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A PRIVACY-PRESERVING EDGE 

DATA AGGREGATION FOR TINYML 

ENERGY FORECASTING IN 

HOUSEHOLDS

The object of this research is the use of tiny machine learning (ML) forecasting models and low-power edge processing as a part of 
a hybrid energy management system (HEMS) with a particular emphasis on ensuring end-user data privacy and trust. The research ad-
dresses the challenge of the collection, aggregation, and processing of sensitive data in smart grid operational modes decision-making tasks.

An in-depth literature review revealed that failing to meet user expectations for control and privacy often leads to dissatisfaction 
and disengagement. This study introduced a complex solution that tries to solve the indicated gap and proposes a prototype of a HEMS 
data aggregation subsystem designed to supply information to an energy consumption forecasting module based on mobile ML models.

The developed LSTM-based household energy consumption forecasting models were converted into CoreML and TensorFlow Lite 
formats, maintained accuracy with an RMSE of 0.211 kWh, inference time under 0.5 ms, 800 kB size on disk, and up to 20 MB R AM 
usage. These results confirm their feasibility for deployment in HEMS forecasting subsystems on low-power edge devices.

To supply these models with data, a prototype of the HEMS data aggregation system was developed. It uses open-source soft-
ware  (Home Assistant, InfluxDB) and a scalable, privacy-centered container architecture that keeps sensitive data at the edge. Tests on 
Raspberry  Pi  5  (16  GB) showed 97.2% availability over 72 hours, with 12% RAM usage, 18% CPU load, and CPU temperatures of 
44–51°C when processing 1440 records per sensor daily. This confirms reliable aggregation with low resource demands and good scalability.

Considering the results, the models and prototype can be considered as the sensing and edge computing layers of HEMS, providing 
the necessary data for operational mode selection in household microgrids.
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1. Introduction

Rising energy prices and growing demand are driving the develop-
ment of smart strategies for monitoring, controlling and saving energy. 
Demand side management is an important approach to preventing 
major supply problems and improving energy efficiency  [1]. Hybrid 
energy management systems (HEMS) are an important part of de-
mand side management. These systems reduce costs while meeting 
all energy needs. They analyze how consumers use energy and adjust 
operations using energy-saving algorithms. HEMS integrate different 
energy sources, such as heat pumps, solar panels and the standard elec-
tricity grid. They work together to deliver heating, electricity and hot 
water in the most efficient way.

HEMS aims to save money and operate efficiently by using less 
energy and maintaining a consistent level of comfort. The system col-
lects real-time energy consumption data, processes it, and determines 
the appropriate response when conditions change. HEMS uses Internet 
of Things (IoT) technology to improve productivity and reduce energy 
waste [2]. IoT connects devices, systems, and services so that they can 
instantly exchange data and automate operations. The energy supply 
process involves many parties with complex relationships. These inter-
acting parties include consumers, IoT systems, and utilities [3]. These 
relationships are governed by established quality of service standards 
and system constraints that control their cooperation.

Consumers are the end users of utility services provided through 
IoT systems. For them, the top priority is "Quality of Use". This in-
cludes satisfaction, low risk, and Users’ Experience (UX ). The quality 
aspect is extremely important because it directly affects the consumer’s 
perception of and trust in IoT services. The degree of satisfaction is 
determined by how well the IoT system meets expectations. To achieve 
a  high level of satisfaction, easy-to-use interfaces, reliable help, and 
quick client assistance are necessary [4].

HEMS is an IoT system built on five layers, including both cloud 
and edge computing  [5]. It acts as a point of contact between con
sumers and utilities. The most important quality metrics for IoT sys-
tems are reliability and availability. The reliability of a system depends 
on two factors: the ability to operate stably over a long period of time 
and resistant to failures. Reliable systems provide continuous monitor-
ing and control of services, minimizing downtime and failures. Avail-
ability is defined as the degree to which an IoT system is operational 
and available when needed. High availability is critical for real-time 
data processing and immediate response to consumer needs.

