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DEVELOPMENT OF ADAPTIVE
RECONFIGURATION METHOD
FOR STREAM DATA PROCESSING
SYSTEMS USING SYSTEM METRICS

The object of research is the process of adaptive configuration changes for stream processing applications which is focused on improv-
ing specific performance properties. The absence of the generalized automated approach for dynamic reconfiguration of state-store in
limited hardware environment is the research problem addressed in this paper. The proposed solution helps to avoid a need for manual
application reconfiguration from engineers. The implementation is based on Kafka Streams but designed to be portable across other
frameworks that use RocksDB as a state store. Static configuration of modern stream processing systems limits efficiency under variable
workloads. In this study, an adaptive module is proposed that monitors system metrics in real-time and automatically updates state-
store configurations. The module performs deterministic check to derive new configuration based on predefined thresholds or utilizes
a fine-tuned Large Language Model (LLM) to select new configuration values when decisions are vague. The method dynamically applies
updates to the affected instance. High-load experimental results reveal the fact that adaptive executions eliminated write stalls, increased
memtable hit ratio from 2% to 40% and block-cache hit ratio from 15% to 80%, reduced disk 1/O by approximately 50%, and improved
throughput by around 5%, at the cost of higher memory consumption. To avoid redundant adaptive updates and outlier-based bias
a 10-minute observation frequency was selected. The approach is suitable for systems with fixed resources, state-intensive workloads
with high key cardinality. Additionally, if covers the need for safe configuration change under operational constraints. The architecture
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is framework agnostic for the RocksDB-based based stream processing with state stores.
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1. Introduction

Stream processing is state-of-the art technology for the real-time
applications that should be both resilient and efficient under vary-
ing workloads. Stream processing frameworks such as Flink, Spark,
and Kafka Streams are popular across communities, specifically be-
cause they provide low-latency data handling and stateful operations
across large-scale infrastructures [1]. Such systems rely on different
architecture principles and methods to guarantee fault tolerance. Fault-
tolerance itself can be achieved in various ways for different stream
processing frameworks. Mainly, majority of frameworks utilize storage
in order to achieve join, grouping, counting and other state-related
operations. Furthermore, storage is used for restore actions if the ap-
plication fails and needs to be restarted again. For instance, Apache
Flink framework, uses checkpointing strategy based on storing check-
points on a disk to restore data in case of failure [2]. Other lightweight
frameworks are popular across the community as well. For example,
Kafka Streams is used for variety of tasks, including event a migration
task [3]. To implement fault tolerance, it applies a different mechanism
that integrates with Apache Kafkas internal architecture and storage [4].
Kafka Streams leverages local disk state stores backed by changelog
topics, in contrast to external checkpoints approach. These changelog
topics capture every modification to the state store, allowing the ap-
plication to reconstruct its state after a failure by replaying the changes
from Kafka itself. The state store is essentially a local disk or memory

storage that saves aggregation, latest values and meta data. This design
is particularly useful applications where lightweight and embedded
processing is desirable. Specifically, it enables fine-grained fast state re-
covery. Like most modern stream processing frameworks, for state store
Kafka Streams utilizes a key-value local database, RocksDB [5], which
is designed for high-performance and low-latency operations. State
store is used for writing and reading stateful records or operations like
groupBy, count, etc. Meaning when a stream processing app requires
getting an element from a state store, it performs a read operations
from the state store source. By default, stream processing frameworks
such as Apache Flink, Spark Structured Streaming, Kafka Streams, etc.
rely on static configuration properties. In other words, they are set by
default and can be changed only when necessary. The properties are
related to state stores as well, including block cache size, write buffer
size, and compaction settings etc. While these defaults simplify deploy-
ment and avoid human involvement, a stream processing application’s
performance may be affected by adapting the state store configurations
for runtime variability, such as changing data rates, highly diversified
access patterns or fluctuating resource availability. Authors in the previ-
ous research [6] have shown that dynamically changed configurations
based on the systems needs at the moment can significantly improve
throughput and increase latency or recovery time of stream processing
applications. Other research [7] has proposed a comprehensive review
of automatic performance tuning techniques, including ML (Machine
Learning)-based prediction, experiment-driven search, and adaptive
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runtime controllers that improve specific aspects of stream processing.
However, the presented solutions mainly change specific configuration
parameters, i. e. checkpointing intervals, operator scheduling or tied
to a framework. To the best of our knowledge, there are no dynamic
adaptive methods that focus on cross framework solutions. Based on
that, it is difficult to adapt the approach for the various stream process-
ing engines. Specifically, because of the lack of portability and high
engineering efforts. This highlights a key gap in current research: the
lack of defined framework-agnostic layer for real-time configuration
change, which can cover performance gains and fault-tolerance across
DSPS (Distributed stream processing systems) platforms. Configura-
tion of state store is one of the ways achieving cross-platform solution,
because it is used in almost all the stream processing frameworks. To
address this gap, a series of experiments had to be performed to define
the correlation of application performance and state store parameters.
Based on the results, this paper presents a lightweight adaptive was
developed that monitors key performance metrics and determines and
adjusts state store configuration if needed. The module helps to perform
dynamic reconfiguration and is designed to be integrated across stream
engines that support state store.

