to different scales and spatial complexities makes it ideal for real-time and large-scale remote sensing tasks that require precise 
scene localization and segmentation. 
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1. Introduction

High-resolution remote sensing imagery provides extensive geo-
spatial detail, enabling the fine-grained observation of diverse objects 
and land cover types (Fig.  1). However, convolutional neural net-
works  (CNNs) despite their success in various image analysis tasks 
often rely on fixed-size receptive fields, making it challenging to capture 
both localized structures (e.  g., small buildings, roads) and broader 
spatial contexts (e. g., extensive vegetation zones) simultaneously [1–4]. 
This limitation restricts the effectiveness of standard CNN-based me
thods in complex multi-scale scenarios, which are common in remote 
sensing data [2, 5–7].

Efforts to enhance CNNs via dilated or deformable convolutions [3, 4] 
have improved coverage of larger areas but may introduce artifacts or 
compromise detail. Recent Transformer-based models [8, 9] use global 
self-attention to capture extended spatial relationships, yet naively apply-
ing attention to high-resolution images is computationally expensive, and 
local details may still be lost when large patches are used. The Swin Trans-
former [10] partially mitigates these challenges by leveraging window-
based self-attention, balancing global context extraction with manageable 
complexity  [11, 12]. Nevertheless, an adaptive approach that dynami-

cally alters the receptive field within CNN layers thereby unifying local 
CNN features and Transformer attention. remains insufficiently explored 
for scene localization and semantic segmentation in remote sensing.

Classical semantic segmentation frameworks such as PSPNet [13], 
DeepLab [14], and Segmenter [15] have demonstrated strong performance 
on natural images but may face difficulties when addressing the scale 
diversity inherent in remote sensing imagery. Studies indicate that fusing 
CNN features with more global attention mechanisms can yield better 
segmentation results, yet static kernel sizes or window partitions cannot 
fully adapt to varying object sizes and spatial complexities [1, 3]. Although 
the Vision Transformer introduces a novel way to aggregate global depen-
dencies [8, 10], its default structure does not inherently tackle multi-scale 
challenges in large scenes, a known bottleneck in remote sensing analysis.

Meanwhile, pyramid-based designs like Feature Pyramid Net-
works  [16] improve multi-level feature fusion but do not dynamically 
modify receptive fields to match the local content. As highlighted in [3, 4], 
controlling how large or small the effective receptive field should be, 
depending on object distribution in different image regions, might be 
pivotal for high-resolution tasks. Hence, there is a recognized need for 
hybrid approaches that incorporate local, dynamically adjusted convo-
lutional kernels with Transformer-based global awareness.
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The aim of this research is to develop a Dy-
namic Receptive Field Composite Attention Net-
work (DReAM-CAN), which merges CNN-based 
local feature extraction with Swin Transformer 
self-attention and introduces an innovative me
chanism for adaptive receptive field scaling. This 
design aims to address the persistent challenge 
of effectively segmenting and localizing objects 
that vary in size throughout large-scale remote 
sensing images. By synchronizing dynamic recep-
tive fields at the convolutional stage with Trans-
former-driven context modeling , the proposed 
architecture seeks to boost segmentation accu-
racy and scene localization performance across 
diverse high-resolution remote sensing datasets. 
Such an approach will support a broad range 
of applications encompassing environmental 
mapping, precision agriculture, and urban area 
assessment where multi-scale image features de-
mand flexible, fine-to-coarse feature extraction.

2. Materials and Methods

The object of research is the integration of a Dynamic Receptive 
Field Attention Module (DReAM) into Swin Transformers to enhance 
scene localization and semantic segmentation for high-resolution re-
mote sensing imagery. This method adapts the receptive fields within 
the self-attention mechanism of Swin Transformers to dynamically 
adjust based on token distances, ensuring precise segmentation across 
multiple scales and complex spatial contexts. Moreover, the overall 
architecture is a combination of two phases, the phase 1 – ROI (re-
gions of interests) proposals, and phase 2 (detailed assessment), Fig. 2.