Utility companies provide services but must operate within certain 
limits. These limits fall into architectural and regulatory limits [6]. Archi-
tectural limits are the technical boundaries that a system must adhere to. 
These limits cover how well a system can evolve (scalability), whether 
it works with other systems (integration), and if IoT devices fit existing 
infrastructure (compatibility). Regulatory limits are the government 
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rules and industry standards that utility companies must obey. These 
rules ensure that services are safe, fair, and available to everyone. They 
also define standards for data processing, protecting consumers, and 
effects on the environment. Adherence to these constraints and quality 
standards, as well as maintaining consumer confidence in HEMS, is 
critical for the proper operation of the systems. Previous research has 
mostly addressed architectural and regulatory issues but didn’t pay suf-
ficient attention to trust and privacy from the user perspective.

Machine learning (ML) models for predicting energy demand in 
HEMS are still being actively studied. However, most research focuses 
on cloud-based predictions and ignores the deployment of ML models 
on edge devices. Modern smartphones can run complex ML models 
directly on the device without sending personal data anywhere else. 
Incorporating these personal devices into HEMS designs can increase 
user trust in the system.

Thus, the object of this research is the use of mobile ML forecasting 
models and low-power edge computations as a part of HEMS with 
focus on end-user data privacy and trust. The aim of this research is to 
evaluate the potential of privacy-preserving edge computing solutions 
to improve HEMS trustworthiness.

To achieve the stated aim, the following research objectives were 
defined:

1.	 Identify and analyze the key factors influencing the trustworthi-
ness of hybrid energy management systems (HEMS) from the end-user 
perspective.

2.	 Develop, optimize, convert and evaluate LSTM-based short-
term household energy consumption forecasting model for deployment 
on smartphones.

3.	 Design, implement and evaluate a privacy-preserving energy 
consumption data aggregation and forecasting support prototype for 
home-based HEMS using edge computing on low-power edge devices.

2. Materials and Methods

This study uses a mixed-method approach to explore the integra-
tion of edge computing via smartphones into HEMS for microgrids. 
The focus is on balancing data privacy and performance from the end 
user’s perspective. The methodology uses a combination of qualitative 
and quantitative methods. Firstly, a literature review was conducted to 
summarize knowledge on system trust, energy forecasting and edge com-
puting. As the second step, ML models were built, converted and tested 
to evaluate their predictions accuracy and stability for running on low-
power edge devices. Finally, a prototype had been developed to evaluate 
real world scenarios for privacy aware data aggregation and processing 
on the close edge of a smart grid to reduce the risks of data leakage. The 
prototype development was done with data protection legislation in 
mind, such as the GDPR. The proposed solution is designed to keep and 
process users’ data locally without dependency on cloud computations.

The literature review looked at peer-reviewed sources from IEEE 
Xplore, Scopus, and Google Scholar databases. Keywords such as "HEMS 
reliability", "edge computing in microgrids", "LSTM energy forecasting", and 
"privacy in IoT energy systems" were used for searching relevant open-
access sources and publications over the last decade. Over 50 articles 
were reviewed, and 20 were selected for detailed analysis based on their 
relevance to stakeholder experience, system limitations, and reliability 
metrics. This allowed to identify gaps in current research. In particular, 
there is a lack of user-centric privacy assessments in HEMS. To address 
these identified gaps, particularly in privacy-preserving prediction and 
secure training data collection, the study is continuing to develop ML 
models adapted for deployment on smartphones, and tools for secure data 
collection, ensuring compliance with user preferences for data sharing.

Electricity consumers have unique consumption profiles but can be 
broadly categorized into three groups: households, social infrastructure 
facilities, and industrial enterprises. LSTM-based models have proven 

their efficiency in short-term energy consumption forecasting tasks for 
all these groups [7]. In the previous work, mobile short-term forecast-
ing models for social infrastructure facilities and industrial enterprises 
were developed and evaluated [8]. The present study extends this line 
of research by addressing the household category, thereby filling an 
identified gap in forecasting model development.

