УДК 661.872 DOI: 10.15587/2312-8372.2015.43888

Головко Д. А., ВЛИЯНИЕ СОЕДИНЕНИЙ МАРГАНЦА НА СИНТЕЗ ФЕРРАТОВ(VI)

Изучены особенности получения ферратов(VI) калия и бария в присутствии соединений марганца, содержащихся в исходном сырье. Установлено, что в процессе синтеза примеси марганца из Fe-содержащих компонентов вместе с железом переходят в целевые продукты. Предложены технологические решения для уменьшения негативного влияния марганца на качество ферратов(VI).

Ключевые слова: синтез ферратов(VI), соединения марганца, загрязнение манганатами, определение Mn(VI), феррат бария.

1. Введение

Ферраты имеют широкий спектр применения в качестве «зеленых» реагентов полифункционального действия в промышленной экологии, селективных окислителей в органическом синтезе, компонентов супер-железных аккумуляторов и др. [1–5]. Однако, производство соединений Fe(VI) все еще остается малотоннажным, что в определенной степени связано с высокой скоростью разложения ферратных растворов и достаточно низкой устойчивостью кристаллических ферратов, получаемых по традиционным технологиям [6]. Склонность растворов ферратов к разложению вполне объяснима, ведь анион FeO_4^{2-} — это один из самых сильных окислителей, легко разлагающий воду с выделением кислорода:

$$4\text{FeO}_4^{2-} + 6\text{H}_2\text{O} \rightarrow 4\text{FeOOH} + 3\text{O}_2 + 8\text{OH}^-.$$
 (1)

Данные по устойчивости кристаллических ферратов противоречивы. Ранее считалось, что феррат бария даже с небольшим содержанием воды может храниться долго без видимого разложения, однако последними исследованиями показано, что даже сухая соль весьма нестабильна [6]. Причины этого до сих пор неизвестны. В [7] сообщается, что если образцы твердых ферратов достаточно чисты (98,8 % К₂FeO₄), то их состав остается практически постоянным в течение длительного времени (изменение ±0,1 % в год). Поэтому можно предположить, что снижение устойчивости ферратов может быть вызвано наличием примесей различной природы в системе. Классическая работа [8] была одной из первых публикаций, в которых было убедительно показано, что устойчивость ферратных растворов резко снижается в присутствии следов (10^{-6} M) солей кобальта и никеля. Вместе с тем, исследований по изучению влияния соединений других тяжелых металлов на свойства ферратов явно недостаточно. В этой связи представленная работа посвящена установлению влияния такого элемента, как марганец, который является основной примесью (среди соединений тяжелых металлов) практически всех железосодержащих веществ, применяющихся для синтеза ферратов.

2. Анализ литературных данных и постановка проблемы

В многочисленных публикациях по химии и технологии ферратов марганец упоминается не очень часто, к тому же выводы, приводимые в них, иногда носят дискуссионный характер, анализ которых позволил выявить две группы противоречий. Первая группа сводится к различиям во взглядах на способность примесных соединений марганца переходить в процессе синтеза ферратов в целевые продукты и формах существования марганца в них, если такой переход произошел. Так, по данным [9], при растворении чугунного анода (0,50 % Mn), марганец в раствор не переходит. Напротив, другие авторы после синтеза зафиксировали: оксоанионы $\mathrm{MnO_4}^{2-}$ и $\mathrm{MnO_4}^{-}$ в растворе [10], карбонат марганца в кристаллическом $\mathrm{K_2FeO_4}$ [11] и неидентифицированные формы марганца в $\mathrm{BaFeO_4}$ [4].

Естественно, что сведения, приводимые в [9–11], нуждаются в экспериментальной проверке и очевидно, что накопление марганца в синтезированных ферратах является негативным явлением, и должны приниматься меры по его устранению.