The core of DReAM-CAN is a hybrid network that merges:
1.	 CNN-based local feature extraction (using convolutional 

blocks adapted from standard backbone architectures). In this re-
search let’s use EfficientNet-B3+FPN+RPN, for ROI identification.

2.	 Swin Transformer modules for window-based self-attention.
3.	 DRMaeAM module, for dynamic receptive field attention in-

tegrated to Swin, that means the distance between tokens should be 
measured (Fig. 2).

Although standard Swin Transformers process tokens within fixed 
window boundaries, real-world objects in remote sensing images span 
multiple scales. A tiny rooftop detail may need a very narrow receptive 
field to capture high-resolution edges, whereas a vast crop field or large 
facility requires a more expanded receptive field for coherent context.

The Dynamic Receptive Field Attention Module (DReAM) acts 
like an intelligent, automatic "zoom lens" within the Transformer. For 
each spatial location (or token), DReAM looks at the incoming features 
and decides whether it should "zoom in" (i.  e., focus on close neigh-
bors at high resolution) or "zoom out" (i.  e., include farther regions 
for broader context). It does this by combining outputs from multiple 
"branches", each of which views the data at a different scale or dilation. 
Then, DReAM’s learnable gating weights pick which branch (or mix of 
branches) is most relevant for that location.

Hence, if a token represents a small object edge, DReAM will favor 
the narrow-scale branch to preserve sharp boundaries. If the token 
lies in a region spanning an entire field or large building footprint, the 
gate tilts toward a more dilated branch, allowing the model to gather 
context from farther away and better capture the large structure. By 
seamlessly and continuously switching among these scales, DReAM 
ensures that both fine details and broad patterns are simultaneously 
well-represented a critical advantage in high-resolution remote sensing.

Let X ∈ × ×H W C be the feature tensor (or token grid) passed into 
DReAM at a particular stage. DReAM constructs K parallel branches, each 
applying a distinct dilated or multi-scale transformation to capture dif
ferent effective receptive fields. Concretely, branch k K∈{ }1, ...,  produces:

X Xk kf= ( ), 	 (1)

a b

Fig. 1. Taxonomy of hyperspectral satellite imageries: a – scanned Earth landscape; b – hyperspectral encoded information

Fig. 2. Two phase architectures of composite neural network with dynamic  

receptive field attention module



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

22 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — No. 1/2(81), 2025

ISSN-L 2664-9969; E-ISSN 2706-5448

where fk  might be a convolution with dilation dk  or a more general 
local operator defining the spatial scope of that branch. Next, DReAM 
learns attention weights αk  for k K∈{ }1, ...,  that adaptively gate the 
branches based on local context. One way to compute these weights is 
via a small gating network g ⋅( ):

e Xk kg= ( ),	 (2)

αk
k

j

K

j

=
( )

( )=∑
exp

exp
,

e

e
1

�	 (3)

so that αk ∈( )0 1,  and 
k k∑ α  = 1. Each ek  is a learnable scalar (or vector) 

representing the relevance of branch k in the current spatial neighborhood.
Finally, the aggregated DReAM output is:

X XDReAM
k

K

k k=
=

∑
1

α .	 (4)

This summation fuses all parallel transformations into one feature 
representation. Because the gating network g depends on the local 
features, ak can vary over spatial positions, thus dynamically switching 
among narrower or broader receptive fields.

Once, X DReAM � is obtained, it can be fed into subsequent Swin Trans-
former blocks. In that context, each token’s local receptive field (as pro-
vided by the different-dilation branches) is dynamically scaled accord-
ing to { }αk . This mechanism effectively expands or contracts attention 
spans within the otherwise fixed window-based self-attention, enabling 
multi-scale context capture in high-resolution remote sensing images.

Data for this study originate from multiple public-domain re-
mote sensing datasets xFBD [17] (Fig. 3), DOTA [18] with Train:Vali
dation:Test = 77:13:11  %, each with varied ground sample distan
ces  (GSD) and spectral characteristics. Large satellite images are 
typically split into 1024×1024 pixel tiles to handle memory constraints 
and retain sufficient context. Standard preprocessing steps include:

1.	 Radiometric corrections (destriping, contrast normalization) 
to mitigate sensor-level artifacts.

2.	 Annotation unification into a COCO-like format, ensuring 
consistent training regardless of the original label style.

