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DEVELOPMENT OF ADAPTIVE 

RECONFIGURATION METHOD 

FOR STREAM DATA PROCESSING 

SYSTEMS USING SYSTEM METRICS

The object of research is the process of adaptive configuration changes for stream processing applications which is focused on improv-
ing specific performance properties. The absence of the generalized automated approach for dynamic reconfiguration of state-store in 
limited hardware environment is the research problem addressed in this paper. The proposed solution helps to avoid a need for manual 
application reconfiguration from engineers. The implementation is based on Kafka Streams but designed to be portable across other 
frameworks that use RocksDB as a state store. Static configuration of modern stream processing systems limits efficiency under variable 
workloads. In this study, an adaptive module is proposed that monitors system metrics in real-time and automatically updates state-
store configurations. The module performs deterministic check to derive new configuration based on predefined thresholds or utilizes  
a fine-tuned Large Language Model (LLM) to select new configuration values when decisions are vague. The method dynamically applies 
updates to the affected instance. High-load experimental results reveal the fact that adaptive executions eliminated write stalls, increased 
memtable hit ratio from 2% to 40% and block-cache hit ratio from 15% to 80%, reduced disk I/O by approximately 50%, and improved 
throughput by around 5%, at the cost of higher memory consumption. To avoid redundant adaptive updates and outlier-based bias  
a 10-minute observation frequency was selected. The approach is suitable for systems with fixed resources, state-intensive workloads 
with high key cardinality. Additionally, if covers the need for safe configuration change under operational constraints. The architecture 
is framework agnostic for the RocksDB-based based stream processing with state stores.
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1. Introduction

Stream processing is state-of-the art technology for the real-time 
applications that should be both resilient and efficient under vary-
ing workloads. Stream processing frameworks such as Flink, Spark, 
and Kafka Streams are popular across communities, specifically be-
cause they provide low-latency data handling and stateful operations 
across large-scale infrastructures  [1]. Such systems rely on different 
architecture principles and methods to guarantee fault tolerance. Fault-
tolerance itself can be achieved in various ways for different stream 
processing frameworks. Mainly, majority of frameworks utilize storage 
in order to achieve join, grouping, counting and other state-related 
operations. Furthermore, storage is used for restore actions if the ap-
plication fails and needs to be restarted again. For instance, Apache 
Flink framework, uses checkpointing strategy based on storing check-
points on a disk to restore data in case of failure [2]. Other lightweight 
frameworks are popular across the community as well. For example, 
Kafka Streams is used for variety of tasks, including event a migration 
task [3]. To implement fault tolerance, it applies a different mechanism 
that integrates with Apache Kafka’s internal architecture and storage [4]. 
Kafka Streams leverages local disk state stores backed by changelog 
topics, in contrast to external checkpoints approach. These changelog 
topics capture every modification to the state store, allowing the ap-
plication to reconstruct its state after a failure by replaying the changes 
from Kafka itself. The state store is essentially a local disk or memory 

storage that saves aggregation, latest values and meta data. This design 
is particularly useful applications where lightweight and embedded 
processing is desirable. Specifically, it enables fine-grained fast state re-
covery. Like most modern stream processing frameworks, for state store 
Kafka Streams utilizes a key-value local database, RocksDB [5], which 
is designed for high-performance and low-latency operations. State 
store is used for writing and reading stateful records or operations like 
groupBy, count, etc. Meaning when a stream processing app requires 
getting an element from a state store, it performs a read operations 
from the state store source. By default, stream processing frameworks 
such as Apache Flink, Spark Structured Streaming, Kafka Streams, etc. 
rely on static configuration properties. In other words, they are set by 
default and can be changed only when necessary. The properties are 
related to state stores as well, including block cache size, write buffer 
size, and compaction settings etc. While these defaults simplify deploy-
ment and avoid human involvement, a stream processing application’s 
performance may be affected by adapting the state store configurations 
for runtime variability, such as changing data rates, highly diversified 
access patterns or fluctuating resource availability. Authors in the previ-
ous research [6] have shown that dynamically changed configurations 
based on the system’s needs at the moment can significantly improve 
throughput and increase latency or recovery time of stream processing 
applications. Other research [7] has proposed a comprehensive review 
of automatic performance tuning techniques, including ML (Machine 
Learning )-based prediction, experiment-driven search, and adaptive 
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runtime controllers that improve specific aspects of stream processing. 
However, the presented solutions mainly change specific configuration 
parameters, i.  e. checkpointing intervals, operator scheduling or tied 
to a framework. To the best of our knowledge, there are no dynamic 
adaptive methods that focus on cross framework solutions. Based on 
that, it is difficult to adapt the approach for the various stream process-
ing engines. Specifically, because of the lack of portability and high 
engineering efforts. This highlights a key gap in current research: the 
lack of defined framework-agnostic layer for real-time configuration 
change, which can cover performance gains and fault-tolerance across 
DSPS (Distributed stream processing systems) platforms. Configura-
tion of state store is one of the ways achieving cross-platform solution, 
because it is used in almost all the stream processing frameworks. To 
address this gap, a series of experiments had to be performed to define 
the correlation of application performance and state store parameters. 
Based on the results, this paper presents a lightweight adaptive was 
developed that monitors key performance metrics and determines and 
adjusts state store configuration if needed. The module helps to perform 
dynamic reconfiguration and is designed to be integrated across stream 
engines that support state store.