Вторая группа противоречий связана с разными выводами относительно осуществления перехода Fe(III) → Fe(VI) под влиянием оксоанионов марганца. Так, в [12] считают, что добавление небольшого количества (2–5 %) перманганата или манганата к продуктам восстановления ферратов (гидроксиду или оксиду железа(III)) способствует переходу Fe(III) в Fe(VI), например по реакциям:

$$2MnO_4^- + Fe_2O_3 + 2OH^- \rightarrow$$

 $\rightarrow 2MnO_2 + 2FeO_4^{2-} + H_2O,$ (2)

$$3\text{MnO}_4^{2^-} + \text{Fe}_2\text{O}_3 + \text{H}_2\text{O} \rightarrow$$

 $\rightarrow 3\text{MnO}_2 + 2\text{FeO}_4^{2^-} + 2\text{OH}^-.$ (3)

Однако, авторы [13], напротив, считают, что ион ${\rm MnO_4}^-$ из-за слабой комплексообразующей способности не вступает в реакцию замещения групп ${\rm OH^-}$ и не может быть окислителем гидроксида ${\rm Fe}({\rm III})$. В то же время в [14] утверждается, что анион перманганата может

окислить соединения железа(III), в частности гидроксокомплексы $[Fe(OH)_4]^-$ до FeO_4^{2-} , а манганат — нет.

Для выяснения причин, объясняющих выявленные противоречия, необходимо проведение дополнительных исследований, сделанных в сравнимых условиях с применением идентичных исходных веществ.

3. Объект, цель и задачи исследований

Объект исследования — соединения марганца, образующиеся при получении ферратов, и их влияние на показатели синтеза и свойства соединений Fe(VI).

Целью данной работы было установить особенности процессов получения ферратов(VI), обусловленных влиянием примесных соединений Mn.

Для достижения поставленной цели необходимо было решить следующие задачи:

- установить причины и последствия загрязнения ферратов(VI) соединениями марганца;
- изучить влияние примесей Mn на свойства и эффективность синтеза ферратов;
- предложить технологические приемы для уменьшения загрязнения ферратов калия и бария соединениями марганца.

Материалы и методы исследования влияния соединений марганца на свойства и синтез ферратов

4.1. Способы получения ферратов щелочных и щелочноземельных металлов. Твердые ферраты и их растворы синтезировали двумя наиболее распространенными способами — гипохлоритным и комбинированным, в соответствии с рекомендациями изложенными в [1]. Ниже приводятся основные уравнения химических реакций, лежащих в их основе:

$$FeSO_4 \cdot 7H_2O + 2ClO^- + 4OH^- \rightarrow$$

$$\rightarrow \text{FeO}_4^{2-} + 2\text{Cl}^- + \text{SO}_4^{2-} + 9\text{H}_2\text{O},$$
 (4)

$$Fe + 8OH^{-} \rightarrow FeO_4^{2-} + 4H_2O + 6e^{-},$$
 (5)

$$FeO_4^{2-} + 2K^+ \to K_2 FeO_{4(s)},$$
 (6)

$$FeO_4^{2-} + Ba^{2+} \rightarrow BaFeO_{4(s)}$$
 (7)

4.2. Материалы и вещества, применяемые для синтеза ферратов в присутствии соединений марганца. Исходным сырьем для получения ферратов гипохлоритным способом были $FeSO_4\cdot 7H_2O$, $BaCl_2$, KOH и NaOH. Для исследований применяли также $MnSO_4\cdot 7H_2O$, $KMnO_4$, $MnCO_3$ и $Mn(OH)_2$. Все реагенты имели квалификацию чистоты не ниже х. ч. В качестве окислителей применяли щелочные растворы гипохлорита (марка A) и синтезированного феррата натрия [1].

Для комбинированного способа синтеза ферратов использовали аноды, изготовленные из стандартных образцов различных марок сталей и чугунов с известным содержанием марганца.

Для приготовления щелочных растворов применяли воду, прошедшую две стадии дистилляции.

