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DEVELOPMENT OF A METHOD 

FOR STATE ESTIMATION AND 

OPTIMISATION OF MULTIFACTOR 

SEMI-MARKOV SYSTEMS

The object of this research is a method for solving problems of analysis and optimization of semi-Markov systems. The importance 
of this topic is determined by the following circumstances. First, traditional, standard theoretical and practical problems of stochastic 
system research are solved analytically only for Markov systems for which the laws of distribution of the duration of stay in each state 
before leaving are exponential. Clearly, this strict requirement is not met for real systems. Second, a general method of analytical study 
does not exist for many probabilistic systems. Third, only numerical methods for solving such problems are available and feasible. 
Moreover, in each case, a solution can only be obtained for the specific system under study, operating under specific conditions. Clearly, 
such a solution is uninformative and practically useless for optimization problems of multifactor systems. In this regard, the study aims 
to develop a universal method for solving analysis and optimization problems, suitable for any semi-Markov systems. The proposed 
method for solving the formulated problem solves it in two stages. In the first stage, a matrix of distribution densities is found by processing 
experimental data, representing the duration of the system’s stay in each state before transitioning to another state. It is crucial that the 
densities be in the Erlang distribution class of some order. These densities are found using the least-squares method, using histograms 
obtained by processing the experimental data. In the second stage, the resulting distribution densities are used to construct a system of 
differential equations for the probabilities of the system’s stay in each possible state. This constructively utilizes the unique property of 
Erlang distributions: any Erlang flow is a sifted simplest Poisson flow. Sequentially completing these two stages yields a solution to the 
problem of studying any probabilistic (semi-Markov) systems. Thus, the method proposed in this paper for solving problems of analysis 
and optimization of semi-Markov systems is universal.
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1. Introduction

The theory and practice of solving a variety of real-world problems 
divides this set into two classes: analysis (diagnostics) of the state of 
systems and their optimization for improved efficiency.

The difficulty and specificity of accurately assessing the state of the 
environment in which systems operate, as well as the numerical values of 
their parameters, impart a probabilistic nature to the study of these systems.

During their operation, systems randomly transition from one state 
to another. Probabilistic systems can have the following two properties. 
First, the system’s operation after exiting a specific possible state depends 
only on that state, not on how the system arrived at that state. Second, 
the distribution law for the duration of stay in each state before exiting 
it is exponential. Such systems are called Markov systems. If a system 
possesses only the first property but not the second, it is called semi-
Markov. It should be noted that real systems almost always possess the 
first property, while the second is extremely rare.

The mathematical theory for studying Markov systems is well-devel-
oped. Its application always leads to the desired result. For semi-Markov 
systems, the situation is different. This is why the problem of developing 
a method for studying semi-Markov systems is of fundamental practi-
cal interest. While there is no general analytical method for solving this 
problem, a numerical solution is possible. A simple example is considered.

It is assumed that a semi-Markov process is defined if the following 
are given:

1) the set E of possible process states;
2) the matrix of conditional distribution functions of the duration 

of the process’s stay Q tij( )  in the i-th state before transitioning to the j-th 
state, i ∈ E, j ∈ E, obtained through statistical analysis of the initial data;

3) the initial state of the process at time t = 0.
Further, if tij – the random duration of stay in i before transitioning 

to j, then

Q t P t tij ij( ) ( ).� � 	 (1)

Moreover, the probability P tij( )  of a transition from state i to state j 
in time t is the probability that no transition to some other state occurs 
during this time interval. The probability of a transition from i to j in 
the vicinity of time t is equal to dQ tij( ) . Then

P t Q Qij ik
k j

t

ij( ) .� � � �� � � �
�
�� 1

0

� �d 	 (2)

The set of functions P tij( )  uniquely defines a semi-Markov process. 
Furthermore, the probability of a transition from i to j in an unlim-
ited time is equal to



INFORMATION AND CONTROL SYSTEMS:
MATHEMATICAL MODELING 

104 TECHNOLOGY AUDIT AND PRODUCTION RESERVES — No. 6/2(86), 2025

ISSN-L 2664-9969; E-ISSN 2706-5448

P Q Q Qij ik
k j

ij� � � � � �� � � �
�

�

��( ) .1
0

� �d

The matrix p Pij= ( )  defines a Markov chain embedded in the semi-
Markov process.