The object of research is the process of adaptive configuration changes
for stream processing applications which is focused on improving spe-
cific performance properties.

The aim of this research is to develop an adaptive configuration
method for state stores in stream processing applications based on sys-
tem observability, enabling dynamic performance optimization without
additional hardware resources. Based on that said that, several research
gaps were identified in these areas:

1. To investigate how changes in state store configuration parame-
ters correlate to the performance metrics (throughput, latency, disk 1/0)
of stream processing applications under various workloads.

2. To design, validate and evaluate a dynamically managed, re-
source-eflicient state store adaptation method that operates without
additional hardware requirements and can be applied across multiple
stream processing frameworks.

2. Materials and Methods

2.1. Adaptive method for stream processing

The popularity of stream processing frameworks has been increas-
ing dramatically over last years. Particularly, Apache Flink, Apache
Spark Streaming, Hazelcast Jet, and Kafka Streams popular tools
for real-time analytics with low latency and high throughput needs.
In spite of high popularity, the frameworks configuration is rarely the
subject of custom tuning by the engineers, occasionally because it is
time-consuming. There are papers presenting evidence of the fact that
streaming systems benefit from adaptive configuration. The authors of
Drizzle [8] present custom tuning for reducing the latency, by creation
of custom stream processing framework that decouples processing from
coordination intervals to keep millisecond-level latency while adapt-
ing less frequently to failures and load shifts. Other authors present
a Khaos method [9] that automatically optimizes checkpoint intervals
at runtime. It is done by observing the system metrics and training
analytical models to keep recovery time and end-to-end latency within
defined QoS constraints. Based on their results, static default configura-
tion is a not the best fit for stream processing applications. Authors in
paper Ca-Stream [10] present adaptive approach for system state that
dynamically configures operator placement and resources, particularly
state store in real-time. It utilizes a model to guide dynamic elasticity
decisions based on monitoring and adaptive assignment of operators
to optimize latency and resource use. The work focuses on adaptivity
at the level of resource scaling and operator placement rather than
dynamic configuration tuning. Moreover, it is focused on the custom
architecture which is difficult to port across different frameworks. Other

authors [11] suggest a reinforcement learning (RL)-based approach to
compress in-memory stream aggregates dynamically. This allows to
reduce memory consumption. They present an adaptive manager that
monitors the size and characteristics of stream aggregates in real time
and decides when and how apply changes in real-time without making
a trade-offs in terms performance or latency constraints. The general
solution is to find a perfect balance between accuracy and memory us-
age in order to run the system efficiently. The authors present a unique
way of application reinforcement learning stream processing changes.
The approach performs dynamic changes to aggregates, which in turn,
affect memory compression. However, it is the only space where adap-
tive changes happen. Additionally, the solution is oriented on a par-
ticular stream processing framework optimization problem. Authors
of PA-SPS [12] propose an automated tuning system for DSPS across
different objectives. The idea lays in using evolutionary algorithms for
multiple configurations optimization, including throughput, latency,
and general resource consumption. A huge advantage of the approach
is a hybrid configuration tuning combining based on model training
and online refinement. The framework performs well in dynamic load
environment. Nevertheless, it focuses on tuning the defined set of pa-
rameters which is framework-specific, leaving an idea for contributions
in future. Based on the research, it is clear that adaptive tuning approach
is relevant for different frameworks and it is used by variety of projects
in order to optimize or boost performance of stream processing. Gen-
erally, the existing methods focus on a specific parameter space and
specific stream processing solution. Many approaches assume either
static or stable load on a stream processing system, which is not neces-
sarily matches with production environment and specifically dynamic
variable load. Most critically, the state store configuration is not covered
in the existing research, which is a huge area to investigate and optimize
for variety of frameworks. It is not completely evident how state store
changes affect system performance under different conditions. Having
said that, were identified several research gaps in these areas:

1. How specific changes to the state store configuration affect
stream processing application performance?

2. How can state store adaptation be dynamically managed with-
out relying on additional hardware resources, such that the approach
remains lightweight and portable across stream processing frameworks?

