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DEVELOPMENT OF A NEURAL
NETWORK FOR FORECASTING
PASSENGER FLOWS IN SMART CITY
PUBLIC ELECTRIC TRANSPORT

The research object is a hybrid deep learning model for passenger flow forecasting. These passenger flows constitute complex time
series, influenced by a combination of temporal, spatial, and operational factors. The study addresses the fundamental mismatch between
stochastic passenger demand and the static supply of transport services. This disparity results in operational inefficiency and a reduced
quality of service for passengers. A lack of accurate forecasting tools hinders the optimal daily allocation of rolling stock, thereby limiting
the efficiency of transport operators.

A hybrid deep learning model was developed and validated to predict daily passenger flows with high accuracy (R? = 0.91).
The findings significantly outperform the baseline models and approaches described in scientific sources. This performance is attributed
to a sophisticated strategy combining advanced feature engineering. This included the use of cyclic, lagged, and moving average features.
This approach was paired with residual modelling, enabling the neural network to capture complex non-linear deviations. Furthermore,
robust data preparation methods enhanced the model’s high generalization capabilities.

The findings demonstrate that the proposed hybrid approach is an effective tool for operational planning. The results of the neural
network work facilitate the optimization of the distribution of rolling stock allocation and improve resource utilization. Consequently,
it enhances passenger comfort, contributing to the sustainable development of urban mobility. For practical applications, the model
requires reliable historical passenger flow data. It enables operators to mitigate economic losses from underutilized vehicles and prevent
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overcrowding on high-demand days.
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1. Introduction

The challenge of rapid urbanization creates several significant
problems in the field of urban passenger transport, which, in turn, also
lead to increased congestion, higher emissions of carbon compounds
and a general decline in quality of life [1, 2]. Sustainable urban develop-
ment is intended to address these issues by creating an efficient, reliable
and convenient public transport system, in which electric transport
plays a key role [3, 4]. In the paradigm of sustainable development,
electric transport is recognized as an alternative to private vehicles
powered by hydrocarbon fuels.

The efficiency of electric transport during operation is directly
determined by the relationship between the supply of services and
passenger demand. An imbalance between them results in overcrowded
vehicles during peak hours and economic inefficiency due to under-
utilized vehicles during off-peak hours [5, 6]. This negatively impacts
the quality of transport services, passenger comfort and urban life.
Therefore, the problem of accurately forecasting passenger demand is
becoming increasingly pressing for building modern intelligent trans-
port systems in line with the smart city concept.

Studies [7, 8] demonstrate that traditional statistical approaches,
such as ARIMA, effectively model linear trends and seasonality in traffic
flow forecasting [9]. However, forecasting the nonlinear and stochastic
nature of passenger demand remains an unresolved issue. This is due

to the models” fundamental inability to capture complex, nonlinear
dependencies influenced by external factors. Machine learning models
present a viable option for overcoming these limitations.

In [10], LSTM and GRU deep learning architectures were success-
fully applied to traffic flow forecasting. However, as [11] point out in
their large-scale study, for many time series tasks, ensemble methods,
such as XGBoost, can achieve comparable or even better results with
lower computational costs and greater interpretability. This gives rise
to a discussion about the feasibility of using complex neural network
architectures [12, 13].

On the other hand, research [14, 15] shows that LSTM networks are
a powerful tool for traffic flow forecasting, since they are able to learn long-
term dependencies. This approach was developed in works where various
LSTM-based architectures were used for passenger flow analysis [16, 17].
Hybrid models have been proposed to address this problem [18, 19], as
standard recurrent networks by their nature process data sequentially.
In [20], the issues of effectively considering spatial dependencies and ex-
ternal factors remained unresolved. In [21], neuro-fuzzy networks were
proposed for forecasting, which is also a promising direction. However,
the integration of additional modules, such as attention mechanisms [22]
or convolutional blocks, often leads to a significant complication of the
model and an increase in the cost of its training and implementation.

The most modern option for overcoming spatial limitations is the
use of graph neural networks (GNN), as described in detail in the
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review [23]. Models [24, 25] directly model the topology of the trans-
port network. However, their practical application is complicated by
high computational complexity and the need for detailed, precisely
structured graph data, which makes such studies extremely expensive
for many transport operators.