4.3. Анализ оксоанионов железа и марганца. Концентрацию оксоанионов в растворе определяли путем прямого потенциометрического титрования пробы, со-

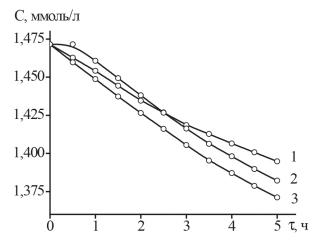
держащей соединения Fe(VI), Mn(VI) или Mn(VII), пользуясь специально разработанной методикой, подробно описанной в [15].

Определение ферратов и манганатов при их взаимном присутствии было основано на фотометрической методике [10]. Спектрофотометрические измерения проводили на спектрофотометре UV-5800PC в кварцевых кюветах толщиной поглощающего слоя 1 см.

5. Результаты исследований по установлению особенностей синтеза ферратов(VI) в присутствии соединений марганца

5.1. Термодинамические и кинетические закономерности окисления соединений марганца гипохлорит-ионом. Ниже приведены уравнения химических реакций аниона гипохлорита с сульфатом марганца(II) — основной примесью в сульфате железа и гидроксида марганца(II), образующегося при введении MnSO₄ в щелочной раствор:

$$2Mn(OH)_2 + 5ClO^- + 2OH^- \rightarrow$$


$$\rightarrow 2 \text{MnO}_4^- + 5 \text{Cl}^- + 3 \text{H}_2 \text{O}.$$
 (9)

Для обеих реакций были рассчитаны значения стандартной энергии Гиббса (ΔG^0_{298}): -1855,6 кДж (8) и -378,3 кДж (9).

При изучении взаимодействия соединений марганца с гипохлоритом установлено, что MnSO₄ и Mn(OH)₂ без видимых кинетических затруднений переходят в раствор (8, 9). Так, время практически полного растворения навесок 0,2-1,0 г MnSO₄ · 7H₂O и Mn(OH)₂ не превышало 10-15 минут. При этом для всех случаев зафиксированы достаточно высокие степени превращения, близкие к 100 %. Растворы приобретали характерную для аниона MnO_4^- окраску и оставались стабильными, если в системе присутствовал избыток гипохлорита. В противном случае наблюдался ускоренный переход перманганата в манганат, о чем свидетельствовало окрашивание раствора в изумрудный цвет. Так, при начальной концентрации перманганата порядка $1 \cdot 10^{-3}$ M в 14 M растворе NaOH уже через 15 минут весь марганец находится в виде манганата.

5.2. Влияние оксоанионов марганца на кинетику разложения ферратов в щелочной среде. Поскольку, при синтезе ферратов в растворе содержится некоторое количество оксоанионов марганца, перешедших в раствор в ходе побочных реакций (8, 9), то представляло интерес изучить их влияние на кинетику разложения ферратов (1). Было установлено, что устойчивость ферратов в присутствии манганата и перманганата практически не изменяется, если их содержание в системе невелико. Однако иная картина наблюдается при соизмеримых количествах ферратов и оксоанионов марганца (рис. 1).

Влияние примесей манганатов в исходном растворе на устойчивость, полученных из него в ходе реакций (6, 7) кристаллических ферратов калия и бария, при длительном хранении в затемненном месте без доступа воздуха представлено в табл. 1.

Рис. 1. Изменение концентрации ${\rm FeO_4}^{2-}$ во времени в 14,2 М NaOH (1) и в присутствии: 2 — $2.1\cdot 10^{-3}$ М ${\rm MnO_4}^-$; 3 — $2.1\cdot 10^{-3}$ М ${\rm MnO_4}^{2-}$

Таблица 1

Влияние примеси ${\rm MnO_4}^{2-}$ в исходном растворе на степень разложения кристаллов ${\rm K_2FeO_4}$ и ${\rm BaFeO_4}$ при хранении в течение 1 месяца