In order to address these questions, this paper suggests an adaptive
method that monitors stream processing system metrics and applies
reconfiguration in real time based on the metrics. The adaptive algo-
rithm includes a deterministic layer with defined thresholds for metrics
and configuration values which is inspired by attribute-based quality
forecasting [13]. Specifically, the modules collect metrics, aggregates
them over a fixed window, creates a normalized feature vector and
performs a smart analysis of metrics. The prototype was implemented
and tested on single stream processing framework that supports state
store, however the approach is designed to be modular enough for use
across different frameworks that support state store.

The research method included. Generating of synthetic events with
dynamic unpredictable load patterns. This setup is meant to simulate
the production environment. The method was allowing reproducibility
and defining precise correlation between framework configuration pa-
rameters and resulting performance metrics. Analytical modeling solely
would not completely cover the behavior of distributed state man-
agement. Therefore, metrics-driven empirical method is required to
identify how the constrained adaptive changes affect observable system.

2.2. Experiment setup

There were conducted a series of experiments for simulating close
to production environment that matches load of medium-size compa-
nies. The selected instruments and their versions were selected based
on practical experience, popularity across the community and being
open-source tools for the experiment use-cases.

G
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The experimental setup is an emulation of a production use stream
processing environment using a Docker-based virtual machine con-
figuration orchestrated with Docker Compose (v2.32.4). Which is built
on the following hardware: Apple M2 Pro chip, 10-core CPU with
6 performance cores and 4 efficiency cores with 32 GB of RAM to
power Docker-compose setup. Docker-based virtual machine is a great
candidate for software which can be run across different platforms,
which in turn a good choice for our experiment. The modern hard-
ware guarantees that observed improvements result from configuration
adaptivity rather than raw hardware extension. Each container was
provisioned with static resources, specifically 512 MB of RAM with
extra 256 MB buffer, 40 GB of disk space, and a 2-core CPU. Katka
Streams (v3.8.1) was used because it integrates closely with Apache
Kafka (vcp-kafka:7.1.0-1-ubi8), supports embedded state stores, and
is lightweight for adaptive testing. Additionally, it does not require the
setup of the separate infrastructure for stream processing, like other
frameworks. It can be integrated as a library to an application. RocksDB
is a default option for Kafka Strems. It was selected as the state store
due to its great performance, configurable memory and disk layers
that directly affect latency and throughput. Spring Boot was used for
the application based on Kafka Streams via build-in library. This al-
lows to run the simulation is a short period of time. Prometheus and
Grafana were used for metrics scraping and visualization as they are
the de facto standard in production observability according to common
industry practice and specifically the simplicity of integration. Docker
Compose provided deterministic, isolated and adjustable execution
environments.

Fig. 1 shows an experimental evaluation involving Kafka Streams
client and an adaptation module that reads the data. To ensure consis-
tent and comparable input patterns, a synthetic event generator was de-
veloped. It emits messages at predefined rates of 1000 and 1400 events
per second. Varied data were simulated with random event key ranging
from 0 to 1 million. Kafka Streams instances consume and process data
embedded using processors that utilize state stores. The adaptation
module monitors metrics and performs an update of configurations
when needed. The decision of whether to update the configuration
is performed by an LLM component, which is separately hosted by
OpenAL Specifically, the GPT-4.1-2025-04-14 model was selected.
The OpenAl was selected because it provides the easy and production-
ready features of fine-tuning without extra costs except the subscrip-
tion expenses. In addition, it provides easy configurable GUI (Graphic

User Interface) which allows speed up the testing phase of fine-tuning
significantly.

The model was fine-tuned via OpenAl interface for specific stream
processing metric analysis tasks, which outputs specified configuration
properties values as a structured response.

2.3. Adaptive configuration architecture

As it was mentioned above, the adaptation module is a separate
service that is responsible for monitoring metrics and acting accord-
ingly. The algorithm presented in Fig. 2 run by the adaptive module,
is intended to replace human involvement by automatically check-
ing the metrics regularly. Eventually, the algorithm decides if there is
a need to change the configuration of a specific application based on
the processing decisions.