All this allows to argue that there is a significant trade-off between
the accuracy of architecturally complex models (GNN) and their re-
source requirements. On the other hand, more accessible architectures
such as standard LSTMs, while capturing temporal patterns well [26],
are often unable to fully overcome the noise and complex nonlineari-
ties of real-world data. It is worthwhile to conduct research dedicated
to the development of a robust and practical model that achieves high
accuracy not at the expense of architectural complexity, but thanks to
advanced data preparation and modelling techniques.

The aim of this research is to develop and evaluate a hybrid deep
learning model, which combines advanced feature engineering with
a Bidirectional LSTM architecture and a residual modelling approach,
to accurately forecast daily passenger flows in urban electric transport.
The practical application of this model will provide transport operators
and city authorities with an effective data-driven tool for operational
planning. This enables optimized rolling stock allocation, improving
economic efficiency and the passenger experience. It therefore boosts
the transport systems attractiveness and reliability, a vital smart city
objective. The methodology [27] in substantiates this, linking the suc-
cess of new transport technologies to public perception.

To achieve this aim, it is necessary to complete the following ob-
jectives:

1. To develop a hybrid deep learning architecture, utilising a Bi-
LSTM structure and a residual modelling approach.

2. To design and implement an advanced feature engineering pro-
cess to enrich the input data.

3. To rigorously evaluate the developed model’s performance on
a realistic dataset.

2. Materials and Methods

The object of research is a hybrid deep learning model for passenger
flow forecasting. This process is treated as a complex stochastic time
series, characterized by fluctuations, patterns, and a temporal structure
with complex, non-linear dependencies. Its functioning is influenced
by a combination of temporal (day of the week, seasonality), and spa-
tial (the route network), all examined within the context of the smart
city and sustainable development concepts.

The demand data for electric vehicles is tem-
poral in nature with pronounced weekly season-
ality, making LSTM networks an excellent can-

didate for modeling. Input shape: (None, 7, 28)

bidirectional_6 (Bidirectional)

sional representations using sine and cosine functions. This allows
the model to understand the proximity of sequential periods, such as
Sunday to Monday.

To model short-term autocorrelation, lagged features were created,
notably Pass_Flow_Lag! (previous day) and Pass_Flow_Lag7 (same day
last week), with the latter serving as a strong baseline for the forecast.
Furthermore, to provide the model with a sense of local trends, moving
averages over a 7-day window and an Exponentially Weighted Moving
Average (EWM) with a smoothing parameter o = 0.3 were introduced.
All temporal features were carefully grouped by route to prevent data
leakage between distinct transport lines. A seasonal feature indicating
the quarter of the year was also included.

This rich feature set was then utilized within a hybrid residual
modelling framework. Rather than tasking the network with predict-
ing the absolute passenger flow, a residual modelling approach was
adopted. The model was trained to predict only the residual - the
difference between the actual passenger flow and the baseline forecast
provided by the 7-day lag feature. This significantly simplifies the learn-
ing task, allowing the model to focus its capacity on capturing complex,
non-linear deviations.

The core of the architecture is a stack of two bidirectional LSTM (Bi-
LSTM) layers. Unlike a standard LSTM which processes data chrono-
logically, a Bi-LSTM analyses the sequence in both forward and re-
verse directions. This provides each time step with a richer context
derived from both past and future points within the input sequence,
significantly improving the models ability to capture intricate patterns.

The specific model architecture is as follows (Fig. 1). It begins with
an input layer configured for sequences of 7 time steps with 28 features
each. The first Bi-LSTM layer contains 128 neurons and is set with
return_sequences = True to pass its full output sequence to the next
layer. This is followed by a second Bi-LSTM layer with 64 neurons,
which compresses the information and outputs only the final hidden
state (return_sequences = False). To prevent overfitting, dropout layers
with a rate of 0.3 are applied after each Bi-LSTM layer. The architecture
concludes with an intermediate dense layer of 32 neurons and a final
dense output layer with a single neuron and a linear activation function
to produce the unconstrained regression forecast. The Rectified Linear
Unit (ReLU) activation function is used throughout the hidden layers.

The model was trained using the Adam optimizer with an initial
learning rate of 0.001. To ensure robust convergence and prevent overfit-
ting, a dynamic learning process was established. A ReduceL ROnPlateau
callback was implemented to automatically decrease the learning rate if
the validation loss (val_loss) did not improve for 7 consecutive epochs.