TensorFlow Keras was chosen as the ML backend to develop 
a  test LSTM model. It allows fast model prototyping and is compat-
ible with various ML model conversion tools. To be launched on iOS 
devices (Apple Inc., USA), ML models require conversion to compat-
ible mobile formats, like TensorFlow Lite (Google Brain Team, USA) 
and CoreML (Apple Inc., USA). This conversion can be done using 
TensorFlow Lite and CoreMLTools (Apple Inc., USA) frameworks 
accordingly. TensorFlow and CoreML platforms allow development 
and deployment of LSTM-based forecasting models on mobile and 
low-power devices (TinyML approach [9]) with efficient execution on 
CPUs, GPUs, and neural processing units (NPUs). These platforms 
are compatible with the majority of modern smartphones and enable 
edge-level forecasting without dependency on the cloud infrastructure. 
Although CoreML supports on-device fine-tuning for certain ML mod-
els, LSTMs currently lack this functionality [10] and Tensorflow Lite is 
not officially supporting on-device training for iOS [11], so retraining 
must be performed on a dedicated edge hub or via cloud services.

The conversion process includes models’ optimizations and ML 
operators’ adaptation that may impact model performance, so it should 
be re-evaluated after conversion. The RMSE value of forecasting results 
can be used to evaluate ML model degradation. Also, it is crucial to vali-
date that a low-power device like a smartphone meets the forecasting 
model computational power requirements and can guarantee its stable 
work. This aspect can be validated by measuring device CPU utiliza-
tion, RAM consumption, thermal state changes, ML model disk space 
size, and inference speed. It was decided to run such tests three times 
per configuration to achieve the statistical reliability (e. g., via t-tests for 
significance). Detailed methodology of evaluation of these values was 
described in the previous work [8].

To enable training AI models on user data, it is necessary to have 
a tool that implements secure collection of energy consumption data 
with the possibility of further transmission to the forecasting subsys-
tem. Edge computations allow local collection and storage of such data 
without the use of cloud services. When users have full control over 
their sensitive data, it may improve their trust in the HEMS system.  
In addition, it is important that the data collection and aggregation tool 
is compatible with a large number of smart grid devices and does not 
require significant investments for deployment.

To test the feasibility of this idea, it was decided to develop a proto-
type using Home Assistant (HA) (Nabu Casa, Inc., USA) [12] as a core 
component. It is an open-source software package, which is compatible 
with a majority of IoT devices out of the box and has custom plugins 
that support integration of almost any smart meter and inverter. HA can 
be deployed on a low-power computing hub. It is commonly used as  
a main integration point for different IoT-based systems, including 
smart homes and smart energy monitoring [13, 14].

InfluxDB (InfluxData Inc., USA)  [15] was selected as the main 
data storage for the prototype. It is specifically designed to handle large 
amounts of time-series data. HA has its own built-in storage, but its 
functionality and capacity are limited. In addition, the access to the 
data is only available with an admin access token, which is not secure. 
InfluxDB storage is local and users have full control over their data, 
which significantly improves their trust to the system.

To be able to integrate with other subsystems, the prototype should 
have an authorized API for secure data access. FastAPI (Sebastian 
Ramirez, USA)  [16] framework for Python (Python Software Foun-
dation, USA) allows quick and secure API development that suits the 
prototyping task well. Caddy (Light Code Lab LLC, USA) [17] can be 
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used as a web server, as it allows quick hosting of the API with a suf-
ficient level of security. To make the prototype modular and easier to 
deploy, it was decided to use Docker and Docker Compose (Docker 
Inc., USA) [18].

Telegraph (InfluxData Inc., USA) with InfluxDB integration [19] 
can be used for the prototype telemetry collection as it has a wide list 
of metrics that can be tracked, like CPU, RAM usage, etc.

To host the mobile forecasting model and test the integration with 
the prototype, the iOS application from the previous research [8] can 
be used as a template for the companion application implementation. 
The application should be modified to be able to read data from the 
prototype API and use the forecasting model described in this paper. 
The application will be built using Swift and SwiftUI (Apple Inc., USA) 
as the main programming language and UI framework accordingly.

Raspberry Pi 5 [20] 16 Gb is a low-power edge computation device 
that supports all required tools for the prototype development and 
testing, so it was chosen as the edge computations hub. In addition, it 
is commonly used as a central hub in smart homes and it will be easier 
to find potential candidates for the closed beta testing in the future.