During the initialization phase, the module scans the current
configuration of all Kafka Streams instances individually and starts to
scan the application metrics by the regular monitoring interval. The
monitoring interval is a fixed value Af = 10 minutes, which is executed
a configurable variable for the algorithm. Nevertheless, based on our ob-
servations, 10 minutes is enough to make sure that it is possible to avoid
false positive or false negative decisions for adaptive changes during
application irregular behavior. Unusually behavior is possible when the
application restarts, catches up on ongoing events, and there is a short-
term spike or a trough in metrics. The system and state-store metrics are
aggregated into a vector and represent metrics variable on the algorithm

Mlz(ml,mz,...,ml), (1)

where m; includes metrics described in Section 3.1.

There are two major scenarios for the algorithm: deterministic
check and ML based check. Deterministic check step is performed as
asequence of straightforward and clear rules that are based on the cor-
relation properties in Section 3.1. In scenario, where the metrics and con-
figuration correlation is clearly evident or metrics are above or below cer-
tain thresholds the systems configurations are changed in the following

deterministic_check(Ml, C, I) ={
deterministic _update, if patterns detected

ml_update, otherwise

I8 )

/ Docker-environment

Synthetic data generator

Prometheus

L
)

| Kafka-Streams app |[€———————
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config Adaptation module

Read metrics

/

Fig. 1. Architecture for the experiment
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Algorithm 1: Adaptive Configuration Algorithm for Kafka Streams State Store

Data: metrics: collected from Prometheus (memory, disk I/O, latency, throughput, Kafka Streams state

store stats)

current_configs: current Kafka Streams state store configurations
Result: Adaptive tuning of Kafka Streams state store configurations

initialization of current_con figs;

set monitoring_interval < 10 minutes;
while application is running do
wait(monitoring_interval);

while all instances checked do

init response;
if decision = deterministic_update then

else
// Pass to ML module

end
valid < = sanity_check(response);
if valid == true then

end
else
| ignore_update();
end
save_decision(decision, response, valid);

end
end

metrics < collect_from_prometheus(last 10 minutes, instance);
decision < deterministic_check(metrics, current_configs, instance, context);

[ response < deterministic_update(metrics, current_configs, instance, context);

response < ML_module_update(metrics, current_configs, instance, context);

I apply_configs(response.new_configs, instance);

Fig. 2. Adaptive configuration algorithm

This expression illustrates the general principle of deterministic
evaluation the system checks for the specific patterns. For the simplicity
it shows the main idea rather than the details of algorithm itself. On prac-
tice, the actual deterministic logic includes more sophisticated checks that
consider memory limits, CPU load, JVM memory and other compound
conditions defined in the adaptive module. For the special scenarios the
memory and CPU thresholds were checked if it is more than 80% from al-
lowed maximum. In this scenario the changes should be applied that will
correct the resources usage in order to avoid possible resources overflow.
For instance, lets apply lower and upper boundaries for our configura-
tions to avoid out of memory. To make sure it is impossible to keep updat-
ing configs forever. This also plays the role of a sanity layer mentioned
later. Second scenario is executed, when deterministic decision cannot
be clearly identified. The action involves a machine learning check based
on the metrics data, current configs, and specific instance metadata. ML
module performs Al-based analysis of metrics and outputs a decision
about the analysis. The decision is based on additional historical context
as well, and previous metrics are included for the decision process. The
ML module is based on the LLM model that is fine-tuned with a stream
processing context based on the Kafka Streams documentation, state
store configurations and our experiments decision records. The decision
records were composed based on investigation defined in Section 3.2.

Both deterministic_check and ML_module_update represent a func-
tion fwhich returns the result of calculation in the format of new con-
figuration values

CHI:f(Mr’Cr’Ht)’ (3)
where C; - the current configuration and H, - the previous metrics and
configurations result.

Resulting configuration is essentially a set of new configuration
parameters values

C. ={cl,cz,...,cl}. (4)

Eventually, the sanity check is performed based on the result from
a previous step and current metrics. Sanity rules R(C,, ;) are applied to
prevent unsafe reconfiguration, the result is one decision

R(Cr+l ) = {
update, if (c;>low_Ac <high_ foralli)
postpone, otherwise

b (©)

where low_ - the lowest and high - the highest acceptable values for
a metric based on the current system setup. Sanity check additionally
takes into account the current metric M, state in a final operation for
determining the result.

