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DEVELOPMENT OF A NEURAL 

NETWORK FOR FORECASTING 

PASSENGER FLOWS IN SMART CITY 

PUBLIC ELECTRIC TRANSPORT

The research object is a hybrid deep learning model for passenger flow forecasting. These passenger flows constitute complex time 
series, influenced by a combination of temporal, spatial, and operational factors. The study addresses the fundamental mismatch between 
stochastic passenger demand and the static supply of transport services. This disparity results in operational inefficiency and a reduced 
quality of service for passengers. A lack of accurate forecasting tools hinders the optimal daily allocation of rolling stock, thereby limiting 
the efficiency of transport operators.

A hybrid deep learning model was developed and validated to predict daily passenger flows with high accuracy (R2 =  0.91).  
The findings significantly outperform the baseline models and approaches described in scientific sources. This performance is attributed 
to a sophisticated strategy combining advanced feature engineering. This included the use of cyclic, lagged, and moving average features. 
This approach was paired with residual modelling, enabling the neural network to capture complex non-linear deviations. Furthermore, 
robust data preparation methods enhanced the model’s high generalization capabilities.

The findings demonstrate that the proposed hybrid approach is an effective tool for operational planning. The results of the neural 
network work facilitate the optimization of the distribution of rolling stock allocation and improve resource utilization. Consequently, 
it enhances passenger comfort, contributing to the sustainable development of urban mobility. For practical applications, the model 
requires reliable historical passenger flow data. It enables operators to mitigate economic losses from underutilized vehicles and prevent 
overcrowding on high-demand days.
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1. Introduction

The challenge of rapid urbanization creates several significant 
problems in the field of urban passenger transport, which, in turn, also 
lead to increased congestion, higher emissions of carbon compounds 
and a general decline in quality of life [1, 2]. Sustainable urban develop-
ment is intended to address these issues by creating an efficient, reliable 
and convenient public transport system, in which electric transport 
plays a key role  [3, 4]. In the paradigm of sustainable development, 
electric transport is recognized as an alternative to private vehicles 
powered by hydrocarbon fuels.

The efficiency of electric transport during operation is directly 
determined by the relationship between the supply of services and 
passenger demand. An imbalance between them results in overcrowded 
vehicles during peak hours and economic inefficiency due to under-
utilized vehicles during off-peak hours [5, 6]. This negatively impacts 
the quality of transport services, passenger comfort and urban life. 
Therefore, the problem of accurately forecasting passenger demand is 
becoming increasingly pressing for building modern intelligent trans-
port systems in line with the smart city concept.

Studies  [7, 8] demonstrate that traditional statistical approaches, 
such as ARIMA, effectively model linear trends and seasonality in traffic 
flow forecasting [9]. However, forecasting the nonlinear and stochastic 
nature of passenger demand remains an unresolved issue. This is due 

to the models’ fundamental inability to capture complex , nonlinear 
dependencies influenced by external factors. Machine learning models 
present a viable option for overcoming these limitations.

In [10], LSTM and GRU deep learning architectures were success-
fully applied to traffic flow forecasting. However, as [11] point out in 
their large-scale study, for many time series tasks, ensemble methods, 
such as XGBoost, can achieve comparable or even better results with 
lower computational costs and greater interpretability. This gives rise 
to a discussion about the feasibility of using complex neural network 
architectures [12, 13].

On the other hand, research [14, 15] shows that LSTM networks are  
a powerful tool for traffic flow forecasting, since they are able to learn long-
term dependencies. This approach was developed in works where various 
LSTM-based architectures were used for passenger flow analysis [16, 17]. 
Hybrid models have been proposed to address this problem [18, 19], as 
standard recurrent networks by their nature process data sequentially. 
In [20], the issues of effectively considering spatial dependencies and ex-
ternal factors remained unresolved. In [21], neuro-fuzzy networks were 
proposed for forecasting, which is also a promising direction. However, 
the integration of additional modules, such as attention mechanisms [22] 
or convolutional blocks, often leads to a significant complication of the 
model and an increase in the cost of its training and implementation.

The most modern option for overcoming spatial limitations is the 
use of graph neural networks (GNN), as described in detail in the 



INFORMATION AND CONTROL SYSTEMS:
SYSTEMS AND CONTROL PROCESSES

21TECHNOLOGY AUDIT AND PRODUCTION RESERVES — No. 5/2(85), 2025

ISSN-L 2664-9969; E-ISSN 2706-5448

review [23]. Models [24, 25] directly model the topology of the trans-
port network. However, their practical application is complicated by 
high computational complexity and the need for detailed, precisely 
structured graph data, which makes such studies extremely expensive 
for many transport operators.