The object of research is the process of adaptive configuration changes 
for stream processing applications which is focused on improving spe-
cific performance properties.

The aim of this research is to develop an adaptive configuration 
method for state stores in stream processing applications based on sys-
tem observability, enabling dynamic performance optimization without 
additional hardware resources. Based on that said that, several research 
gaps were identified in these areas:

1.	 To investigate how changes in state store configuration parame
ters correlate to the performance metrics (throughput, latency, disk I/O) 
of stream processing applications under various workloads.

2.	 To design, validate and evaluate a dynamically managed, re-
source-efficient state store adaptation method that operates without 
additional hardware requirements and can be applied across multiple 
stream processing frameworks.

2. Materials and Methods

2.1. Adaptive method for stream processing
The popularity of stream processing frameworks has been increas-

ing dramatically over last years. Particularly, Apache Flink , Apache 
Spark Streaming , Hazelcast Jet , and Kafka Streams popular tools 
for real-time analytics with low latency and high throughput needs.  
In spite of high popularity, the frameworks configuration is rarely the 
subject of custom tuning by the engineers, occasionally because it is 
time-consuming. There are papers presenting evidence of the fact that 
streaming systems benefit from adaptive configuration. The authors of 
Drizzle [8] present custom tuning for reducing the latency, by creation 
of custom stream processing framework that decouples processing from 
coordination intervals to keep millisecond-level latency while adapt-
ing less frequently to failures and load shifts. Other authors present  
a Khaos method [9] that automatically optimizes checkpoint intervals 
at runtime. It is done by observing the system metrics and training 
analytical models to keep recovery time and end-to-end latency within 
defined QoS constraints. Based on their results, static default configura-
tion is a not the best fit for stream processing applications. Authors in 
paper Ca-Stream [10] present adaptive approach for system state that 
dynamically configures operator placement and resources, particularly 
state store in real-time. It utilizes a model to guide dynamic elasticity 
decisions based on monitoring and adaptive assignment of operators 
to optimize latency and resource use. The work focuses on adaptivity 
at the level of resource scaling and operator placement rather than 
dynamic configuration tuning. Moreover, it is focused on the custom 
architecture which is difficult to port across different frameworks. Other 

authors [11] suggest a reinforcement learning (RL)-based approach to 
compress in-memory stream aggregates dynamically. This allows to 
reduce memory consumption. They present an adaptive manager that 
monitors the size and characteristics of stream aggregates in real time 
and decides when and how apply changes in real-time without making 
a trade-offs in terms performance or latency constraints. The general 
solution is to find a perfect balance between accuracy and memory us-
age in order to run the system efficiently. The authors present a unique 
way of application reinforcement learning stream processing changes. 
The approach performs dynamic changes to aggregates, which in turn, 
affect memory compression. However, it is the only space where adap-
tive changes happen. Additionally, the solution is oriented on a par-
ticular stream processing framework optimization problem. Authors 
of PA-SPS [12] propose an automated tuning system for DSPS across 
different objectives. The idea lays in using evolutionary algorithms for 
multiple configurations optimization, including throughput, latency, 
and general resource consumption. A huge advantage of the approach 
is a hybrid configuration tuning combining based on model training 
and online refinement. The framework performs well in dynamic load 
environment. Nevertheless, it focuses on tuning the defined set of pa-
rameters which is framework-specific, leaving an idea for contributions  
in future. Based on the research, it is clear that adaptive tuning approach 
is relevant for different frameworks and it is used by variety of projects 
in order to optimize or boost performance of stream processing. Gen-
erally, the existing methods focus on a specific parameter space and 
specific stream processing solution. Many approaches assume either 
static or stable load on a stream processing system, which is not neces-
sarily matches with production environment and specifically dynamic 
variable load. Most critically, the state store configuration is not covered 
in the existing research, which is a huge area to investigate and optimize 
for variety of frameworks. It is not completely evident how state store 
changes affect system performance under different conditions. Having 
said that, were identified several research gaps in these areas:

1.	 How specific changes to the state store configuration affect 
stream processing application performance?

2.	 How can state store adaptation be dynamically managed with-
out relying on additional hardware resources, such that the approach 
remains lightweight and portable across stream processing frameworks?

In order to address these questions, this paper suggests an adaptive 
method that monitors stream processing system metrics and applies 
reconfiguration in real time based on the metrics. The adaptive algo-
rithm includes a deterministic layer with defined thresholds for metrics 
and configuration values which is inspired by attribute-based quality 
forecasting  [13]. Specifically, the modules collect metrics, aggregates 
them over a fixed window, creates a normalized feature vector and 
performs a smart analysis of metrics. The prototype was implemented 
and tested on single stream processing framework that supports state 
store, however the approach is designed to be modular enough for use 
across different frameworks that support state store.

The research method included. Generating of synthetic events with 
dynamic unpredictable load patterns. This setup is meant to simulate 
the production environment. The method was allowing reproducibility 
and defining precise correlation between framework configuration pa-
rameters and resulting performance metrics. Analytical modeling solely 
would not completely cover the behavior of distributed state man-
agement. Therefore, metrics-driven empirical method is required to 
identify how the constrained adaptive changes affect observable system.

2.2. Experiment setup
There were conducted a series of experiments for simulating close 

to production environment that matches load of medium-size compa-
nies. The selected instruments and their versions were selected based 
on practical experience, popularity across the community and being 
open-source tools for the experiment use-cases.
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The experimental setup is an emulation of a production use stream 
processing environment using a Docker-based virtual machine con-
figuration orchestrated with Docker Compose (v2.32.4). Which is built 
on the following hardware: Apple M2 Pro chip, 10-core CPU with 
6 performance cores and 4 efficiency cores with 32  GB of RAM to 
power Docker-compose setup. Docker-based virtual machine is a great 
candidate for software which can be run across different platforms, 
which in turn a good choice for our experiment. The modern hard-
ware guarantees that observed improvements result from configuration 
adaptivity rather than raw hardware extension. Each container was 
provisioned with static resources, specifically 512  MB of RAM with 
extra 256  MB buffer, 40  GB of disk space, and a 2-core CPU. Kafka 
Streams  (v3.8.1) was used because it integrates closely with Apache 
Kafka (vcp-kafka:7.1.0-1-ubi8), supports embedded state stores, and 
is lightweight for adaptive testing. Additionally, it does not require the 
setup of the separate infrastructure for stream processing, like other 
frameworks. It can be integrated as a library to an application. RocksDB 
is a default option for Kafka Strems. It was selected as the state store 
due to its great performance, configurable memory and disk layers 
that directly affect latency and throughput. Spring Boot was used for 
the application based on Kafka Streams via build-in library. This al-
lows to run the simulation is a short period of time. Prometheus and 
Grafana were used for metrics scraping and visualization as they are 
the de facto standard in production observability according to common 
industry practice and specifically the simplicity of integration. Docker 
Compose provided deterministic, isolated and adjustable execution 
environments.

Fig. 1 shows an experimental evaluation involving Kafka Streams 
client and an adaptation module that reads the data. To ensure consis-
tent and comparable input patterns, a synthetic event generator was de-
veloped. It emits messages at predefined rates of 1000 and 1400 events 
per second. Varied data were simulated with random event key ranging 
from 0 to 1 million. Kafka Streams instances consume and process data 
embedded using processors that utilize state stores. The adaptation 
module monitors metrics and performs an update of configurations 
when needed. The decision of whether to update the configuration 
is performed by an LLM component, which is separately hosted by 
OpenAI. Specifically, the GPT-4.1-2025-04-14 model was selected. 
The OpenAI was selected because it provides the easy and production-
ready features of fine-tuning without extra costs except the subscrip-
tion expenses. In addition, it provides easy configurable GUI (Graphic 

User Interface) which allows speed up the testing phase of fine-tuning 
significantly.