3. Results and Discussion

3.1. Framework state store metrics and configuration correlation

Stream processing frameworks have a lot of configuration proper-
ties that can be set based on the specific application requirements and
environment. The properties are categorized and play role in different
parts of the application: application metrics, state store metrics, and
even custom user-defined metrics. As it was mentioned previously, state
store configuration properties were selected as core adaptation subject,
specifically RocksDB-related settings.

In order to understand how to tune configurations of applications
based on the specific scenario, it was necessary to identify metrics and
configuration correlation. A couple of Kafka Streams engineers shared
a theoretical discussion on how to configure the state store based on the
metrics [14]. However, the article describes hypothetical reasons for re-
lationships. As a standard, framework contributors leave default values
that suit the majority of scenarios. Nevertheless, the default values are
not necessarily the most optimal in all scenarios. For the actual under-
standing of Kafka Streams’ state store impact on configuration, a series
of experiments was conducted to understand precise patterns and de-
fine strict rules. The experiments included multiple experimental runs
and tracked the metrics and application behavior based on changes
to the three configurations mentioned above. Every experimental run
was isolated from the other executions to avoid benchmarking bias.

After the experiments the large set of properties was reduced to the
main three: write_buffer_size, block_cache_size, and max_write_buffers.
That were selected by multiple experiments and proved to have

s
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a significant performance impact on applications that utilize state store.
Alarger write_buffer_size or max_write_buffers values reduce the fre-
quency of disk writes by batching updates. This allows Kafka Streams
to write the updates faster and reduce frequency of Disk I/O, which in
turn, positively affects throughput. Property block cache size controls
the amount of cached state store values stored in memory, which in
turn, reduces disk reads by serving more lookups from memory. Since
memory access is much faster than disk access, this lowers latency and
improves overall processing performance. Table 1 describes the im-
pact of 3 configuration properties: write_buffer_size, block_cache_size,
max_write_buffers on different metric.

The experiment narrowed down the list of metrics and configura-
tions that should be used for adaptive configuration.

Table 1
General configurations for the experiment
Metric Impact Comment
. State store uses the memory of
jum_memory_used_bytes Low .
the container mostly
The higher the values the
£0m‘ainer_memory_umge_bylex High more memory is used for
container
If the buffer size is low or if
. not enough buffers are set,
kafka_stream_state_write_ . L C .
; High | then writing to disk happens
stall_duration_avg .
more slowly than writing to
the buffers
The more and the bigger
kafka_stream_processor_node .
gfa_ P ="7"= | Medium | the buffers, the better the
process_rate C
throughput of the application
Generally, latency decreases
kafka_stream_processor_node_ . 4 ¥ dec
Medium | when more memory is al-
record_e2e_latency_avg
- = - located for the state store

3.2. Adaptive method execution and evaluation
Actual experiments were executed in a controlled and reproducible
environment (Section 2.2), using artificially created workloads that
simulate dynamic real-world load patterns. Every experiment was re-
peated several times under identical conditions and respective averages
of the collected metrics are reported. The initial run used the default
static configurations. These values remained unchanged throughout the
runtime of the experiment. As illustrated in Fig. 3, the observed metrics
~Kafka Streams application metrics
[Basic] Throughput

102K ops/s

512 opsfs.