3.	 Data augmentation via random flips, rotations, and mild color 
jitter to improve robustness.

Fig. 3. Example of xBD dataset imageries, all examples splitted  

by class (No-Damaged, Minor, Damaged)

All experiments were conducted on GPU-equipped servers (often 
with ~16 GB memory, such as NVIDIA T4 or V100), using Python 3.9. 

Model components were implemented in PyTorch, while OpenCV and 
NumPy assisted with image manipulation and data loading. Mixed-
precision (fp16) operations were enabled where possible to accelerate 
training and inference.

In Phase 1, the EfficientNet-B3 backbone produces multi-level fea-
ture maps that the FPN fuses at different resolutions. The RPN then 
outputs bounding boxes by classifying and regressing anchor boxes 
through a combination of cross-entropy classification and Smooth L1 
regression losses. Phase 2 focuses on pixel-level segmentation within 
each region of interest. The Swin Transformer leverages local window-
based attention, while DReAM inserts multiple dilated (or multi-scale) 
transformations, weighting them via a learnable gating network. This 
gating mechanism determines whether to emphasize narrow or wide 
receptive fields at each spatial position.

The overall training scheme uses two main losses:
1.	 Smooth  L1+Cross-Entropy for detection and bounding-box 

regression in Phase 1 (Table 1).
2.	 Focal Loss for segmentation, reducing the impact of easy ex-

amples and helping the model focus on challenging, imbalanced classes 
often found in large-scale remote sensing (Table 2).

Table 1

Phase 1 training hyperparams

Parameter Value Comments

Optimizer AdamW
LR = 1e–3,

Weight Decay = 1e–4

LR-scheme Warm-up (500 iterations)
Cosine Annealing or Step 

Decay; start LR = 1e–3

Batch Size 4 16  GB GPU–(NVIDIA T4)

Epoch 20 k (iterations)
10 k steps up to step-down 

LR = 1e–4

Loss CE Smooth L1 lcls = lreg = 1

Table 2

Phase 2 training hyperparams

Parameter Value Comments

Loss Focal Loss γ α= =2 0 0 25. , .t

LR-scheme Warm-up (1000)+Cosine Start LR = 1e–4

Batch Size 4 ROI 1 ROI~224×224, T4 = 16 GB

Epoch 50–80 k (iterations)
10 k steps up to step-down 

LR = 1e–4

A typical training run proceeds as follows:
1.	 Backbone+RPN Pretraining: Initialize the detection pipeline, 

optimizing anchor-based classification and regression on tiled images.
2.	 Segmentation Fine-Tuning: Freeze or partially freeze the earlier 

detection layers, and train the Swin+DReAM portion to predict fine-
grained masks for each proposed ROI using focal loss.

3.	 Hyperparameter Validation: Monitor a held-out set of scenes (dis-
tinct geography, sensors) to fine-tune the learning rate schedule, batch 
size, and gating network size.

3. Results and Discussions

The proposed Dynamic Receptive Field Attention Module (DReAM) 
was integrated into a Swin Transformer-based architecture and evalua
ted on several high-resolution remote sensing datasets. Final segmen-
tation masks and bounding-box predictions were visually compared 
across baseline methods, while Table  3 summarizes the quantitative 
performance. In particular, Fig. 4, 5 illustrates example segmentation 
results for representative urban and agricultural scenes. A concise 
closed-form expression for the effective receptive field in the presence 
of multiple dilations (Equation (4)) further clarifies how the gating 
weights selectively amplify narrower or broader contexts.
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The observed improvements can be attributed 
to the synergy between window-based self-atten-
tion and dynamic receptive field adaptation. When 
local features indicated small-scale objects (e.  g ., 
rooftops, thin roads), narrower branches domi-
nated, sharpening boundaries in predicted masks. 
Conversely, large-scale farmland or extended water 
bodies triggered wider dilation branches, capturing 
continuity in the global context. This adaptivity 
explains the consistently higher Intersection over 
Union (IoU) and reduced false positives compared 
to fixed-scale baselines. Moreover, unlike conven-
tional pyramid pooling, the gating mechanism auto-
matically determines the most relevant scale at each 
spatial position rather than applying uniform, pre-
specified dilations. The observed improvements 
can be attributed to the synergy between window-
based self-attention and dynamic receptive field 
adaptation.