Nº	ω(MnO ₄ ²⁻), %	α (K ₂ FeO ₄), %	lpha(BaFeO ₄), %
1	0,01	0, 6	0,9
2	0,09	3,3	4,5
3	0,20	5,8	9,1
4	0,31	7,1	13,2

5.3. Взаимодействие соединений марганца с анионом FeO₄²⁻. Для экспериментальной проверки сведений о переходе примесей Мп в ферраты в виде карбоната марганца было изучено взаимодействие MnCO₃ с FeO₄²⁻. При введении навески карбоната в ферратный раствор (табл. 2) происходит постепенное его растворение, сопровождающееся образованием аниона манганата и выделением газообразного диоксида углерода, который частично поглощается щелочным раствором:

$$3MnCO_3 + 4FeO_4^{2-} + 2OH^- + 7H_2O$$
 →
 $\rightarrow 3MnO_4^{2-} + 4[Fe(OH)_4]^- + 3CO_2,$ (10)

$$CO_2 + 2OH^- \rightarrow CO_3^{2-} + H_2O.$$
 (11)

В табл. 2 приведены количественные характеристики этого процесса.

Таблица 2

Степень превращения карбоната марганца(II) в ${\rm MnO_4}^{2-}$ при взаимодействии с ферратом в 14,3 М NaOH для различных навесок ${\rm MnCO_3}$

Nº	gMnCO ₃ , r	α, %
1	0,2005	97,2
2	0,4011	95,3
3	0,6018	92,4
4	0,8009	93,1

Аналогичные результаты были получены для свежеосажденных гидроксида марганца(II) и гидратированного диоксида марганца, которые легко переходили в раствор с образованием ${\rm MnO_4}^{2^-}$.

5.4. Растворимость ферратов и манганатов. Для получения кристаллических ферратов после проведения реакций $(6,\ 7)$ применяют очистку образовавшегося осадка с помощью растворов гидроксида калия и метанола или этанола. Было установлено, что манганат калия имеет лучшую, чем феррат растворимость в этих растворителях. Так найдено, что в 13 М КОН при 0 °С растворяется $3,7\ r/л\ K_2MnO_4$ и только $0,8\ r/n\ K_2FeO_4$. В абсолютном метаноле при $15\ ^\circ$ С концентрация манганата достигает $0,42\ r/n$, а феррат в этих условиях практически нерастворим.

При получении $BaFeO_4$ было установлено, что $MnO_4{}^{2-}$ легко переходит из раствора в твердые ферраты, поскольку манганат бария нерастворим:

$$Ba^{2+} + MnO_4^{2-} \rightarrow BaMnO_{4(s)}$$
 (12)

Для последнего характерной является реакция окисления спиртов, в результате которой образуется диоксид марганца.

5.5. Влияние примесных соединений марганца на выход ферратов. Результаты по анодному растворению электродных материалов с различным содержанием марганца приведены в табл. 3.

Таблица 3 Значения выхода по току Вт феррата и манганата, полученных при транспассивном растворении образцов в 14,3 М NaOH

Nº	Исходные образцы	ω(Mn), %	Вт(FeO ₄ ²⁻), %	Вт(MnO ₄ ²⁻), %
1	Сталь низкоуглеродистая	0,38	44,1	0,0
3	Чугун мартеновский	0,88	39,2	0,3
6	Сталь 110Г13Л	12,0	10,3	14,2
7	Ферромарганец ФМн88(А)	91,9	0,9	37,1

Примечание: плотность тока 60 A/м², $\tau = 2$ ч, T = 298 К.

При получении соединений Fe(VI) гипохлоритным методом исходные соли железа, как правило, содержат незначительное количество примесей марганца, которые не оказывают заметного влияния на выход ферратов.

6. Обсуждение результатов исследования о влиянии соединений марганца на синтез и свойства ферратов

Исходя из данных по термодинамическому анализу и кинетическим измерениям, приведенных в 5.1 реакции (8, 9) протекают без осложнений, что очевидно связано с высоким значением редокс-потенциала ClO^- и высокой реакционной способностью реагентов. Продуктом окисления является MnO_4^- , который крайне неустойчив в концентрированных щелочах и быстро восстанавливается до MnO_4^{2-} . Последний, подобно феррату, умеренно стабилен.