To analyze the dynamics of the states of a semi-Markov process,  
a matrix F tij( )  of conditional distribution functions for the duration of 
stay in i before transitioning to j is introduced. By definition

F t P t t i t jij ij( ) / ( ) , ( ) .� � � �� �� �0 	 (3)

Moreover

P t F t Pij ij ij( ) ( ) .=

The corresponding (3) density function for the duration of the 
process’s stay in i before transitioning to j is equal to

f t
dF t
dtij
ij( )
( )

.=

Now the main problem of studying the process can be formu-
lated: to find the probability distribution of its stay on the set of 
possible states E at any time t. Introduced Φ ij t( )  is the conditional 
probability that at time t the analyzed system is in state j if at time 
t = 0 it was in state i. This probability is called the interval transition 
probability [1]. The corresponding events can occur as follows. First, 
if i =  j, then the system may remain in state i throughout the entire 
interval t. Second, it may exit this state and then, at time t, return  
to it. Accordingly, the interval transition probability is described by 
the relation

� � � � � �ij i ik
k E
k i

ik

t

kjt t P f t( ) ( ) ( ) ( ) .� � �
�
�

� �
0

d 	 (4)

Third, if j i≠ , the system may end up in j, occupying some inter-
mediate state k at time � � t . The corresponding relation has the form

� � � � �
�

ij ik
k E

i

ik

t

kjt P f t( ) ( ) ( ) .� �
�
�

� �
0

d 	 (5)

Relations (4) and (5) together define a system of integral equations 
for Φ ij t( ) . An indicator has been introduced

� ij

i j
i j

�
�
�

�
�
�

��

1
0

, ,
, ,

that allows to combine (4) and (5). This yields

� � � � � � �ij ij i ik
k E
k i

ik

t

kjt t P f t( ) ( ) ( ) ( ) .� � �
�
�

� �
0

d 	 (6)

The Laplace transform can theoretically be used to obtain a solu-
tion to system of equations (6). In this case

� � � �i ij i ik ik kj
i E j Ek E

k i

s s P f s s* * * *

,

( ) ( ) ( ) ( ).� �
� ��

�

� 	 (7)

System of equations (7) is written in matrix form. For this purpose, 
matrices

� �t t Q P f t f tij i ij ij� � � � � � � � � � � � �� �� �, , ,

� � � � � �t f t F t F t t tij i ij j ij i� � � � �� � � � � � �� � � � � � �� �, , ,  

and the corresponding Laplace transform matrices are introduced. Fur-
thermore, to simplify further relations, a special matrix multiplication 
operation, denoted by the symbol O, is introduced. According to this 
operation, for square matrices A, B, and C of the same dimension, the 
notation C = AOB means that C i E j Eij ij ij� � �� � , , .   Then, relation (7) 
takes the form

� � �* * * *( ) ( ) ( ) ( ),s s POf s s� � �� ��

from which

� �* * *( ) ( ) ( ).s POf s s� ��� ��
�

1
1

	 (8)

The matrix obtained as a result of operation (8) is then subjected 
to the inverse Laplace transform, the result of which determines the 
solution to the problem of finding � ij t i E j E( ), ,� � .

Thus, the theoretical possibility of analyzing semi-Markov sys-
tems exists. However, the practical implementation of this possibility 
is associated with the need to perform certain specific, non-standard 
computational procedures, as shown in the example. In particular, ob-
taining a solution to the system of integral equations (6) is non-trivial. 
Moreover, in most cases, only an approximate solution is possible, the 
error level of which is difficult to predict. As a result, a tabular descrip-
tion of the sought-after function is obtained. This result cannot satisfy 
the researcher, since it does not contain the most important thing –  
a description of the analytical dependencies of the parameters of the 
sought-after probability distribution densities of the system state at any 
point in time on the parameters of the functions describing the prob-
abilities of the system transitions (initial data).