Output shape: (None, 7, 256)

The methodology for this study is founded
upon a comprehensive strategy, integrating ad-
vanced data preparation with a sophisticated

deep learning architecture and a robust training Input shape: (None, 7, 256)

dropout_6 (Dropout)

bidirectional_8 (Bidirectional)

Input shape: (None, 7,128) | Output shape: (None, 64)

Output shape: (None, 7, 256)

process. This approach was structured around
three key areas: extensive feature engineering (in-
cluding Advanced Feature Engineering), a hybrid

residual modelling architecture (Residual Model Input shape: (None, 7, 256)

bidirectional_7 (Bidirectional)

dropout_8 (Dropout)

Input shape: (None, 64) | Output shape: (None, 64)

Output shape: (None, 7, 128)

and Bi-LSTM Layers), and an optimized learn-
ing process.
A critical component of the methodology

was advanced feature engineering to provide
Input shape: (None, 7, 128)

dropout_7 (Dropout)

dense_4 (Dense)

Input shape: (None, 64) | Output shape: (None, 32)

Output shape: (None, 7, 128)

the model with a rich contextual understanding
of the time-series data. To capture the inherent
cyclicality of temporal data, features such as the
day of the week, day of the month, and month
of the year were transformed into two-dimen-

dense_5 (Dense)

Input shape: (None, 32)

Output shape: (None, 1)

Fig. 1. Architecture of the developed LSTM network
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Furthermore, an EarlyStopping callback was used to halt the
training process if the validation loss failed to improve for 30 epochs,
thereby ensuring the model’s best-performing state was retained. The
model was trained with a maximum of 150 epochs and a batch_size
of 64. This combination of a powerful architecture, a sophisticated
modelling strategy, and an adaptive learning process was instrumental
in achieving the high accuracy reported in this study.

3. Results and Discussion

3.1. Dataset analysis and pre-processing

The results of an initial inspection of the dataset structure indicate
that it contains 1638 records, the data type of which was integer (int64),
except for the number of races (Race_Count), which was a real float-
ing-point number (float64). Route_ID was from 1 to 18, which cor-
responds to the expected number of routes. WeekDay_ID was in the
range from 1 (Monday) to 7 (Sunday). The first 5 rows of data are given
in Table 1. The statistical description of the numeric columns is given
in Table 2. Race_Count and Pass_Flow have a very wide range of values,
indicating a significant difference between routes.

During anomaly detection and data cleaning, it is possible to
found rows with an abnormally high Pass_Flow > 20000 value, which
was 59385. Since the passenger flow on this route usually fluctuates in
the range of 7000-8000.

The value of 59385 is an obvious outlier. So, to correctly train
the model, such anomalies were corrected by replacing them with
the average value for this route on this day of the week. In real
projects [28, 29], the strategy for handling outliers can be more
complex (removal, median replacement, use of models resistant
to outliers), but replacing with the average value is a reasonable
compromise [30, 31].

Fig. 2, a shows visualized data on the average passenger flow per
day on each route to better understand the existing dependencies.
As can be seen from Fig. 2, a, the routes are very uneven in terms
of traffic. Routes 7, 17, 2, 3, 4 are the leaders, then 13, 8, 18, 10 are
the least busy. This is critically important for the model, after which
it is necessary to learn to distinguish the dynamics of each route.
Fig. 2, b shows the dependence of passenger traffic on the day of
the week, which indicates the tendency that passenger traffic is sig-
nificantly higher on weekdays (1-5) and drops sharply on week-