All this allows to argue that there is a significant trade-off between 
the accuracy of architecturally complex models (GNN) and their re-
source requirements. On the other hand, more accessible architectures 
such as standard LSTMs, while capturing temporal patterns well [26], 
are often unable to fully overcome the noise and complex nonlineari-
ties of real-world data. It is worthwhile to conduct research dedicated 
to the development of a robust and practical model that achieves high 
accuracy not at the expense of architectural complexity, but thanks to 
advanced data preparation and modelling techniques.

The aim of this research is to develop and evaluate a hybrid deep 
learning model, which combines advanced feature engineering with  
a Bidirectional LSTM architecture and a residual modelling approach, 
to accurately forecast daily passenger flows in urban electric transport. 
The practical application of this model will provide transport operators 
and city authorities with an effective data-driven tool for operational 
planning. This enables optimized rolling stock allocation, improving 
economic efficiency and the passenger experience. It therefore boosts 
the transport system’s attractiveness and reliability, a vital smart city 
objective. The methodology [27] in substantiates this, linking the suc-
cess of new transport technologies to public perception.

To achieve this aim, it is necessary to complete the following ob-
jectives:

1.	 To develop a hybrid deep learning architecture, utilising a Bi-
LSTM structure and a residual modelling approach.

2.	 To design and implement an advanced feature engineering pro-
cess to enrich the input data.

3.	 To rigorously evaluate the developed model’s performance on  
a realistic dataset.

2. Materials and Methods

The object of research is a hybrid deep learning model for passenger 
flow forecasting. This process is treated as a complex stochastic time 
series, characterized by fluctuations, patterns, and a temporal structure 
with complex, non-linear dependencies. Its functioning is influenced 
by a combination of temporal (day of the week, seasonality), and spa-
tial  (the route network), all examined within the context of the smart 
city and sustainable development concepts.

The demand data for electric vehicles is tem-
poral in nature with pronounced weekly season-
ality, making LSTM networks an excellent can-
didate for modeling.

The methodology for this study is founded 
upon a comprehensive strategy, integrating ad-
vanced data preparation with a sophisticated 
deep learning architecture and a robust training 
process. This approach was structured around 
three key areas: extensive feature engineering (in-
cluding Advanced Feature Engineering), a hybrid 
residual modelling architecture (Residual Model 
and Bi-LSTM Layers), and an optimized learn-
ing process.

A critical component of the methodology 
was advanced feature engineering to provide 
the model with a rich contextual understanding 
of the time-series data. To capture the inherent  
cyclicality of temporal data, features such as the 
day of the week, day of the month, and month 
of the year were transformed into two-dimen-

sional representations using sine and cosine functions. This allows 
the model to understand the proximity of sequential periods, such as 
Sunday to Monday.

To model short-term autocorrelation, lagged features were created, 
notably Pass_Flow_Lag1 (previous day) and Pass_Flow_Lag7 (same day 
last week), with the latter serving as a strong baseline for the forecast. 
Furthermore, to provide the model with a sense of local trends, moving 
averages over a 7-day window and an Exponentially Weighted Moving 
Average (EWM) with a smoothing parameter α = 0.3 were introduced. 
All temporal features were carefully grouped by route to prevent data 
leakage between distinct transport lines. A seasonal feature indicating 
the quarter of the year was also included.

This rich feature set was then utilized within a hybrid residual 
modelling framework. Rather than tasking the network with predict-
ing the absolute passenger flow, a residual modelling approach was 
adopted. The model was trained to predict only the residual – the 
difference between the actual passenger flow and the baseline forecast 
provided by the 7-day lag feature. This significantly simplifies the learn-
ing task, allowing the model to focus its capacity on capturing complex, 
non-linear deviations.

The core of the architecture is a stack of two bidirectional LSTM (Bi-
LSTM) layers. Unlike a standard LSTM which processes data chrono-
logically, a Bi-LSTM analyses the sequence in both forward and re-
verse directions. This provides each time step with a richer context 
derived from both past and future points within the input sequence, 
significantly improving the model’s ability to capture intricate patterns.