Установлено, что оксоанионы марганца практически не изменяют кинетических закономерностей реакции разложения ферратов в жидкой фазе при незначительном их содержании в растворе. При соизмеримых количествах показано, что перманганаты являются стабилизаторами

ферратов (рис. 1), а манганаты катализаторами реакции разложения (1). Следует заметить, что для всех изученных производных марганца Mn(II) и Mn(IV) при взаимодействии их с избытком ${\rm FeO_4}^{2-}$, в растворе был идентифицирован только манганат ион, т. е. в $14-16~{\rm M}$ ОН $^-$ окислительная способность ферратов ниже, чем у перманганатов, но выше чем у манганатов. Эти выводы находятся в согласии с [14], не совпадают с [13] и частично совпадают с [12].

Следует также заметить, что, как было экспериментально показано выше, карбонат марганца в концентрированных щелочных растворах в присутствии такого сильного окислителя, как феррат, крайне неустойчив (табл. 2), поэтому суждения о наличии $MnCO_3$ в продуктах синтеза [11] являются несостоятельными.

Для твердых ферратов каталитическое действие производных марганца(VI) (табл. 1) на кинетику разложения ферратов выражено отчетливее. Важно отметить, что ферраты бария разлагаются быстрее, чем ферраты калия, полученные из одного и того же маточного раствора.

Анализ данных по транспассивному растворению (табл. 3) позволяет сделать формальный вывод об увеличении степени перехода марганца в раствор при увеличении его содержания в исходном материале. Можно предположить, что в случае использования низкоуглеродистой стали (0,38 % Мп), марганец в раствор не переходит, поскольку присутствует в ней в виде электрохимически инертных оксида и сульфида. Подобные результаты были получены и для электрода из чугуна (0,50 % Мп) [9]. Если же марганец в ферросплаве присутствует в виде карбидов или неокисленной форме, то очевидно, что его переход в раствор за счет электрохимической ионизации должен облегчаться, что и было экспериментально доказано (табл. 3). Поэтому для предотвращения перехода Мп в жидкую фазу необходимо использовать сырье с максимально низким содержанием марганца и углерода, в котором он содержится в виде технологических примесей (неэлектропроводных MnO и MnS), не принимающих участия в электрохимических превращениях. Следовательно из передела должны исключаться марганцовистые стали, чугуны и ферромарганец, которые могут случайно попасть в производство при использовании металлургических отхолов.

При получении ферратов гипохлоритным способом практически весь примесный марганец переходит в раствор. В этой связи с большой осторожностью необходимо применять некоторые виды отходов (отработанные травильные растворы и продукты переработки TiO₂), в которых содержание Мп как правило повышено [16].

Было установлено, что манганаты легко переходят из раствора в твердые ферраты, что особенно характерно для синтеза феррата бария, поскольку манганат бария нерастворим. В процессе очистки твердых ферратов, манганаты частично окисляют спирты, в результате чего целевые продукты синтеза загрязняются диоксидом марганца, который, вероятно, и является основной причиной обуславливающей низкую стабильность кристаллических ферратов (особенно $BaFeO_4$). Поэтому перед проведением реакции осаждения феррата бария (7) необходимо провести более тщательную очистку от манганатов, используя их лучшую растворимость в неорганических и органических растворителях по сравнению с ферратами.

7. Выводы

С помощью термодинамического и кинетического анализа показано, что примесные соединения марганца при синтезе ферратов окисляются гипохлоритом до $\rm MnO_4^-$, который при недостатке $\rm ClO^-$ в течение нескольких минут восстанавливается до $\rm MnO_4^{2-}$. Установлено, что при электрохимическом синтезе с повышением содержания марганца в анодном материале наблюдается уменьшение выхода целевого продукта и накопление $\rm MnO_4^{2-}$ в растворе.