ends (6-7). This is a key feature that the developed

Table 1
model should learn.
View of the studied dataset (First 5 rows of data) . T .
Fig. 3, a shows a visualization of the dynamics of
ID | Day_ID | Month_ID | WeekDay ID | Route ID | Race_Count | Pass_Flow passenger traffic over time for several typical routes,
5 ! P = ] prp 3799 for example, with medium, high and low traffic load,
respectively (1,7, 13).
1 2 9 1 1 615 4852 The graphs in Fig. 3, a clearly show the weekly
2 3 9 2 1 61.0 4518 cyclicality (peaks on weekdays, declines on weekends)
for each route. Route 7 (the most popular) has sig-
3 4 9 3 1 58.0 4137 . .
nificantly higher passenger traffic than route 1, and
4 5 9 4 1 62.5 4612 route 13 has the lowest. This confirms that the model
should consider Route_ID as one of the most impor-
Table 2 tant features. Fig. 3, b visualizes the correlation be-
Statistical description of numeric columns tween the number of races and passenger traffic in
1D Day_ID | Month_ID | WeekDay ID | Route ID | Race_Count | Pass_Flow the form of a correlation matrix. Tbe Corrda,tlon be-
tween Race_Count and Pass_Flow is 0.83 (Fig. 3, b).
count | 1638.00 1638.00 1638.00 1638.00 1638.00 1638.00 This is a strong positive relationship: the more races
mean | 15.67 10.00 400 9.50 66.79 4990.88 are operated on a route, the greater the passenger flow
1 278 081 500 18 953 819,68 it carries, which makes Race_Count a very important
* ’ : ’ i i : input feature. Thus, the data has a clear structure and
min 1.00 9.00 1.00 1.00 0.00 0.00 strong dependencies, the key influencing factors are
25% 3.00 9.00 2.00 5.00 52.00 2622.50 Route_ID, WeekDay_ID, Race_Count. The data is tem-
- poral in nature with pronounced weekly seasonality,
50% 16.00 10.00 400 9-50 64.00 4038.50 which makes LSTM networks an excellent candidate
75% | 23.00 11.00 6.00 14.00 82.00 7134.75 for modelling. However, the data requires scaling due
Max 3100 11,00 .00 18.00 136.50 59385.00 to the large difference in values between different fea-
tures and routes.
14000
6500 4
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Fig. 2. Dependence of average passenger flow: 2 — by routes; 4 — by weekdays
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Fig. 3. Visualization of the passenger flow dynamics: 4 — for each route; & — correlation matrix between the number of races and passenger flow

Since the LSTM model requires data in a specific format:
[number_of_samples, number_of_time_steps, number_of_features],
sequences were created where the model looked at data for N previ-
ous days to predict the (N + 1) day. To train the features, the One-
Hot Encoding method was used for categorical features: Month_ID,
WeekDay_ID, Route_ID. This allowed the model to perceive these
features not as ordinal, but as separate categories. Neural networks
work better with data scaled in the range [0, 1], so separate scalers
were created for the features and the target variable (MinMaxScaler).
To create time sequences, the create_sequences function was used,
which transformed the flat data set into sequences for the LSTM
model. The data is split into training and testing in a ratio of 70/30
for each route and this is a key requirement. For each unique route
and the data was selected only for the current route, determining the
split point (70%). At the final stage of data splitting, the indices were

MAE = 65636, R? = 0.91. The model is wrong by 1050.73 passen-
gers (RMSE), the absolute average error is 656.36 passengers (MAE),
and the model also explains approximately 91% of the data variability.

The developed LSTM model demonstrates a good ability to fore-
cast passenger traffic. It successfully captures the main dependencies,
such as weekly cyclicality and differences between routes. The R?
score (0.91) shows that the model explains a significant part of the vari-
ability of the data. This high accuracy is explained by a comprehensive
development strategy. The key to this success was the use of a residuals
model. Instead of forecasting the entire passenger flow from scratch, the
model learned to predict only the error (residual) of a simple baseline.
This significantly simplified the task for the neural network, allowing it
to focus on complex, nonlinear deviations.

split, and the data was added to the corresponding lists, which were 0:002207 : ::DSSES on ie tmitnm:l;etﬁ .
combined into a single data frame. Only after this did the process of 0.00200 1 osses on the test (validation) se
training scalers on the training data and transforming both sets take 0.00175 4
place. When forming the final sequences, data from the last week & 000150 1
was used for prediction, and sequences were created for the training S ’
set and the test set. o 001237
g 0.00100 1

3.2. Model performance and results interpretation 0.00075 |

The efficient and popular Adam optimization algorithm was used
to compile the model, as well as the Mean Squared Error (MSE) — 000050 1
a loss function that is best suited for regression problems. EarlyStop- 0.00025
ping was added to automatically stop training if the quality on the 0 5 10 15 20 25 30
validation set did not improve within a certain number of epochs. Epoch
Model training was limited to a maximum number of epochs of 150, Fig. 4. Loss graph during model training
the number of samples processed in one
step (batch_size) was 64, and the train- - «  Actual passenger flow
ing progress was displayed for each 15000 4 Predicted passenger flow
epoch. During the visualization of the
learning process, losses on the training 12500 4
setand losses on the test (validation) set =
were monitored (Fig. 4). = 10000

During the forecasting on the test b
data, the forecast was returned to the g 7500
original scale. Visualization of the results &
allowed comparing the actual values with &£ 5000
the forecasted ones (Fig. 5). When assess-
ing the quality of the model using metrics, 2001
the Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE) and R? o

score indicators were used. A robust 0 20
version of the model was obtained with
the following results: RMSE = 1050.73,

40 60 80 100

Observation index in test set

Fig. 5. Comparison of actual and predicted values on the test set
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Additionally, significant improvements were made through ad-
vanced feature engineering. The extraction of cyclical and lag features
gave the model more context, helping it sees not only what happened
yesterday (Lag) but also how the current day fits into weekly, monthly,
and annual cycles. Features based on exponential smoothing and mov-
ing averages were also added to help our model understand short-term
and medium-term trends. Adaptive learning with optimization of the
process and an increased model capacity allowed for the effective use of
these new features to achieve higher prediction accuracy.