256 ops/s
128 ops/s
09:30 09:35 09:40 09:45 09:50 09:55 10:00 10:05 1010

[Basic] Memtable hit ratio

B e
09:30 09:35 08:40 09:45 09:50 09:55 10:00 10:05 10:10
= memtable-hit-ratio

[Basic] Disk /O

a8 MiBfs

32 Mig/s

16 Mig/s

09:30 09:35 09:40 00:45 09:50 09:55 10:00 10:05 10110
= instance

stayed relatively stable in the early phases. However, as the application
running time increased, performance gradually decreased. In particular,
write stalls and disk I/O load accumulated over time, indicating that the
static setup could not effectively adapt to increasing workload demands.
Fig. 4 present the results obtained with our adaptive method during
the second experiment:
— lteration 1: With the minimal configuration, the block cache hit
ratio averaged only 15% (0.15) and the memtable hit ratio was as low
as 2% (0.02). Write stalls lasted for about 9 seconds, clearly indicat-
ing high disk I/O pressure. Based on these results, the adaptation
module triggered a configuration update logic and forwarded a re-
quest to ML module, then it passed sanity check. The ML decision
increased both write_buffer_size and block_cache_size by approxi-
mately 10 times.
— Iteration 2: After the st iteration adjustment, state store metrics
improved dramatically. The memtable hit ratio rose to 40% (0.40),
which is 20x higher than in the baseline. The block cache hit ratio
reached 80%, compared to the baseline average of 15%. Write stalls
were eliminated (reduced to 0), and disk I/O load decreased signifi-
cantly. Throughput did not increase dramatically, but the reduction
in stalls provided a more stable processing rate and an improvement
of 5% on average. A short-term trade-off was observed: end-to-end
latency temporarily increased by ~14%, and container memory
consumption grew due to the enlarged cache and buffer sizes, mean-
ing that it is possible to save more state in memory.
— Iteration 3: Ten minutes later, the adaptation module opted not
to apply further changes. Decision logs confirmed that the LLM
component chose to wait, since metrics were stable: block cache hit
ratio remained high, disk I/O was low, and memory use was within
acceptable limits.
— Iteration 4: On the next cycle, the algorithm increased both
write_buffer_size and block_cache_size by an additional 32%. This
raised memtable hit ratios from 40% to 60% on average. Throughput
improved by 1-2% immediately after the update, but later returned
to the same level as in Iteration 2. End-to-end latency decreased by
~10% after the update, but gradually trended back toward previous
values. No significant improvement was observed in block cache
hit ratio, because throughput was static across experiments. As ex-
pected, container memory usage increased because of the higher
size of memory in state store.

[Basic] E2E Latency

328ps

waw| A v

819 s
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[Basic] Block cache hit ratio
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o012
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Fig. 3. Results of metrics for the basic experiment with static configuration
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~ Kafka Streams application metrics
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Fig. 4. Results of metrics for adaptive method

The algorithm execution corresponds to the functions and steps
defined in Section 2.3. Retrospectively decision log was examined and
for every iteration the detailed execution steps of the algorithm were
identified. Iteration 1 represents initialization and start of monitor-
ing algorithm procedure no changes happen. Iteration 2 represents
metrics of the application after the application of adaptive changes.
The ML-based configuration update included the execution of whole
adaptive configuration algorithm, including deterministic_check and
ML_module_update steps based on the values defined above. Itera-
tion 3 represents stabilization stage where the configuration remained
unchanged because of deterministic_check function responded with
ignoring update decision. The decision was based on the fact that the
delta throughput, e2e latency and Disk I/O between current step and
previous step was not larger than 5% specifically. The behavior ob-
served during Iteration 4 corresponds to the decision of deterministic_
check to perform ML_module_update, the algorithm proceeded to the
ML-based configuration update stage, since no resource limits were
violated. The LLM-driven decision function recommended incremen-
tal scaling of both write_buffer_size and block_cache_size and finally
perform configuration update. Thus, Iteration 4 actually represents
a complete adaptive cycle of the adaptation algorithm for application
anew configuration as it was done in previous iterations as well.

Disk I/O was thoroughly monitored specifically. It is clear from the
results that the rate for write and read operations is twice as low for the
adaptive method as for the static configuration run. The more memory
used for storing state, the less frequently the application needs to per-
form a search on a disk. The behavior can be explained by the intrinsic
trade-off between memory and I/O in RocksDB: enlarging in-memory
structures increases hit ratios and defers flush operations, thereby low-
ering disk access latency and smoothing throughput fluctuations.
It was clearly identified that the latency temporarily rises strictly
after reconfiguration, which is explained by memory adaptation and
cache change.

The main idea of providing the details below in the section below is
to identify unknowns of community-level hypotheses and actual Katka
Streams dynamic configuration. The core idea of the adaptive configu-
ration approach is to ensure that a Kafka Streams application dynami-
cally operates with optimal state store properties for the given hardware
environment. In other words, the method is intended to use the avail-
able resources to their better performance than static configurations.

Since the key aspect of our results is that the method updates configura-
tions on its own, using both fixed rules and LLM-based inference. This
hybrid approach resolves the core problem: eliminating manual tuning
while keeping throughput and latency within acceptable limits. While
existing papers [15] in adaptive ML-based tuning for stream processing
have shown promising results, they primarily target dynamic resource
changes connected to specific technology. Another paper [16] highlights
system—wide optimization across sources, engines, and sinks using ML.
Both works highlight key limitations of adaptive optimization in stream
processing, especially the difficulty of choosing how frequent adapta-
tive actions should occur during execution. To address this, the authors
propose refining the ML models so they can better handle edge cases
related to decision frequency and accuracy, though this would require
additional time and resources. This conclusion is relevant for our adap-
tive approach as well. In contrast, our method focuses on a common
solution for tuning the state store, which can be used across different
stream processing frameworks [17]. Generally, any stream processing
configurations and not necessarily RocksDB can be tuned in a way
it is suggested in the paper. By narrowing the scope to fine-grained,
metrics-driven state store adaptation, the presented method in this
paper remains lightweight and suitable for production usage without
requiring a complete redesign of the streaming architecture.