The specific model architecture is as follows (Fig. 1). It begins with 
an input layer configured for sequences of 7 time steps with 28 features 
each. The first Bi-LSTM layer contains 128  neurons and is set with 
return_sequences  = True to pass its full output sequence to the next 
layer. This is followed by a second Bi-LSTM layer with 64 neurons, 
which compresses the information and outputs only the final hidden 
state (return_sequences = False). To prevent overfitting, dropout layers 
with a rate of 0.3 are applied after each Bi-LSTM layer. The architecture 
concludes with an intermediate dense layer of 32 neurons and a final 
dense output layer with a single neuron and a linear activation function 
to produce the unconstrained regression forecast. The Rectified Linear 
Unit (ReLU) activation function is used throughout the hidden layers.

The model was trained using the Adam optimizer with an initial 
learning rate of 0.001. To ensure robust convergence and prevent overfit-
ting, a dynamic learning process was established. A ReduceLROnPlateau 
callback was implemented to automatically decrease the learning rate if 
the validation loss (val_loss) did not improve for 7 consecutive epochs.

 Fig. 1. Architecture of the developed LSTM network
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Furthermore, an EarlyStopping callback was used to halt the 
training process if the validation loss failed to improve for 30 epochs, 
thereby ensuring the model’s best-performing state was retained. The 
model was trained with a maximum of 150 epochs and a batch_size 
of 64. This combination of a powerful architecture, a sophisticated 
modelling strategy, and an adaptive learning process was instrumental 
in achieving the high accuracy reported in this study.

3. Results and Discussion

3.1. Dataset analysis and pre-processing
The results of an initial inspection of the dataset structure indicate 

that it contains 1638 records, the data type of which was integer (int64), 
except for the number of races (Race_Count), which was a real float-
ing-point number (float64). Route_ID was from 1 to 18, which cor-
responds to the expected number of routes. WeekDay_ID was in the 
range from 1 (Monday) to 7 (Sunday). The first 5 rows of data are given 
in Table 1. The statistical description of the numeric columns is given 
in Table 2. Race_Count and Pass_Flow have a very wide range of values, 
indicating a significant difference between routes.

During anomaly detection and data cleaning , it is possible to 
found rows with an abnormally high Pass_Flow > 20000 value, which 
was 59385. Since the passenger flow on this route usually fluctuates in 
the range of 7000–8000.

The value of 59385 is an obvious outlier. So, to correctly train 
the model, such anomalies were corrected by replacing them with 
the average value for this route on this day of the week . In real 
projects  [28,  29], the strategy for handling outliers can be more 
complex (removal, median replacement , use of models resistant 
to outliers), but replacing with the average value is a reasonable 
compromise [30, 31].

Fig. 2, a shows visualized data on the average passenger flow per 
day on each route to better understand the existing dependencies. 
As can be seen from Fig.  2,  a, the routes are very uneven in terms 
of traffic. Routes 7, 17, 2, 3, 4 are the leaders, then 13, 8, 18, 10 are 
the least busy. This is critically important for the model, after which 
it is necessary to learn to distinguish the dynamics of each route.  
Fig.  2,  b shows the dependence of passenger traffic on the day of 
the week , which indicates the tendency that passenger traffic is sig-
nificantly higher on weekdays (1–5) and drops sharply on week-

ends  (6–7). This is a key feature that the developed 
model should learn.

Fig. 3, a shows a visualization of the dynamics of 
passenger traffic over time for several typical routes, 
for example, with medium, high and low traffic load, 
respectively (1, 7, 13).

The graphs in Fig.  3,  a clearly show the weekly 
cyclicality (peaks on weekdays, declines on weekends) 
for each route. Route 7 (the most popular) has sig-
nificantly higher passenger traffic than route 1, and 
route 13 has the lowest. This confirms that the model  
should consider Route_ID as one of the most impor-
tant features. Fig.  3,  b visualizes the correlation  be-
tween the number of races and passenger traffic in 
the form of a correlation matrix . The correlation be-
tween Race_Count and Pass_Flow is 0.83 (Fig.  3,  b). 
This is a strong positive relationship: the more races 
are operated on a route, the greater the passenger flow 
it carries, which makes Race_Count a very important 
input feature. Thus, the data has a clear structure and 
strong dependencies, the key influencing factors are 
Route_ID, WeekDay_ID, Race_Count. The data is tem-
poral in nature with pronounced weekly seasonality, 
which makes LSTM networks an excellent candidate 
for modelling. However, the data requires scaling due 
to the large difference in values between different fea-
tures and routes.