Установлено, что в процессе получения соединений Fe(VI) манганат из раствора переходит в твердые ферраты, что особенно характерно для синтеза BaFeO₄, поскольку BaMnO₄ нерастворим.

Обнаружено, что присутствие соединений Mn(II), Mn(IV) и Mn(VI) в системе ускоряет разложение как твердых ферратов, так и их растворов.

Для предотвращения загрязнения синтезированных ферратов соединениями марганца были предложены технологические приемы, суть которых сводится к рациональному подбору исходного сырья, а также обязательному включению в технологический цикл дополнительных стадий очистки в неорганических и органических растворителях.

Литература

- Sharma, V. K. Ferrates: Synthesis, Properties, and Applications in Water and Wastewater Treatment [Text] / V. K. Sharma. – ACS Symposium Series, 2008. – 524 p. doi:10.1021/bk-2008-0985
- Gan, W. Investigation of disinfection byproducts formation in ferrate(VI) pre-oxidation of NOM and its model compounds followed by chlorination [Text] / W. Gan, V. K. Sharma, X. Zhang, L. Yang, X. Yang // Journal of Hazardous Materials. — 2015. — Vol. 292. — P. 197–204. doi:10.1016/j.jhazmat.2015.02.037
- Farmand, M. Super-iron nanoparticles with facile cathodic transfer [Text] / M. Farmand, D. Jiang, B. Wang, S. Ghosh, D. E. Ramaker, S. Licht // Electrochemistry Communications. — 2011. — Vol. 13, № 9. — P. 909–912. doi:10.1016/ j.elecom.2011.03.039
- Licht, S. Toward Efficient Electrochemical Synthesis of Fe(VI)
 Ferrate and Super-Iron Battery Compounds [Text] / S. Licht,
 R. Tel-Vered, L. Halperin // Journal of The Electrochemical Society. 2004. Vol. 151, № 1. P. A31–A39.
 doi:10.1149/1.1630035
- 5. Tiwari, D. Ferrate(VI): A green chemical for the oxidation of cyanide in aqueous/waste solutions [Text] / D. Tiwari, H.-U. Kim, B.-J. Choi, S.-M. Lee, O.-H. Kwon, K.-M. Choi, J.-K. Yang // Journal of Environmental Science and Health, Part A. 2007. Vol. 42, № 6. P. 803–810. doi:10.1080/10934520701304674
- 6. Yang, W. Physical characteristics, electrochemical behavior, and stability of BaFeO4 [Text] / W. Yang, J. Wang, T. Pan, F. Cao, J. Zhang, C. Cao // Electrochimica Acta. 2004. Vol. 49, № 21. P. 3455–3461. doi:10.1016/j.electacta.2004.03.013
- Licht, S. Rapid chemical synthesis of the barium ferrate superiron Fe(VI) compound, BaFeO4 [Text] / S. Licht, V. Nashitz, B. Wang // Journal of Power Sources. 2002. Vol. 109, № 1. P. 67–70. doi:10.1016/s0378-7753(02)00041-1
- 8. Veprek-Siska, J. Reactions of very pure substances: Decomposition of Manganese (VII), Iron (VI) and Ruthenium (VII) oxyanions in alkaline solution [Text] / J. Veprek-Siska, V. Ettel // Chemistry and Industry. 1967. Vol. 1. P. 548–549.
- 9. Toušek, J. Untersuchung der zersetzung von natriumferratlösungen [Text] / J. Toušek // Collection of Czechoslovak Chemical Communications. 1962. —Vol. 27, № 4. P. 908—913. doi:10.1135/cccc19620908
- Павлова, О. В. Анодное поведение ферромарганца в концентрированных растворах гидроксида натрия [Текст] / О. В. Павлова, Е. А. Беляновская, И. Д. Головко, В. И. Супрунович, Д. А. Головко // Вісник Харківського національного університету. 2010. № 932: Хімія. Вип. 19(42). С. 119–123.