For the prototype testing it will be hosted in a household with 
3 Shelly Plu Plug S (Allterco Robotics (Shelly), Bulgaria) [21] that track 
energy consumption in three different rooms once per minute. To con-
firm the feasibility of the prototype, these parameters will be tracked 
during 72  hours: system availability, collected sensors data volume 
per day, system load (including CPU load, RAM usage, device thermal 
state) using Telegraph. In addition, the total InfluxDB buckets size will 
be measured after 1 month of active sensors data tracking.

Developing short-term energy consumption models faces several 
challenges. First, getting data is difficult because users don’t want to share 
it due to privacy concerns. Second, users want to use ML models that 
don’t send their data to outside servers. This work aims to create short-
term energy consumption models that accurately predict energy use on 
personal devices. Smartphones can serve this purpose by using consump-
tion data that’s collected on the edge and processed locally on the device.

To meet the research goals, the proposed methodology was applied, 
and its efficiency was evaluated using empirical results, as shown below.

3. Results and Discussion

3.1. Assessing trustworthiness in HEMS
To address the first objective of this paper, the trustworthiness of 

HEMS should be assessed across several dimensions  [22–24]. These 
include technical performance  [25–27], economic viability  [28, 29], 
sustainability impact, and privacy-preserving mechanisms  [30, 31].

Technical performance:
–	 Reliability. The system must consistently 
manage energy distribution and consumption 
without failures.
–	 Availability. The system must always remain 
operational and accessible when required.
–	 Controllability. The system must be able to 
adapt its consumption models based on both user 
preferences and external conditions [32].
–	 Feedback /Monitoring. The system provides 
real-time data on consumption, peak usage and 
offers suggestions for optimization [33].
–	 Usability. This requires intuitive interfaces 
and remote operation (via mobile or voice) to 
ensure user satisfaction [34].
Economic performance:
–	 Energy savings. Reduced energy consump-
tion while maintaining comfort [35].
–	 Cost-effectiveness. Achieving long-term sav-
ings that justify the initial investment.

–	 Low maintenance. Requiring minimal upkeep and exhibiting re-
duced failure rates.
–	 Environmental benefits. Contributing to reduced carbon emis-
sions and meeting sustainability goals.
Privacy-preserving performance:
–	 Security. The strong protection against illegal access, including 
encryption and secure data transfer.
–	 Privacy. Anonymous use of data with user consent, ensuring 
compliance with regulations and maintaining trust.
The UX of the end-user strongly affects trustworthiness. Studies 

show that when system design does not match user expectations, it 
often leads to dissatisfaction or even increased energy use [29]. Privacy 
concerns also act as barriers, as users resist loss of autonomy, choice, 
and control [36]. At the same time, users are more willing to share data 
when benefits are transparent, predictable, and mutually advanta-
geous  [37, 38]. Research suggests data-sharing willingness typically 
lasts about one month, with repeated transparent requests improv-
ing acceptance, like in case with smartphones sensors data sharing 
requests  [39], though this period is insufficient to train forecasting 
models with seasonal accuracy if applied to the energy data shar-
ing problem. User-controlled data storage and model fine-tuning can 
therefore enhance trustworthiness. Additionally, some users prefer to 
limit remote control of appliances or heating schedules, as full automa-
tion may be perceived as a loss of control [40].

To effectively optimize energy use, modern HEMS must adapt 
strategies to the UX . A key method for determining these needs is artifi-
cial intelligence-based energy consumption forecasting, which requires 
sensitive historical data on consumption for training. Because of these, 
there are privacy concerns. Therefore, it is important to think carefully 
about the modelling approach, the size of the dataset, and the whole 
structure of the HEMS. It allows data to be processed locally on low-
power devices. Therefore, a balance between prediction accuracy and 
privacy is achieved thanks to limited data storage and the absence of 
third-party involvement. However, a model transformation may result 
in performance trade-offs.

To explore these assumptions and support trustworthy HEMS 
with accurate, privacy-respecting predictions, this study evaluates fore-
casting models on datasets representing key consumer categories. The 
optimized and converted models constitute the predictive core of the 
proposed HEMS prototype, which integrates edge computing to enable 
local forecasting and automation. Summarizing the literature, gen-
eral indicators that ensure trustworthiness from the UX perspective in 
HEMS are identified and illustrated in Fig. 1, where the most influential 
factors are highlighted.