The real, obvious need to apply semi-Markov models to solve  
a variety of practical problems is fundamental, and, therefore, the cor-
responding results are widely discussed. In [1], general approaches to 
the problem of analyzing stochastic systems using Markov and semi-
Markov models are considered. Using a problem in reliability theory 
as an example, the problem of determining the distribution law for the 
duration of a system’s stay in a selected set of admissible states is formu-
lated. The solution has been completed only for the specific case under 
consideration. The same problem is considered in [2], and in [3], an in-
ventory control problem is analyzed in which the intervals between re-
quests and service durations are described by semi-Markov processes. 
As a result, for this specific problem, only a probabilistic description of 
the queue length was obtained. In [4], a probabilistic description of the 
inventory level was obtained for a similar problem. In [5], the average 
duration of stay of a semi-Markov system in possible states is calculated 
and analyzed. In [6], the problem of processing data on failure rates and 
uptime is solved. Based on this, an empirical probability density func-
tion of the uptime distribution is obtained.

The relevance of the problem of developing technologies for ana-
lyzing and optimizing semi-Markov systems is discussed and empha-
sized. In [7], the problem of optimizing a technical maintenance system 
is posed and considered. A technology for calculating the start time of 
maintenance is developed. The same problem of optimizing a main-
tenance system is considered in [8]. In [9], the problem of optimizing 
a maintenance system is considered in more detail. The difficulties 
of solving the problem are analyzed. The desired result was obtained 
only after radically simplifying the problem by reducing it to a Markov 
model. The paper [10] considers the problem of modeling the operation 
of systems. Optimization possibilities are explored only at the level of 
formulating the corresponding problems.

An analysis of these works on current issues in the development, 
construction, research, and operation of real stochastic systems pro-
vides grounds for several conclusions:

–	 the vast majority of stochastic systems used in practice are semi-
Markov systems;
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–	 there is no general, theoretically sound method for accurately 
studying such systems.
Hence, the object, aim, and objectives of the research follow.
The object of research is a method for solving analysis and optimiza-

tion problems for any semi-Markov system.
The aim of research is to develop a reliable and universal method for 

solving analysis and optimization problems for semi-Markov systems.
To achieve this aim, it is necessary to solve the following objectives:
–	 for each state of the system, calculate histograms of the durations 
of the system’s stay before transitioning to another state;
–	 each of the resulting histograms is approximated by an Erlang 
distribution of the appropriate order;
–	 use the obtained distribution densities, which determine the dy-
namics of the probabilities of the system’s existence in each of the pos-
sible states, to form a system of differential equations for the prob-
abilities of states at any point in time;
–	 develop a computational technology for solving the resulting sys-
tem of differential equations.

2. Materials and Methods

The description of the proposed method is presented in a sequence 
corresponding to the numbering of the problems formulated above. 
This method must be capable of implementing a combination of the 
following technologies. The computational scheme must be oriented to-
ward processing the initial durations of the studied system’s stay in each 
of its possible states before its transition to any other state. The result of 
this processing will be a set of corresponding histograms. Each of these 
histograms is smoothed by a suitable distribution density or their addi-
tive convolution. The resulting set of densities is used to form a math-
ematical model of the system’s behavior in the dynamics of its operation. 
The resulting mathematical model is a graph of states and transitions 
controlled by the corresponding transition probability matrix. Using 
the resulting model, a system of differential equations is formulated 
for functions determining the probabilities of the system’s stay in each 
of its possible states at any given time. The solution to this system of 
equations determines the behavioral dynamics of the analyzed system.

3. Results and Discussion

The proposed method for studying semi-Markov objects differs 
from known methods in that it takes a special approach to selecting the 
distribution densities of random variables used in the mathematical 
model. The following requirements are imposed on these densities. 
First, they must possess high approximation capabilities for maximum 
accuracy in reproducing histograms. This means that the corresponding 
functions must be at least two-parameter. Second, the basic functions 
of the resulting mathematical model of the behavior of the analyzed 
system must be suitable for describing the behavior of Markov systems. 
Two-parameter functions describing Erlang distributions of arbitrary 
order simultaneously satisfy both of these requirements. The fact is 
that an Erlang flow of any order has a unique property: this flow is  
a sifted simplest Poisson flow. Therefore, with its use, the correspond-
ing mathematical models of the system from semi-Markov ones are 
easily transformed into Markov ones, the analysis of which is carried 
out without difficulty by solving the Kolmogorov-Chapman system 
of linear differential equations [1, 2]. The strong analytical capabilities 
of this approach can be further enhanced by using compositions of 
Erlang models for analysis, which naturally improves the accuracy of 
the approximation. In this case, the original semi-Markov mathematical 
model is transformed into a multi-stream Markov model.