When local features indicated small-scale ob-
jects (e.  g ., rooftops, thin roads), narrower bran
ches  dominated, sharpening boundaries in pre-
dicted masks.

Table 3

Performance comparison of DreAM with SOTA methods (damage assessment case study)

Approach Class mPA F1 Recall Precision FWIoU mIoU

DeepLabv3+

No damage 0.91 % 0.88 % 0.86 % 0.90 % 0.83 % 0.80 %

Minor damage 0.88 % 0.82 % 0.79 % 0.86 % 0.80 % 0.78 %

Major damage 0.86 % 0.79 % 0.75 % 0.84 % 0.78 % 0.76 %

Totally destroyed 0.89 % 0.84 % 0.81 % 0.86 % 0.81 % 0.79 %

Mean 0.88 % 0.83 % 0.80 % 0.86 % 0.80 % 0.78 %

PSPNet

No damage 0.90 % 0.86 % 0.84 % 0.87 % 0.81 % 0.78 %

Minor damage 0.87 % 0.80 % 0.77 % 0.83 % 0.78 % 0.76 %

Major damage 0.85 % 0.78 % 0.74 % 0.81 % 0.76 % 0.74 %

Totally destroyed 0.88 % 0.82 % 0.79 % 0.85 % 0.79 % 0.77 %

Mean 0.88 % 0.82 % 0.79 % 0.84 % 0.78 % 0.76 %

Swin Transformer 

(without DReAM)

No damage 0.92 % 0.89 % 0.87 % 0.91 % 0.84 % 0.82 %

Minor damage 0.89 % 0.84 % 0.81 % 0.87 % 0.82 % 0.79 %

Major damage 0.87 % 0.80 % 0.77 % 0.83 % 0.79 % 0.76 %

Totally destroyed 0.90 % 0.85 % 0.82 % 0.88 % 0.81 % 0.80 %

Mean 0.89 % 0.84 % 0.82 % 0.87 % 0.82 % 0.79 %

MViTv2 (Multiscale 

Vision Transformer)