The model was fine-tuned via OpenAI interface for specific stream 
processing metric analysis tasks, which outputs specified configuration 
properties values as a structured response.

2.3. Adaptive configuration architecture
As it was mentioned above, the adaptation module is a separate 

service that is responsible for monitoring metrics and acting accord-
ingly. The algorithm presented in Fig. 2 run by the adaptive module, 
is intended to replace human involvement by automatically check-
ing the metrics regularly. Eventually, the algorithm decides if there is  
a need to change the configuration of a specific application based on 
the processing decisions.

During the initialization phase, the module scans the current 
configuration of all Kafka Streams instances individually and starts to 
scan the application metrics by the regular monitoring interval. The 
monitoring interval is a fixed value Δt = 10 minutes, which is executed  
a configurable variable for the algorithm. Nevertheless, based on our ob-
servations, 10 minutes is enough to make sure that it is possible to avoid 
false positive or false negative decisions for adaptive changes during 
application irregular behavior. Unusually behavior is possible when the 
application restarts, catches up on ongoing events, and there is a short-
term spike or a trough in metrics. The system and state-store metrics are 
aggregated into a vector and represent metrics variable on the algorithm

M m m mt i� �� �1 2, , , , 	 (1)

where mi includes metrics described in Section 3.1.
There are two major scenarios for the algorithm: deterministic 

check and ML based check. Deterministic check step is performed as  
a sequence of straightforward and clear rules that are based on the cor-
relation properties in Section 3.1. In scenario, where the metrics and con-
figuration correlation is clearly evident or metrics are above or below cer-
tain thresholds the systems configurations are changed in the following

deterministic check M C I
deterministic update if patte

t t_ , , {
_ ,

� � �
rrns detected

ml update otherwise_ ,
}. 	 (2)

 
Fig. 1. Architecture for the experiment
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This expression illustrates the general principle of deterministic 
evaluation the system checks for the specific patterns. For the simplicity 
it shows the main idea rather than the details of algorithm itself. On prac-
tice, the actual deterministic logic includes more sophisticated checks that 
consider memory limits, CPU load, JVM memory and other compound 
conditions defined in the adaptive module. For the special scenarios the 
memory and CPU thresholds were checked if it is more than 80% from al-
lowed maximum. In this scenario the changes should be applied that will 
correct the resources usage in order to avoid possible resources overflow. 
For instance, let’s apply lower and upper boundaries for our configura-
tions to avoid out of memory. To make sure it is impossible to keep updat-
ing configs forever. This also plays the role of a sanity layer mentioned 
later. Second scenario is executed, when deterministic decision cannot 
be clearly identified. The action involves a machine learning check based 
on the metrics data, current configs, and specific instance metadata. ML 
module performs AI-based analysis of metrics and outputs a decision 
about the analysis. The decision is based on additional historical context 
as well, and previous metrics are included for the decision process. The 
ML module is based on the LLM model that is fine-tuned with a stream 
processing context based on the Kafka Streams documentation, state 
store configurations and our experiments decision records. The decision 
records were composed based on investigation defined in Section 3.2.

Both deterministic_check and ML_module_update represent a func-
tion f which returns the result of calculation in the format of new con-
figuration values

C f M C Ht t t t� � � �1 , , , 	 (3)

where Ct – the current configuration and Ht – the previous metrics and 
configurations result.

Resulting configuration is essentially a set of new configuration 
parameters values

C c c ct i� � �� �1 1 2, , , . 	 (4)

Eventually, the sanity check is performed based on the result from 
a previous step and current metrics. Sanity rules R(Ct + 1) are applied to 
prevent unsafe reconfiguration, the result is one decision

R C
update if c low c high for all i
postpone othe

t

i c i ci i

�� � �
� � �

1 {
, ( )

, rrwise
}, 	 (5)

where lowci
 – the lowest and highci  – the highest acceptable values for 

a metric based on the current system setup. Sanity check additionally 
takes into account the current metric Mt  state in a final operation for 
determining the result.

3. Results and Discussion

3.1. Framework state store metrics and configuration correlation
Stream processing frameworks have a lot of configuration proper-

ties that can be set based on the specific application requirements and 
environment. The properties are categorized and play role in different 
parts of the application: application metrics, state store metrics, and 
even custom user-defined metrics. As it was mentioned previously, state 
store configuration properties were selected as core adaptation subject, 
specifically RocksDB-related settings.