 
Fig. 1. Factors influencing trustworthiness in HEMS
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3.2. LSTM forecasting model development, conversion and 
evaluation

This section addresses the second task of the paper.
The household dataset was collected from a private residence in 

Sumy, Ukraine, spanning 9 months of hourly electricity consumption 
data, supplemented by microgrid parameters (e.  g., solar generation, 
battery levels, grid imports/exports). Only consumption and timestamp 
data were used for training, with 0.26% missing or anomalous values 
interpolated linearly using Pandas (Wes McKinney, USA). The dataset 
visualization is presented in Fig.  2. The average hourly consumption 
ranged from 0.3–0.8 kWh (Fig. 3), exhibiting a right-skewed distribu-
tion (median ~0.4  kWh) with outliers due to usage peaks, as shown 
in the histogram (Fig. 4, a) and boxplot (Fig. 4, b). LSTM forecasting 
models were trained using TensorFlow Keras (input 24 × 1, LSTM 200, 

Dense 100, Dropout 0.2, output Dense 1) with batch size 16, 20 epochs, 
Adam optimizer, and MSE loss function. Consumption history data 
was scaled with MinMax scaler and validated using the walk-forward 
approach. The dataset was split on 75% train and 25% test data. Models 
were converted to CoreML, TensorFlow Lite with SelectTfOps enabled, 
Float32 precision.

The household model achieved RMSE 0.211  kWh for energy 
consumption predictions. After conversion, the RMSE value didn’t 
change, that means there is no prediction accuracy loss for both formats. 
CoreML showed slightly faster inference (0.2–0.3 ms vs. 0.4–0.5 ms). 
During predictions, both CoreML and Tensorflow Lite models caused 
short CPU load spikes without thermal impact; each required up to 
20 MB RAM and ~800 kB of disk space. Predictions reflected weekly 
consumption patterns correctly (Fig. 5). 

Fig. 2. Household consumption data visualization
 

Fig. 3. Household hourly average consumption

 

Fig. 4. Household consumption data: a – consumption distribution histogram; b – consumption distribution boxplot

a b
   



INFORMATION AND CONTROL SYSTEMS:
INFORMATION TECHNOLOGIES

35TECHNOLOGY AUDIT AND PRODUCTION RESERVES — No. 6/2(86), 2025

ISSN-L 2664-9969; E-ISSN 2706-5448

These results confirm that LSTM-based mobile models can pro-
vide real-time forecasts with acceptable precision on non-flagship 
iOS devices as part of a HEMS prediction subsystem for households.

After validation the mobile consumption prediction model for 
households, the next step was its real-world application. It was decided 
to begin with the development of a data aggregation subsystem to pro-
vide the necessary inputs for the prediction module.

3.3. Prototype implementation
To address the final task of this paper, a privacy-focused HEMS 

data aggregation subsystem prototype was developed as an edge com-
putation hub hosted on a Raspberry Pi 5 16 Gb. 

Key components of the prototype include:
–	 Data Aggregation: Home Assistant (version 2024.8) serves as 
the core integrator, tracks connected sensors state changes in real-
time and passes it to the local storage, enabling granular monitoring 
without cloud dependencies.
–	 Storage: InfluxDB (version 2.7) is used as the main data storage 
of the prototype. Contains 2 data buckets – raw data bucket and 
hourly data bucket.
–	 Data access and security: Caddy web server runs API that provides 
read-only access to the hourly consumption data from InfluxDB. 
The API uses JWT-based authentication, self-signed HTTPS 
certificates, encrypted tokens storage and role-based access con-
trol  (RBAC) to provide only secure authorized access to the data. 
Additionally, network layer of the subsystem is protected with fire-
wall rules (ufw).
–	 Deployment: the subsystem is containerized in two Docker im-
ages: HA with InfluxDB, and API. Resource allocation allows to 
limit CPU and memory usage per container to prevent overload on 
the Raspberry Pi.
–	 Forecasting subsystem integration: the developed companion 
iOS mobile application pulls aggregated data via API and makes 
on-device predictions using mobile ML models from Section 3.2. 
It uses pre-created credentials to access the API, no remote registra-
tion is allowed for security reasons. In the scope of the described 
prototype, there are no options to control HA devices from the com-
panion application yet, but with future updates, the API will allow 
manual interventions or automated rules to control grid devices.
A user can add new IoT devices to the subsystem using Home As-