No damage 0.93 % 0.90 % 0.88 % 0.91 % 0.85 % 0.83 %

Minor damage 0.90 % 0.85 % 0.82 % 0.88 % 0.83 % 0.80 %

Major damage 0.88 % 0.81 % 0.78 % 0.84 % 0.80 % 0.77 %

Totally destroyed 0.91 % 0.86 % 0.83 % 0.89 % 0.82 % 0.81 %

Mean 0.90 % 0.86 % 0.83 % 0.88 % 0.82 % 0.80 %

Segmenter

No damage 0.92 % 0.88 % 0.86 % 0.91 % 0.84 % 0.81 %

Minor damage 0.89 % 0.83 % 0.80 % 0.86 % 0.81 % 0.78 %

Major damage 0.87 % 0.79 % 0.76 % 0.82 % 0.78 % 0.75 %

Totally destroyed 0.90 % 0.84 % 0.81 % 0.87 % 0.80 % 0.79 %

Mean 0.89 % 0.83 % 0.81 % 0.87 % 0.81 % 0.78 %

Proposed 2-phase 

model with the 

DReAM method

No damage 0.95 % 0.92 % 0.90 % 0.93 % 0.88 % 0.86 %

Minor damage 0.92 % 0.88 % 0.85 % 0.90 % 0.86 % 0.83 %

Major damage 0.90 % 0.84 % 0.81 % 0.88 % 0.82 % 0.80 %

Totally destroyed 0.93 % 0.89 % 0.86 % 0.91 % 0.85 % 0.84 %

Mean 0.93 % 0.88 % 0.86 % 0.90 % 0.85 % 0.83 %

Fig. 4. Localized ROI of damages in Hostomel Airport (Ukraine)
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Conversely, large-scale farmland or extended water bodies trig-
gered wider dilation branches, capturing continuity in the global 
context. This adaptivity explains the consistently higher Intersection 
over Union (IoU) and reduced false positives compared to fixed-scale 
baselines. Moreover, unlike conventional pyramid pooling, the gating 
mechanism automatically determines the most relevant scale at each 
spatial position rather than applying uniform, pre-specified dilations.

Compared with literature benchmarks where either purely con-
volutional networks or static vision transformers were employed the 
DReAM-enhanced system yielded superior performance in multi-scale 
segmentation tasks. Unlike PSPNet or DeepLab-like approaches, which 
rely on fixed receptive fields, the DReAM module offers a more fle
xible balance between fine detail and broad-scale coherence. Practical 
relevance of these results is evident for applications such as land-use 
mapping, deforestation monitoring, and rapid assessment of environ-
mental changes. The ability to switch from high-fidelity local details to 
large-area overviews within a single unified framework can streamline 
workflows for agencies and private sectors dealing with vast and diverse 
geospatial imagery.

Nevertheless, certain limitations exist. First, extremely fine objects 
(e. g., power lines, subtle cracks) might still be challenging if initial 
resolution or annotation quality is insufficient. Second, computational 
overhead grows with very large tile sizes: although DReAM’s gating is 
not computationally prohibitive, an abundance of high-resolution im-
ages can push GPU limits. Another constraint involves domain-specific 
complexities, such as severe cloud cover or topographic distortions, 
which were only partially mitigated by standard data augmentations.

In terms of the conditions of martial law in Ukraine, data access 
and labeling processes encountered logistical delays, as some research 
personnel faced restricted mobility and limited on-site survey opportu-
nities. Training infrastructure was maintained with remote server solu-
tions, but irregular power supply and disruptions in communication 
channels occasionally hindered real-time collaboration and prolonged 
the experimental cycle. Despite these setbacks, the core methodological 
advances remain valid and can be transferred to normal circumstances 
once regional stability is restored.

Looking ahead, a few avenues for further research stand out. In-
corporating multispectral and radar (SAR) channels could fortify 
the model against seasonal or weather-related distortions, enabling 
DReAM to capture textural cues beyond optical frequencies. Addi-

tionally, optimizing runtime for real-time or near-
real-time processing would benefit rapid response 
scenarios, where large-scale image mosaics must be 
analyzed with minimal delay. Finally, investigating 
domain adaptation or semi-supervised learning 
strategies may extend the proposed architecture 
to new sensor types and geographic domains with 
limited labeled data.

4. Conclusions

The study demonstrated that integrating the Dy-
namic Receptive Field Attention Module (DReAM) 
into Swin Transformers significantly improves scene 
localization and semantic segmentation in high-re
solution remote sensing images. By adaptively ad-
justing the local receptive field according to object 
scale and spatial complexity, the model outperforms 
standard window-based Transformers, offering more 
precise detection of both fine details (e.  g., narrow 
edges) and broader structures.

These results are explained by the model’s abi
lity to unify dynamic multi-scale feature extraction 
with windowed self-attention. 

The proposed approach shows practical value in applications re-
quiring high accuracy across varying object sizes and complex envi-
ronments such as land-use mapping, environmental monitoring, and 
infrastructure analysis where it can help reduce misclassification of 
small objects or missed contextual cues for large areas.

Preliminary quantitative evaluations, though limited here, suggest 
that using DReAM yields consistent gains (2–3  % improvement in 
mean Intersection over Union on representative datasets) over base-
line methods without dynamic receptive field modules. This improve-
ment underlines the effectiveness of combining local CNN features, 
transformer attention, and adaptive dilation for robust performance in 
multi-scale scenarios.
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