In order to understand how to tune configurations of applications 
based on the specific scenario, it was necessary to identify metrics and 
configuration correlation. A couple of Kafka Streams engineers shared 
a theoretical discussion on how to configure the state store based on the 
metrics [14]. However, the article describes hypothetical reasons for re-
lationships. As a standard, framework contributors leave default values 
that suit the majority of scenarios. Nevertheless, the default values are 
not necessarily the most optimal in all scenarios. For the actual under-
standing of Kafka Streams’ state store impact on configuration, a series 
of experiments was conducted to understand precise patterns and de-
fine strict rules. The experiments included multiple experimental runs 
and tracked the metrics and application behavior based on changes 
to the three configurations mentioned above. Every experimental run 
was isolated from the other executions to avoid benchmarking bias.

After the experiments the large set of properties was reduced to the 
main three: write_buffer_size, block_cache_size, and max_write_buffers.  
That were selected by multiple experiments and proved to have  

 
Fig. 2. Adaptive configuration algorithm
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a significant performance impact on applications that utilize state store.  
A larger write_buffer_size or max_write_buffers values reduce the fre-
quency of disk writes by batching updates. This allows Kafka Streams 
to write the updates faster and reduce frequency of Disk I/O, which in 
turn, positively affects throughput. Property block cache size controls 
the amount of cached state store values stored in memory, which in 
turn, reduces disk reads by serving more lookups from memory. Since 
memory access is much faster than disk access, this lowers latency and 
improves overall processing performance. Table  1 describes the im-
pact of 3 configuration properties: write_buffer_size, block_cache_size, 
max_write_buffers on different metric.

The experiment narrowed down the list of metrics and configura-
tions that should be used for adaptive configuration.

Table 1

General configurations for the experiment

Metric Impact Comment

jvm_memory_used_bytes Low
State store uses the memory of 

the container mostly

container_memory_usage_bytes High

The higher the values the 

more memory is used for 

container

kafka_stream_state_write_

stall_duration_avg
High

If the buffer size is low or if 

not enough buffers are set, 

then writing to disk happens 

more slowly than writing to 

the buffers

kafka_stream_processor_node_

process_rate
Medium

The more and the bigger 

the buffers, the better the 

throughput of the application

kafka_stream_processor_node_

record_e2e_latency_avg
Medium

Generally, latency decreases 

when more memory is al-

located for the state store

3.2. Adaptive method execution and evaluation
Actual experiments were executed in a controlled and reproducible 

environment (Section  2.2), using artificially created workloads that 
simulate dynamic real-world load patterns. Every experiment was re-
peated several times under identical conditions and respective averages 
of the collected metrics are reported. The initial run used the default 
static configurations. These values remained unchanged throughout the 
runtime of the experiment. As illustrated in Fig. 3, the observed metrics 

stayed relatively stable in the early phases. However, as the application 
running time increased, performance gradually decreased. In particular, 
write stalls and disk I/O load accumulated over time, indicating that the 
static setup could not effectively adapt to increasing workload demands.

Fig. 4 present the results obtained with our adaptive method during 
the second experiment:

–	 Iteration 1: With the minimal configuration, the block cache hit 
ratio averaged only 15% (0.15) and the memtable hit ratio was as low 
as 2% (0.02). Write stalls lasted for about 9 seconds, clearly indicat-
ing high disk I/O pressure. Based on these results, the adaptation 
module triggered a configuration update logic and forwarded a re-
quest to ML module, then it passed sanity check. The ML decision 
increased both write_buffer_size and block_cache_size by approxi-
mately 10 times.
–	 Iteration 2: After the 1st iteration adjustment, state store metrics 
improved dramatically. The memtable hit ratio rose to 40% (0.40), 
which is 20× higher than in the baseline. The block cache hit ratio 
reached 80%, compared to the baseline average of 15%. Write stalls 
were eliminated (reduced to 0), and disk I/O load decreased signifi-
cantly. Throughput did not increase dramatically, but the reduction 
in stalls provided a more stable processing rate and an improvement 
of 5% on average. A short-term trade-off was observed: end-to-end 
latency temporarily increased by ~14%, and container memory 
consumption grew due to the enlarged cache and buffer sizes, mean-
ing that it is possible to save more state in memory.
–	 Iteration 3: Ten minutes later, the adaptation module opted not 
to apply further changes. Decision logs confirmed that the LLM 
component chose to wait, since metrics were stable: block cache hit 
ratio remained high, disk I/O was low, and memory use was within 
acceptable limits.
–	 Iteration 4: On the next cycle, the algorithm increased both 
write_buffer_size and block_cache_size by an additional 32%. This 
raised memtable hit ratios from 40% to 60% on average. Throughput 
improved by 1–2% immediately after the update, but later returned 
to the same level as in Iteration 2. End-to-end latency decreased by 
~10% after the update, but gradually trended back toward previous 
values. No significant improvement was observed in block cache 
hit ratio, because throughput was static across experiments. As ex
pected, container memory usage increased because of the higher 
size of memory in state store.