Table 1

View of the studied dataset (First 5 rows of data)

ID Day_ID Month_ID WeekDay_ID Route_ID Race_Count Pass_Flow

0 1 9 7 1 57.5 3799

1 2 9 1 1 61.5 4852

2 3 9 2 1 61.0 4518

3 4 9 3 1 58.0 4137

4 5 9 4 1 62.5 4612

Table 2

Statistical description of numeric columns

ID Day_ID Month_ID WeekDay_ID Route_ID Race_Count Pass_Flow

count 1638.00 1638.00 1638.00 1638.00 1638.00 1638.00

mean 15.67 10.00 4.00 9.50 66.79 4990.88

std 8.76 0.81 2.00 5.18 29.53 3819.66

min 1.00 9.00 1.00 1.00 0.00 0.00

25% 8.00 9.00 2.00 5.00 52.00 2622.50

50% 16.00 10.00 4.00 9.50 64.00 4038.50

75% 23.00 11.00 6.00 14.00 82.00 7134.75

Max 31.00 11.00 7.00 18.00 136.50 59385.00

 
a b

Fig. 2. Dependence of average passenger flow: a – by routes; b – by weekdays
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Since the LSTM model requires data in a specif ic format: 
[number_of_samples, number_of_time_steps, number_of_features], 
sequences were created where the model looked at data for N previ-
ous days to predict the (N + 1) day. To train the features, the One-
Hot Encoding method was used for categorical features: Month_ID, 
WeekDay_ID, Route_ID. This allowed the model to perceive these 
features not as ordinal, but as separate categories. Neural networks 
work better with data scaled in the range [0, 1], so separate scalers 
were created for the features and the target variable (MinMaxScaler). 
To create time sequences, the create_sequences function was used, 
which transformed the flat data set into sequences for the LSTM 
model. The data is split into training and testing in a ratio of 70/30 
for each route and this is a key requirement. For each unique route 
and the data was selected only for the current route, determining the 
split point (70%). At the final stage of data splitting , the indices were 
split , and the data was added to the corresponding lists, which were 
combined into a single data frame. Only after this did the process of 
training scalers on the training data and transforming both sets take 
place. When forming the final sequences, data from the last week 
was used for prediction, and sequences were created for the training 
set and the test set.

3.2. Model performance and results interpretation
The efficient and popular Adam optimization algorithm was used 

to compile the model, as well as the Mean Squared Error (MSE) – 
a  loss function that is best suited for regression problems. EarlyStop-
ping was added to automatically stop training if the quality on the 
validation set did not improve within a certain number of epochs. 
Model training was limited to a maximum number of epochs of 150, 
the number of samples processed in one 
step (batch_size) was 64, and the train-
ing progress was displayed for each 
epoch. During the visualization of the 
learning process, losses on the training 
set and losses on the test (validation) set 
were monitored (Fig. 4).

During the forecasting on the test 
data, the forecast was returned to the 
original scale. Visualization of the results 
allowed comparing the actual values with 
the forecasted ones (Fig. 5). When assess-
ing the quality of the model using metrics, 
the Root Mean Squared Error (RMSE), 
Mean Absolute Error  (MAE) and R² 
score indicators were used. A robust 
version of the model was obtained with 
the following results: RMSE = 1050.73, 

MAE  =  656.36, R2  =  0.91. The model is wrong by 1050.73  passen-
gers  (RMSE), the absolute average error is 656.36 passengers (MAE), 
and the model also explains approximately 91% of the data variability.

The developed LSTM model demonstrates a good ability to fore-
cast passenger traffic. It successfully captures the main dependencies, 
such as weekly cyclicality and differences between routes. The R2 
score (0.91) shows that the model explains a significant part of the vari-
ability of the data. This high accuracy is explained by a comprehensive 
development strategy. The key to this success was the use of a residuals 
model. Instead of forecasting the entire passenger flow from scratch, the 
model learned to predict only the error (residual) of a simple baseline. 
This significantly simplified the task for the neural network, allowing it 
to focus on complex, nonlinear deviations.

a b

 
Fig. 3. Visualization of the passenger flow dynamics: a – for each route; b – correlation matrix between the number of races and passenger flow

 
Fig. 5. Comparison of actual and predicted values on the test set

 
Fig. 4. Loss graph during model training
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Additionally, significant improvements were made through ad-
vanced feature engineering. The extraction of cyclical and lag features 
gave the model more context, helping it sees not only what happened 
yesterday (Lag ) but also how the current day fits into weekly, monthly, 
and annual cycles. Features based on exponential smoothing and mov-
ing averages were also added to help our model understand short-term 
and medium-term trends. Adaptive learning with optimization of the 
process and an increased model capacity allowed for the effective use of 
these new features to achieve higher prediction accuracy.