Thus, the general plan for solving the problem is as follows. First, 
histograms of random values of intervals between transitions are formed 
based on the results of processing a series of observations. Next, a func-

tion is selected that represents the distribution density of the random 
value of the interval between these events. After this, the numerical val-
ues of the parameters of the desired distribution densities from the class 
of Erlang distributions are sequentially found using the least-squares 
method. This method and the corresponding computational technology 
provide an analytical description of the distribution densities of ran-
dom values of the duration of a semi-Markov system’s stay in any pos-
sible state before transitioning to any other state. The desired analytical 
description is realized by approximating the corresponding histograms 
with distribution densities from the class of Erlang distributions of 
the appropriately chosen order. An important remark should be made 
regarding the usefulness of the result obtained above. The proposed 
technology for approximating real histograms of random variables with 
Erlang distributions would not be so useful and would hardly be widely 
used were it not for one key property of these Erlang distributions.  
It was mentioned that a stream of events, which intervals have an Erlang 
distribution of any order, is a sifted simplest (exponential) stream. This 
means that to obtain, for example, a first-order Erlang stream, one must 
select every odd (or every even) event (i. e., events that follow one an-
other, not consecutively, but every other event) from a simplest stream 
of the same intensity. It is precisely this property of Erlang distributions 
that makes it possible to analyze non-Markov systems using Markov 
methods. Thus, it is possible to move on to describing a technology 
for constructing models of systems, which behavior is described using 
Erlang streams of a given order.

The simplest variants of constructing queueing systems, which 
event streams are described by Erlang distributions are considered. 
Let’s assume that a first-order Erlang stream arrives at the input of  
a single-channel system, and the servicing is exponential. The state and 
transition graph in such a system is shown in Fig. 1.

µ 

λ λ 

0 01 1

Fig. 1. System state and transition graph

In Fig. 1: 0 – the only channel in the system is free; O1  – the request 
to be screened, which does not occupy the channel, has arrived at the 
system input; 1 – the channel is busy with servicing; λ – the incoming 
flow rate; μ – the service rate.

A system of linear algebraic equations is introduced that describe 
the system’s behavior using state probabilities P P PO O, , :

1 1

� � �
� � �

� �
� � �

� �
� �
� �

P P
P P

P P
P P P

0 1

0 0

0 1

0 0 1

0
0

0
1

1

1

1

,
,

,
. 	 (9)

This system is solved by expressing P01
 and P1  in terms of P0 .  

As a result:

P P

P P

1 0

01 0

�

�

�
�

,

.

By substituting the resulting expressions for P01  and P1  into the 
normalization condition, let’s obtain

P P P P P P0 0 1 0 0 02 2 1� � � � � �
�

�
�

�

�
� �

�
�

�
�

�
�

.
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Hence

P

P P

P

0

01 0

1

1

2 2

1

2 2

1

2 2

�
�

�
�

� �
�

�
�

�
�

�
�

�
�

�
� �

�
�

�
� �

�
� �

�

�
� �

,

,

. .

The desired distribution of the final probabilities of the system  
is obtained.

Below, let’s consider a slightly more complex problem in which 
the service flow is also a first-order Erlang flow. The system state and 
transition graph is shown in Fig. 2.

µ 

λ λ 

1

11 µ 

1

Fig. 2. System state and transition graph

In Fig. 2: 0 – the only channel is free; O1  – the request has arrived 
at the system input that does not cause the channel to be occupied; 
1 – the channel is busy servicing; 11  – the state to be screened out, the 
channel is busy servicing.

A system of linear algebraic equations describing the system’s be-
havior is introduced:

� � �

� �

� �

� �

� � �

� �

� �

� �

� �

P P

P P

P P

P P

P P P P

0 1

0 0

0 1

1 1

0 0 1 1

1

1

1

1

1 1

0

0

0

0

,

,

,

,

��1. 	 (10)

Expressing all system states through P0 , let’s obtain:

P P

P P

P P P

1 0

0 0

1 0 0

1

1

1

�

�

� �

�
�

�
�

�
�

,

,

.

The resulting expressions are substituted into the normalization 
condition, and is determined by P0 . In this case

P P P P P P P0 0 0 0 0 0 02 2 2 1 1� � � � � � �
�

�
�

�

�
� �

�
�

�
�

�
�

�
�

.