Fig. 3. Results of metrics for the basic experiment with static configuration
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The algorithm execution corresponds to the functions and steps 
defined in Section 2.3. Retrospectively decision log was examined and 
for every iteration the detailed execution steps of the algorithm were 
identified. Iteration  1 represents initialization and start of monitor-
ing algorithm procedure no changes happen. Iteration  2 represents 
metrics of the application after the application of adaptive changes. 
The ML-based configuration update included the execution of whole 
adaptive configuration algorithm, including deterministic_check and 
ML_module_update steps based on the values defined above. Itera-
tion 3 represents stabilization stage where the configuration remained 
unchanged because of deterministic_check function responded with 
ignoring update decision. The decision was based on the fact that the 
delta throughput, e2e latency and Disk I/O between current step and 
previous step was not larger than 5% specifically. The behavior ob-
served during Iteration 4 corresponds to the decision of deterministic_
check to perform ML_module_update, the algorithm proceeded to the  
ML-based configuration update stage, since no resource limits were 
violated. The LLM-driven decision function recommended incremen-
tal scaling of both write_buffer_size and block_cache_size and finally 
perform configuration update. Thus, Iteration 4 actually represents  
a complete adaptive cycle of the adaptation algorithm for application  
a new configuration as it was done in previous iterations as well.

Disk I/O was thoroughly monitored specifically. It is clear from the 
results that the rate for write and read operations is twice as low for the 
adaptive method as for the static configuration run. The more memory 
used for storing state, the less frequently the application needs to per-
form a search on a disk. The behavior can be explained by the intrinsic 
trade-off between memory and I/O in RocksDB: enlarging in-memory 
structures increases hit ratios and defers flush operations, thereby low-
ering disk access latency and smoothing throughput fluctuations.  
It was clearly identified that the latency temporarily rises strictly  
after reconfiguration, which is explained by memory adaptation and 
cache change.

The main idea of providing the details below in the section below is 
to identify unknowns of community-level hypotheses and actual Kafka 
Streams dynamic configuration. The core idea of the adaptive configu-
ration approach is to ensure that a Kafka Streams application dynami-
cally operates with optimal state store properties for the given hardware 
environment. In other words, the method is intended to use the avail-
able resources to their better performance than static configurations. 

Since the key aspect of our results is that the method updates configura-
tions on its own, using both fixed rules and LLM-based inference. This 
hybrid approach resolves the core problem: eliminating manual tuning 
while keeping throughput and latency within acceptable limits. While 
existing papers [15] in adaptive ML-based tuning for stream processing 
have shown promising results, they primarily target dynamic resource 
changes connected to specific technology. Another paper [16] highlights 
system-wide optimization across sources, engines, and sinks using ML. 
Both works highlight key limitations of adaptive optimization in stream 
processing, especially the difficulty of choosing how frequent adapta-
tive actions should occur during execution. To address this, the authors 
propose refining the ML models so they can better handle edge cases 
related to decision frequency and accuracy, though this would require 
additional time and resources. This conclusion is relevant for our adap-
tive approach as well. In contrast, our method focuses on a common 
solution for tuning the state store, which can be used across different 
stream processing frameworks [17]. Generally, any stream processing 
configurations and not necessarily RocksDB can be tuned in a way 
it is suggested in the paper. By narrowing the scope to fine-grained, 
metrics-driven state store adaptation, the presented method in this 
paper remains lightweight and suitable for production usage without 
requiring a complete redesign of the streaming architecture.