sistant and the InfluxDB integration script replicates tracked sensors 
data into raw data bucket. On user set schedule InfluxDB runs data ag-
gregation Flux (InfluxData Inc., USA) requests that write grouped sen-
sors data into hourly bucket. Raw data bucket can automatically clean 
its data on schedule to reduce disk space usage after data aggregation. 
Caddy runs API application that provides authorized JWT token-based 
HTTPS read-only access to hourly InfluxDB bucket. The companion 
mobile application gets energy data from the API via REST requests to 
use in mobile forecasting model.

Each Docker container of the prototype has minimal required 
access level to users’ data, saves secrets and credentials securely in en-
crypted state. External network access in controlled by firewall. Visu-
alization of described prototype and its data flow is available in Fig. 6.

To validate the prototype, empirical tests were conducted: 
–	 System availability was measured using system uptime scripts 
over 72 hours. Measured uptime was measured as 71 hours which it 
97.2% of availability.
–	 Collected sensors data volume per day: connected sensors gener-
ated 1440 records (1 record per minute) each during 24-hour pe-
riod which were grouped into 24 records of total consumption. Disk 
space consumed to save both raw and grouped data for 1 month  
is 104 Mb. Raw data buckets can be set to delete data on schedule, 
for example once per week to save disk space.
–	 System load – thermal state, average daily CPU load, and RAM 
usage were monitored using a Telegraf. Telegraf collected system load 
metrics every 10 seconds over 72 hours and stored them in InfluxDB. 
The average device temperature was 46.75°C, with a minimum of 
44.1°C and a maximum of 51.25°C. The daily average CPU load was 
18%, with peaks reaching 347% (given the quad-core architecture, 
the maximum load is 400%). Average RAM usage was 12% of the to-
tal 16 GB, remaining relatively stable within the range of 11–12.5%. 
These results indicate that a Raspberry Pi 5 with 16 GB RAM can 
reliably handle the current workload and still provides a substantial 
margin for scaling with additional sensors and integrations.

3.4. Discussion
The proposed LSTM short-term energy forecasting model and its con-

version method demonstrated good prediction accuracy for the household 
consumer group. When compared with converted models for social infra-
structure facilities and industrial enterprises from the previous research [8], 
the model shown similar load levels on CPU, RAM, and thermal state of 
the test device, as well as inference time less than 0.05 ms per forecast. The 
structure of the proposed model layers is similar to the LSTM model from 
the study [7], but hyperparameters and training process were optimized 
for further conversion to mobile formats. Unfortunately, these models can’t 
be compared directly as they were trained on different household datasets 
and use different forecast horizons – 1 hour for the model in this paper, 
and from 6 hours to 3 days in [7], but the test results of the proposed model 
additionally confirm that these LSTM models can be effectively used for 
energy consumption predictions even on low-power devices.

When converted to CoreML and TensorFlow formats, this model 
can be deployed on edge devices, like smartphones on Android (Google 
Inc., USA) and iOS operating systems. Such deployment ensures that 
sensitive energy consumption data remains on the edge and helps con-
sumers to make decisions on their smart grid operational modes without 
the use of expensive local servers and cloud computations. An addi-
tional benefit of such edge computations is that they reduce the load on 
cloud data centers, potentially decreasing their carbon dioxide footprint.

Fig. 5. Example of predicted and actual consumption indicators from the household dataset. Scale: 1 week
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However, the study identified an important limitation: achiev-
ing high-quality forecasts requires significant amounts of historical 
consumption data. When such data is unavailable during early EMS 
integration stages, additional time is needed to fine-tune the model 
on collected data to produce meaningful results. Since on-device fine-
tuning is not yet supported for LSTM models, a separate subsystem 
should be developed to enable model retraining on the edge as more 
customer-specific data becomes available.