3.3. Contextualizing the contribution: a discussion of findings,
implications, and limitations

The developed Bi-LSTM model has much higher performance due
to Bi-LSTM layers allow for a much deeper analysis of patterns within
the weekly sequence. However, this may not be enough if not enough
attention is paid to preparing the data for the model, carrying out seri-
ous work on the features, and thoroughly working on dividing the data
into training and test sets.

The use of exponential smoothing as a feature engineering tech-
nique is a crucial distinction. While smoothing the target variable
Pass_Flow would make the model learn an ideal curve, it would fail on
real, noisy data. Instead, creating smoothed versions of Pass_Flow as
new input features, as was done in this study, provides the model with
trend information without losing critical details about daily peaks and
fluctuations.

The implementation of a method where sequences are created only
from continuous blocks of data (gold standard) is a significant method-
ological advantage. It ensures that the model never sees an artificially
glued sequence from two different time periods, which is a potential
flaw in simpler data preparation approaches. This robust and method-
ologically correct approach to data preparation, from scaler training to
sequence generation, is a fundamental prerequisite for achieving the
highest results in modelling and is often a distinguishing feature from
studies that may overlook these nuances.

The developed deep learning model accurately forecasts next-day
passenger flows (R* > 0.9), providing operators with a tool for opera-
tional planning. It enables the optimization of daily rolling stock alloca-
tion to prevent underutilized services and overcrowding. This improves
resource efficiency, service reliability, and passenger comfort, contribut-
ing to the sustainable development goals of a smart city.

The model’s primary limitation is its daily, rather than hourly, fore-
cast granularity, precluding its use for real-time service adjustments. Its
generalizability is constrained by a dataset limited to a specific season
and city. Furthermore, the model currently excludes external factors
known to influence demand, such as weather and public events.

3.4. Impact of martial law conditions

This research was conducted under the conditions of martial law
in Ukraine, which imposed challenges related to power supply disrup-
tions, difficulties in data processing and collection, limited access to
resources, and changes in passenger behavior patterns due to curfews
and air raid alerts. However, these circumstances do not in any way
limit the applicability of its results; on the contrary, they make the study
interesting and unique by taking the wartime context into account.
The developed model is representative for forecasting demand both
in the unique circumstances of war and in stable, peaceful conditions.

3.5. Prospects for further research

Further research should be aimed at overcoming the identified
limitations by transitioning to hourly forecasting using automatic pas-
senger counting data and integrating external factors like weather and
public events. Model enhancements should involve systematic hyper-
parameter tuning, exploring alternative architectures such as GRU,
and incorporating attention mechanisms. Finally, research into more

complex architectures could allow for the modelling of spatial relation-
ships between all routes simultaneously, bringing the system closer to
a full-fledged digital twin of the city’s transport network.

4. Conclusions

1. A hybrid deep learning architecture was successfully devel-
oped, integrating two Bidirectional LSTM layers with a residual fore-
casting methodology. The architecture proved highly effective, as the
model was not required to predict the absolute passenger flow but
rather the deviation from a reliable baseline, simplifying the learning
task. This structure, combined with adaptive learning rate optimiza-
tion (ReduceL.ROnPlateau), formed a robust framework for the fore-
casting task.

2. An advanced feature engineering process was designed and
implemented, which was critical to the models success. By transform-
ing temporal data into cyclical features (sine/cosine) and creating lagged
and exponentially smoothed moving average features, the model was
provided with a rich, multi-dimensional context. This allowed it to dis-
cern not only immediate day-to-day dependencies but also underlying
weekly and seasonal trends.

3. The final model was evaluated on a constructed realistic dataset
and demonstrated high predictive accuracy. The key performance met-
rics were excellent: R Score of 0.91 indicates that the model explains
91% of the datas variability. These results validate the model as a highly
effective and reliable tool for next-day operational planning in urban
transport both in the unique circumstances of war and in stable, peace-
ful conditions.
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