3.3. Contextualizing the contribution: a discussion of findings, 
implications, and limitations

The developed Bi-LSTM model has much higher performance due 
to Bi-LSTM layers allow for a much deeper analysis of patterns within 
the weekly sequence. However, this may not be enough if not enough 
attention is paid to preparing the data for the model, carrying out seri-
ous work on the features, and thoroughly working on dividing the data 
into training and test sets.

The use of exponential smoothing as a feature engineering tech-
nique is a crucial distinction. While smoothing the target variable 
Pass_Flow would make the model learn an ideal curve, it would fail on 
real, noisy data. Instead, creating smoothed versions of Pass_Flow as 
new input features, as was done in this study, provides the model with 
trend information without losing critical details about daily peaks and 
fluctuations.

The implementation of a method where sequences are created only 
from continuous blocks of data (gold standard) is a significant method-
ological advantage. It ensures that the model never sees an artificially 
glued sequence from two different time periods, which is a potential 
flaw in simpler data preparation approaches. This robust and method-
ologically correct approach to data preparation, from scaler training to 
sequence generation, is a fundamental prerequisite for achieving the 
highest results in modelling and is often a distinguishing feature from 
studies that may overlook these nuances.

The developed deep learning model accurately forecasts next-day 
passenger flows (R2 > 0.9), providing operators with a tool for opera-
tional planning. It enables the optimization of daily rolling stock alloca-
tion to prevent underutilized services and overcrowding. This improves 
resource efficiency, service reliability, and passenger comfort, contribut-
ing to the sustainable development goals of a smart city.

The model’s primary limitation is its daily, rather than hourly, fore-
cast granularity, precluding its use for real-time service adjustments. Its 
generalizability is constrained by a dataset limited to a specific season 
and city. Furthermore, the model currently excludes external factors 
known to influence demand, such as weather and public events.

3.4. Impact of martial law conditions
This research was conducted under the conditions of martial law 

in Ukraine, which imposed challenges related to power supply disrup-
tions, difficulties in data processing and collection, limited access to 
resources, and changes in passenger behavior patterns due to curfews 
and air raid alerts. However, these circumstances do not in any way 
limit the applicability of its results; on the contrary, they make the study 
interesting and unique by taking the wartime context into account. 
The developed model is representative for forecasting demand both 
in the unique circumstances of war and in stable, peaceful conditions.

3.5. Prospects for further research
Further research should be aimed at overcoming the identified 

limitations by transitioning to hourly forecasting using automatic pas-
senger counting data and integrating external factors like weather and 
public events. Model enhancements should involve systematic hyper-
parameter tuning, exploring alternative architectures such as GRU, 
and incorporating attention mechanisms. Finally, research into more 

complex architectures could allow for the modelling of spatial relation-
ships between all routes simultaneously, bringing the system closer to 
a  full-fledged digital twin of the city’s transport network.

4. Conclusions

1.	 A hybrid deep learning architecture was successfully devel-
oped, integrating two Bidirectional LSTM layers with a residual fore-
casting methodology. The architecture proved highly effective, as the 
model was not required to predict the absolute passenger flow but 
rather the deviation from a reliable baseline, simplifying the learning 
task . This structure, combined with adaptive learning rate optimiza-
tion (ReduceLROnPlateau), formed a robust framework for the fore-
casting task .

2.	 An advanced feature engineering process was designed and 
implemented, which was critical to the model’s success. By transform-
ing temporal data into cyclical features (sine/cosine) and creating lagged 
and exponentially smoothed moving average features, the model was 
provided with a rich, multi-dimensional context. This allowed it to dis-
cern not only immediate day-to-day dependencies but also underlying 
weekly and seasonal trends.

3.	 The final model was evaluated on a constructed realistic dataset 
and demonstrated high predictive accuracy. The key performance met-
rics were excellent: R2 Score of 0.91 indicates that the model explains 
91% of the data’s variability. These results validate the model as a highly 
effective and reliable tool for next-day operational planning in urban 
transport both in the unique circumstances of war and in stable, peace-
ful conditions.
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