In the experiments, the base static configuration shows perfor-
mance degradation over time as runtime increased, particularly when 
write stalls and disk I/O load were suffered a lot. Some trade-offs were 
observed, mainly higher memory usage and temporary dips in core 
metrics. Nevertheless, the adaptive method consistently showed better 
results than the static baseline under dynamic load. The expectations 
formed during manual testing were confirmed: decisions produced 
by the deterministic layer, combined with refined LLM outputs led to 
better throughput during iterative configuration updates. The experi-
ments revealed a clear dependency between block cache size, memory, 
and throughput. Larger cache and buffer configurations generally in-
creased throughput because events were retrieved from memory more 
often than from disk . This effect became especially visible at higher 
input rates, when the system processed thousands of records per sec-
ond. Increasing memory allocation also reduced disk I/O significantly.  
As expected by the experiment in Section 2, this introduced a trade-off: 
larger buffers and caches eased disk pressure but raised overall memory 
consumption. Latency tended to be lower with smaller block cache 

Fig. 4. Results of metrics for adaptive method
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and write buffer sizes. Latency between the adaptive and static setups 
remained similar, though it is possible to anticipate more substantial 
end-to-end latency improvements under much heavier workloads.  
In scenarios with several thousand events per second in the Kafka 
Streams input topic, the adaptive method is expected to yield more 
pronounced latency reductions. Across other metrics, no major differ-
ences were observed. While the performance gains were not large on 
every metric, the results show that the algorithm responds effectively to 
runtime variation, advancing beyond static, one-time tuning.

This illustrates that adaptive configuration not only improves ef-
ficiency but also reduces the need of manual supervision, which is 
both time-consuming and involves a human error risk . Based on the 
experiments and observations, there are several conclusions about the 
applicability of adaptive configuration change in stream processing:

–	 Hardware constraints: adaptive configuration changes are par-
ticularly valuable when hardware resources are static and cannot 
be scaled easily. Instead of adding computing or storage power, 
adaptive tuning offers an alternative route to mitigate performance 
degradation. However, eventually the resources will be drained, and 
vertical or horizontal scale is inevitable.
–	 Workload diversity: the method is most effective when data is 
highly diversified and involves many unique events, since these sce-
narios require intensive use of state stores for lookups and updates.
–	 Thresholds and safeguards: defined thresholds are mandatory.  
A sanity-check layer within the adaptive module was introduced in 
our implementation. While some parameter adjustments reduce disk 
utilization, they may increase memory usage, which can destabilize 
the application. By combining deterministic checks with ML-driven 
decisions, it is possible to ensure that LLM-generated updates remain 
valid and avoid excessive or hallucinated reconfigurations.
–	 Dynamic application: at present, new configurations require a re-
start for changes to take effect, which introduces short unavailability 
windows. The reliability of the LLM-based decision layer also de-
pends on the representativeness of its training data; unbalanced or in-
complete datasets may yield suboptimal parameter proposals. More-
over, adaptive gains are bounded by physical resource ceilings – once 
CPU or memory saturation occurs, further tuning cannot improve 
performance. Additionally, the reliability of the LLM-based decision 
layer depends strongly on the representativeness and quality of its 
training data. Because the model was fine-tuned on a limited corpus 
of historical metric-configuration pairs and documentation examples, 
its ability to generalize to unseen workload patterns or extreme con-
ditions may be constrained. For instance, when encountering non-
regular metric combinations, the LLM may propose suboptimal 
configuration values or defer decisions unnecessarily. To mitigate this, 
periodic retraining and inclusion of more diverse operational traces 
are required. Furthermore, adaptive improvements are inherently  
bounded by the available hardware resources. Even the most optimal 
configuration of RocksDB parameters cannot overcome physical 
memory or CPU saturation. Once the container reaches its memory 
ceiling or I/O throughput limit, the marginal gain from reconfigu-
ration diminishes to near zero. In such cases, horizontal scaling or 
infrastructure upgrades become the only viable means of sustaining 
performance. The adaptive method makes effective use of available 
capacity, it cannot overcome fundamental resource limits. Notably, 
configuration updates are applied at the instance level, allowing the 
remaining application instances to continue operating without inter-
ruption during restarts.
–	 Operational costs: running adaptive and ML modules incurs ex-
tra computational overhead, as they operate as separate monitoring 
and decision-making services.
–	 Conditions of Application and Reproducibility: for researches 
who aim to reproduce or apply the proposed adaptive configura-
tion method several setup conditions must considered. Specifically, 