Hence
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The desired state probability distribution is obtained.
Finally, an even more complex model is considered. Let a first-

order Erlang flow arrive at the input of a three-channel semi-Markov 
system, and let the servicing of requests be exponential. The system 
state and transition graph is shown in Fig. 3.

0 1 2 3

01 11 21
λ λ 

λ 
λ λ 

µ 2µ 3µ 

Fig. 3. State and transition graph of a three-channel semi-Markov system 

with a first-order Erlang flow as input. Service is exponential

Thus, in acc ordance with the unique property of Erlang flows, the 
order of this flow for k = 1 is reflected in the graph by the appearance 
of intermediate states ( , , ),0 1 21 1 1  that are eliminated. The correspond-
ing system of linear algebraic equations then takes the following form:
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� � � �
� �
�
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� �
� � � �
� �
�

P P
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P P P P
P P
P
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0 2 1 1
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2 0
0

1
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,
,

,
,

33 2 0
0

3

3 2 2

2 2

2 3

1

1

� � �
� �
� �

P P P
P P
P P

� � �
� �
�

,
,

. 	 (11)

By summing the second equation with the third, the fourth equa-
tion with the fifth, and the sixth equation with the seventh, let’s obtain 
the following system of four equations:

� � �
� � � �
� � � �
� �

� �
� � � �
� � � �
� �

P P
P P P P
P P P P
P P

0 1

0 2 1 1

1 3 2 2

2

0
2 0
3 2 0
3

,
,

,
00. 	 (12)

The following set of parameters is introduced

Z P k P kk k k� � ��� �1 1 2 3 4, , , , .

Using these parameters, system (12) is written as follows:

Z
Z Z
Z Z
Z

1

1 2

2 3

3

0
0
0

0

�
� �
� �
�

,
,
,

.

Hence

Z Z Z1 2 3 0= = = ,

or

� �P k P kk k� � � �1 0 1 2 3, , , .
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These relations yield the following recurrence formulas

P
k

P kk k� ��

�
� 1 1 2 3, , , .

Hence

P P
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�
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,

!
,

!
. 	 (13)

It is noted that the second, fourth, and sixth equations of sys-
tem (13) yield:

P P
P P
P P

0 01

1 21

2 21

=
=
=

,
,
. 	 (14)

From relations (13) and (14), taking into account the normaliza-
tion condition, let’s obtain the value P0

P P P
k
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k

k

k

k
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The solution to the problem is complete. It should be noted that the 
computational scheme for solving specific problems discussed above 
and implemented is in no way tied to the specifics of their formulation, 
confirming the universality of the method. This allows for a radical 
expansion of the capabilities of existing methods for solving a variety 
of similar problems, which are strictly limited to the study of Markov 
systems. The proposed method can be used for any semi-Markov sys-
tem with arbitrary distribution laws for the duration of stay in each state 
before transitioning to any other state. The possibility of developing 
a general method for studying semi-Markov systems is the result of 
the constructive use of the properties of Erlang event flows. The high 
efficiency of the proposed method for studying systems is determined 
by the simplicity of its practical implementation and the controllable 
accuracy of the obtained results.

A natural limitation: the stated problem must be well-posed, that is, 
the number of experiments must exceed the number of factors. Further 
research is aimed at extending the method to cases where the initial 
data are not clearly defined.

4. Conclusions

1.	 The universal method for analyzing and optimizing semi-
Markov systems is proposed and substantiated. The method can be 

implemented for any initial data with respect to the distribution laws 
for the durations of the system’s stay in states before departure.

2.	 The two-stage computational procedure was developed and 
used to solve the problem. In the first stage of implementing the 
method, statistical processing of the experimental data is performed 
to obtain histogram approximations using the Erlang distribution or, if 
necessary, their additive convolution.

3.	 In the second stage of the procedure, a technology for obtain-
ing a system of linear differential equations for the probabilities of 
system states at any point in time is substantiated. The complexity of 
these equations is independent of the nature and characteristics of the 
initial data.

4.	 The solution to these equations determines the desired distribu-
tion densities of the system’s stay in each of the possible states, as well 
as the probability distribution of the system’s states at any point in time.
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