In the experiments, the base static configuration shows perfor-
mance degradation over time as runtime increased, particularly when
write stalls and disk I/O load were suftered a lot. Some trade-offs were
observed, mainly higher memory usage and temporary dips in core
metrics. Nevertheless, the adaptive method consistently showed better
results than the static baseline under dynamic load. The expectations
formed during manual testing were confirmed: decisions produced
by the deterministic layer, combined with refined LLM outputs led to
better throughput during iterative configuration updates. The experi-
ments revealed a clear dependency between block cache size, memory,
and throughput. Larger cache and buffer configurations generally in-
creased throughput because events were retrieved from memory more
often than from disk. This effect became especially visible at higher
input rates, when the system processed thousands of records per sec-
ond. Increasing memory allocation also reduced disk I/O significantly.
As expected by the experiment in Section 2, this introduced a trade-off:
larger buffers and caches eased disk pressure but raised overall memory
consumption. Latency tended to be lower with smaller block cache
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and write buffer sizes. Latency between the adaptive and static setups
remained similar, though it is possible to anticipate more substantial
end-to-end latency improvements under much heavier workloads.
In scenarios with several thousand events per second in the Kafka
Streams input topic, the adaptive method is expected to yield more
pronounced latency reductions. Across other metrics, no major differ-
ences were observed. While the performance gains were not large on
every metric, the results show that the algorithm responds effectively to
runtime variation, advancing beyond static, one-time tuning.

This illustrates that adaptive configuration not only improves ef-
ficiency but also reduces the need of manual supervision, which is
both time-consuming and involves a human error risk. Based on the
experiments and observations, there are several conclusions about the
applicability of adaptive configuration change in stream processing:

- Hardware constraints: adaptive configuration changes are par-
ticularly valuable when hardware resources are static and cannot
be scaled easily. Instead of adding computing or storage power,
adaptive tuning offers an alternative route to mitigate performance
degradation. However, eventually the resources will be drained, and
vertical or horizontal scale is inevitable.
- Workload diversity: the method is most effective when data is
highly diversified and involves many unique events, since these sce-
narios require intensive use of state stores for lookups and updates.
— Thresholds and safeguards: defined thresholds are mandatory.
Asanity-check layer within the adaptive module was introduced in
our implementation. While some parameter adjustments reduce disk
utilization, they may increase memory usage, which can destabilize
the application. By combining deterministic checks with ML-driven
decisions, it is possible to ensure that LLM-generated updates remain
valid and avoid excessive or hallucinated reconfigurations.
- Dynamic application: at present, new configurations require a re-
start for changes to take effect, which introduces short unavailability
windows. The reliability of the LLM-based decision layer also de-
pends on the representativeness of its training data; unbalanced or in-
complete datasets may yield suboptimal parameter proposals. More-
over, adaptive gains are bounded by physical resource ceilings — once
CPU or memory saturation occurs, further tuning cannot improve
performance. Additionally, the reliability of the LLM-based decision
layer depends strongly on the representativeness and quality of its
training data. Because the model was fine-tuned on a limited corpus
ofhistorical metric-configuration pairs and documentation examples,
its ability to generalize to unseen workload patterns or extreme con-
ditions may be constrained. For instance, when encountering non-
regular metric combinations, the LLM may propose suboptimal
configuration values or defer decisions unnecessarily. To mitigate this,
periodic retraining and inclusion of more diverse operational traces
are required. Furthermore, adaptive improvements are inherently
bounded by the available hardware resources. Even the most optimal
configuration of RocksDB parameters cannot overcome physical
memory or CPU saturation. Once the container reaches its memory
ceiling or I/0O throughput limit, the marginal gain from reconfigu-
ration diminishes to near zero. In such cases, horizontal scaling or
infrastructure upgrades become the only viable means of sustaining
performance. The adaptive method makes effective use of available
capacity, it cannot overcome fundamental resource limits. Notably,
configuration updates are applied at the instance level, allowing the
remaining application instances to continue operating without inter-
ruption during restarts.

—  Operational costs: running adaptive and ML modules incurs ex-

tra computational overhead, as they operate as separate monitoring

and decision-making services.