- Брауэр, Г. Руководство по неорганическому синтезу [Текст] / Г. Брауэр. М.: Мир, 1985. Т. 5. 360 с.
 Licht, S. Fe(VI) Catalyzed Manganese Redox Chemistry:
- 12. Licht, S. Fe(VI) Catalyzed Manganese Redox Chemistry: Permanganate and Super-Iron Alkaline Batteries [Text] / S. Licht, S. Ghosh, V. Nashitz, N. Halperin, L. Halperin // The Journal of Physical Chemistry B. 2001. Vol. 105, № 48. P. 11933–11936. doi:h10.1021/jp012178t
- 13. Shilov, V. P. Oxidation of Fe(III) to Fe(VI) by ozone in alkaline solutions [Text] / V. P. Shilov, A. V. Gogolev // Russian Journal of General Chemistry. 2010. Vol. 80, № 5. P. 895–898. doi:10.1134/s107036321005004x
- Павлова, О. Вплив оксоаніонів манґану на стійкість лужних розчинів натрій ферату(VI) [Текст] / О. Павлова, В. Супрунович, Д. Головко // Вісник Львівського національного університету. Сер. Хімічна. — 2011. — Вип. 52. — С. 217—224.
- 15. Golovko, D. A. A Simple Potentiometric Titration Method to Determine Concentration of Ferrate(VI) in Strong Alkaline Solutions [Text] / D. A. Golovko, V. K. Sharma, V. I. Suprunovich, O. V. Pavlova, I. D. Golovko, K. Bouzek, R. Zboril // Analytical Letters. — 2011. — Vol. 44, № 7. — P. 1333—1340. doi:10.1080/00032719.2010.511748
- 16. Kanari, N. Utilization of a waste from titanium oxide industry for the synthesis of sodium ferrate by gas-solid reactions [Text] / N. Kanari, I. Filippova, F. Diot, J. Mochón, I. Ruiz-Bustinza, E. Allain, J. Yvon // Thermochimica Acta. -2014. Vol. 575. P. 219-225. doi:10.1016/j.tca.2013.11.008

ВПЛИВ СПОЛУК МАНГАНУ НА СИНТЕЗ ФЕРАТІВ(VI)

Вивчені особливості отримання калій та барій фератів(VI) в присутності сполук Мангану, що містяться у вихідній си-

ровині. Встановлено, що протягом синтезу домішки Мангану із Fе-вмісних компонентів разом із Ферумом переходять у цільові продукти. Запропоновано технологічні рішення для зменшення негативного впливу Мангану на якість фератів(VI).

Ключові слова: синтез фератів(VI), сполуки Мангану, забруднення манганатами, визначення Mn(VI), барій ферат.

Іоловко Дмитрий Аркадьевич, кандидат химических наук, доцент, кафедра технологии неорганических веществ и экологии, Украинский государственный химико-технологический университет, Днепропетровск, Украина, e-mail: golovkod@mail.ru. Іоловко Игорь Дмитриевич, ассистент, кафедра аналитической химии и химической технологии пищевых добавок и косметических средств, Украинский государственный химико-технологический университет, Днепропетровск, Украина, e-mail: e20@ua.fm.

Головко Дмитро Аркадійович, кандидат хімічних наук, доцент, кафедра технології неорганічних речовин та екології, Український державний хіміко-технологічний університет, Дніпропетровськ, Україна.

Іоловко Ігор Дмитрович, асистент, кафедра аналітичної хімії і хімічної технології харчових добавок та косметичних засобів, Український державний хіміко-технологічний університет, Дніпропетровськ, Україна.

Golovko Dmitriy, Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine, e-mail: golovkod@mail.ru.
Golovko Igor, Ukrainian State University of Chemical Technology, Dnipropetrovsk, Ukraine, e-mail: e20@ua.fm