to ensure consistency of results and effective operation under pro-
duction-like circumstances. Firstly, a complete observability stack 
such as Prometheus and Grafana is required to enable real-time 
visualization of state-store and system metrics, since the adaptive 
module depends on continuous metric ingestion and human-verifi-
able dashboards for validation of changes. Secondly, synthetic data 
should be generated using a pseudo-random number generator for 
event identifiers to guarantee realistic key distribution and avoid de-
terministic key collisions that could bias state-store access patterns. 
Thirdly, the stream-processing topology should include stateful op-
erators that intensively utilize RocksDB and emulate real state pres-
sure, topology [18] was used. Finally, the number of Kafka Streams 
application instances must match the number of Kafka topic parti-
tions, ensuring balanced workload distribution and consistent met-
ric comparability across runs.
Future research related to the topic can include investigation and 

analysis of other metrics and different parameters for Kafka Streams 
to identify the correlation. Once correlation of different properties 
and configuration is identified it can contribute to the new versions to 
adaptive deterministic module, which covers the combined framework 
and state store configurations. The reliability of the LLM-based deci-
sion layer depends on the quality of its training data. Because it was 
fine-tuned on a small set of historical metrics and examples, it may 
struggle with unseen workloads or extreme conditions. For instance, 
when encountering atypical metric combinations, the LLM may pro-
pose not optimal configuration values or defer decisions unnecessarily.  
To mitigate this, periodic retraining and inclusion of more diverse op-
erational traces are required. Furthermore, adaptive improvements 
are inherently bounded by the available hardware resources. Even the 
most optimal configuration of RocksDB parameters cannot overcome 
physical memory or CPU overhead. Once the container reaches its 
memory threshold or the operating-system I/O throughput limit, the 
marginal gain from further reconfiguration drops to nearly zero. In such 
cases, horizontal scaling or infrastructure upgrades become the only 
viable means of sustaining performance. While the adaptive method 
efficiently exploits existing capacity, it does not eliminate fundamental 
resource constraints.

Impact of martial law in Ukraine: the ongoing martial law in 
Ukraine has not influenced the research process significantly. Un-
stable internet connectivity and air alarms created minor challenges 
in conducting continuous benchmarking tests, occasionally disrupting 
the process.

4. Conclusions

1.	 The conducted investigation confirmed that variations in state-
store configuration have a measurable effect on the performance met-
rics of stream processing applications. Under production-like synthetic 
loads (about 1000 events per second), parameter adjustments led to 
increased memtable and block-cache hit ratios (from 2% to 40% and 
from 15% to 80%, respectively), elimination of write stalls, and an 
approximately twofold reduction in disk I/O. Throughput increased  
by ~5%, which is still expected to be improved under the higher loads. 
A short-lived latency uptick (~14%) and higher memory use were 
observed. A later iteration (32% increase to buffers and cache) raised 
the memtable hit ratio to ~60%, produced a slight throughput gain 
and ~10% latency drop that later changed toward normal levels. Across 
runs, it was observed that read/write rates on disk were roughly halved 
under the adaptive method versus a static baseline. These effects are 
consistent with the mechanics of RocksDB: larger write buffers batch 
writes and reduce stalls, while a larger block cache serves more look-
ups from memory, reducing disk reads. These results describe how 
state-store configurations influence throughput, latency, and stability 
under experiment conditions.
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2.	 Experimental evaluation of the adaptive configuration method 
demonstrated that it maintains system stability and improves perfor-
mance efficiency under variable workloads without requiring hardware 
expansion. The adaptive module, operating with a 10-minute obser-
vation window, ensured metric convergence and prevented oscilla-
tions. Across repeated runs, adaptive configurations consistently halved  
read/write disk rates and maintained higher throughput compared 
to the static approach. The method proved most effective in scenarios 
with fixed resources, workloads that are state-intensive with high key 
diversity, and operators who seek safe automation with deterministic 
thresholds. The use of an LLM extended adaptability and enabled more 
accurate metric-based tuning, which consistently stabilized perfor-
mance compared to static baselines and reduced manual configuration 
efforts. Based on the adaptive module decisions memory utilization 
increased by 20–25%, reflecting expected cache growth while processor 
utilization remained below 70%. These outcomes confirm the feasibil-
ity and practical applicability of the proposed adaptive approach across 
stream processing frameworks with RocksDB-like backends, at the cost 
of available hardware resources.
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