The performance evaluation of the data aggregation subsystem 
prototype confirmed its robustness and suitability for edge environ-
ments, especially in the context of deployment in home networks. 
The subsystem demonstrated stable operation under continuous data 
streams and showed sufficient scalability to support extended sensor 
networks. When compared to other energy tracking systems that use 
HA, like [13], they are mainly focused on data visualization, integra-
tion with proprietary software of connected IoT devices, and are de-
pendent on a cloud infrastructure. The prototype is not using cloud 
services and has better integration capabilities via protected API.  
In addition, it is specifically designed to store and prepare consump-
tion data for forecasting models training. More complex EMS so-
lutions built around HA usually have their own implementation of 
a  data aggregation subsystem and even include forecasting modules. 
For example, EMHASS [14] allows to use InfluxDB for data aggrega-
tion as well as the suggested prototype. It also has the ML forecaster 
module that uses a regression ML model, which is overall not as ef-
fective as LSTM models  [7], that the proposed prototype targets as 
a  primary forecasting approach for integrations. In addition, EMHASS 
doesn’t have the possibility to run ML models on smartphones na-
tively. The prototype allows to build that integration and is specifically  
designed for it.

At the same time, the study revealed some usability limitations of 
the prototype. Initial setup requires a number of configuration steps 
that can be difficult for non-technical users, creating potential barriers 

to use in consumer environments. This issue highlights the importance 
of simplifying deployment procedures and improving integration 
workflows in future iterations of the system.

External factors also influenced the scope of testing. The restric-
tions imposed by martial law in Ukraine have limited the ability to test 
the developed solution in state infrastructure and enterprise environ-
ments, reducing the variety of operational scenarios available for evalu-
ation. Expanding the test environment will be necessary to understand 
the system’s full performance under different load profiles and security 
requirements.

Addressing the identified issues will involve enabling adaptive on-
device learning, increasing ease of deployment for non-technical users, 
and further improving the forecasting and energy management subsys-
tems regarding reliability and end-user trust.

4. Conclusions

1.	 The conducted analysis revealed that user trust in HEMS is 
formed through technical reliability, economic feasibility, environmen-
tal efficiency, and privacy protection. Results showed that users expect 
stable system operation, transparent control mechanisms, understand-
able interfaces, real financial and energy benefits. At the same time, the 
key barrier is the risk of data leakage and the feeling of loss of control, 
which affects the decision to share historical energy data necessary for 
accurate forecasting. The study confirmed that increasing trust is pos-
sible due to local data processing, minimizing dependence on the cloud, 
and ensuring transparent, predictable interactions with the system.  
As a result, a list of the most influential trust indicators was identified, 
which should be considered when developing modern HEMS, with  
a focus on the needs and expectations of the end user.

2.	 The proposed short-term household energy consumption 
forecasting model based on LSTM was developed and optimized 
for deployment on low-power devices. The conversion of the model  

Fig. 6. HEMS data aggregation subsystem prototype structure
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in CoreML and TensorFlow Lite formats ensured support for modern 
smartphones and stable forecasting accuracy (RMSE =  0.211  kWh) 
without degradation after conversion. Performance tests showed that 
both model formats demonstrate low execution time, minimal impact 
on processor load, and moderate RAM consumption. This confirms 
the possibility of applying the model in HEMS forecasting subsystems 
on smartphones to improve end users’ trust.

3.	 The prototype of a data aggregation subsystem for HEMS 
based on open-source software tools was created and tested. It had 
been deployed to a Raspberry Pi  5 16  Gb and tested in a private 
household with 3 smart sockets connected for energy consumption 
tracking. Empirical testing of the developed HEMS data aggregation 
prototype demonstrated 97.2% system availability over 72  hours, 
stable performance with an average CPU load of 18%, RAM usage of 
12%, and operating temperatures between 44–51°C. The prototype 
efficiently processed 4320 sensor records per day while consuming 
only 104 MB of monthly storage, confirming its reliability, scalability, 
and suitability for low-power edge environments. It was successfully 
integrated with an iOS companion application to provide energy 
consumption predictions. This confirms that the developed pro-
totype can be used in future integrations with the forecasting sub-
system. The prototype demonstrates real-world applicability using 
available open-source tools, which make it attractive to households 
and small businesses.
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