- Conditions of Application and Reproducibility: for researches

who aim to reproduce or apply the proposed adaptive configura-

tion method several setup conditions must considered. Specifically,

to ensure consistency of results and effective operation under pro-
duction-like circumstances. Firstly, a complete observability stack
such as Prometheus and Grafana is required to enable real-time
visualization of state-store and system metrics, since the adaptive
module depends on continuous metric ingestion and human-verifi-
able dashboards for validation of changes. Secondly, synthetic data
should be generated using a pseudo-random number generator for
event identifiers to guarantee realistic key distribution and avoid de-
terministic key collisions that could bias state-store access patterns.
Thirdly, the stream-processing topology should include stateful op-
erators that intensively utilize RocksDB and emulate real state pres-
sure, topology [18] was used. Finally, the number of Kafka Streams
application instances must match the number of Kafka topic parti-
tions, ensuring balanced workload distribution and consistent met-
ric comparability across runs.

Future research related to the topic can include investigation and
analysis of other metrics and different parameters for Kafka Streams
to identify the correlation. Once correlation of different properties
and configuration is identified it can contribute to the new versions to
adaptive deterministic module, which covers the combined framework
and state store configurations. The reliability of the LLM-based deci-
sion layer depends on the quality of its training data. Because it was
fine-tuned on a small set of historical metrics and examples, it may
struggle with unseen workloads or extreme conditions. For instance,
when encountering atypical metric combinations, the LLM may pro-
pose not optimal configuration values or defer decisions unnecessarily.
To mitigate this, periodic retraining and inclusion of more diverse op-
erational traces are required. Furthermore, adaptive improvements
are inherently bounded by the available hardware resources. Even the
most optimal configuration of RocksDB parameters cannot overcome
physical memory or CPU overhead. Once the container reaches its
memory threshold or the operating-system 1/O throughput limit, the
marginal gain from further reconfiguration drops to nearly zero. In such
cases, horizontal scaling or infrastructure upgrades become the only
viable means of sustaining performance. While the adaptive method
efficiently exploits existing capacity, it does not eliminate fundamental
resource constraints.

Impact of martial law in Ukraine: the ongoing martial law in
Ukraine has not influenced the research process significantly. Un-
stable internet connectivity and air alarms created minor challenges
in conducting continuous benchmarking tests, occasionally disrupting
the process.

4. Conclusions

1. The conducted investigation confirmed that variations in state-
store configuration have a measurable effect on the performance met-
rics of stream processing applications. Under production-like synthetic
loads (about 1000 events per second), parameter adjustments led to
increased memtable and block-cache hit ratios (from 2% to 40% and
from 15% to 80%, respectively), elimination of write stalls, and an
approximately twofold reduction in disk I/O. Throughput increased
by ~5%, which is still expected to be improved under the higher loads.
A short-lived latency uptick (~14%) and higher memory use were
observed. A later iteration (32% increase to buffers and cache) raised
the memtable hit ratio to ~60%, produced a slight throughput gain
and ~10% latency drop that later changed toward normal levels. Across
runs, it was observed that read/write rates on disk were roughly halved
under the adaptive method versus a static baseline. These effects are
consistent with the mechanics of RocksDB: larger write buffers batch
writes and reduce stalls, while a larger block cache serves more look-
ups from memory, reducing disk reads. These results describe how
state-store configurations influence throughput, latency, and stability
under experiment conditions.
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2. Experimental evaluation of the adaptive configuration method
demonstrated that it maintains system stability and improves perfor-
mance efficiency under variable workloads without requiring hardware
expansion. The adaptive module, operating with a 10-minute obser-
vation window, ensured metric convergence and prevented oscilla-
tions. Across repeated runs, adaptive configurations consistently halved
read/write disk rates and maintained higher throughput compared
to the static approach. The method proved most effective in scenarios
with fixed resources, workloads that are state-intensive with high key
diversity, and operators who seek safe automation with deterministic
thresholds. The use of an LLM extended adaptability and enabled more
accurate metric-based tuning, which consistently stabilized perfor-
mance compared to static baselines and reduced manual configuration
efforts. Based on the adaptive module decisions memory utilization
increased by 20-25%, reflecting expected cache growth while processor
utilization remained below 70%. These outcomes confirm the feasibil-
ity and practical applicability of the proposed adaptive approach across
stream processing frameworks with RocksDB-like backends, at the cost
of available hardware resources.
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