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The object of this study is human biomechanical systems in both normal 
and pathological conditions, focusing on the lumbo-pelvic and craniofacial 
complexes, including restorative structures such as miniplates, screws, and dental 
implants. The military actions caused by Russian aggression against Ukraine 
have prompted the development of more effective methods for injury treatment 
and rehabilitation.

This research proposes novel digital modelling methods for biomechanical 
systems that incorporate individual mechanical properties of biological tissues 
and enable a comprehensive stress-strain analysis under normal conditions, 
pathological changes, and post-reconstructive states. The study utilizes finite 
element analysis (FEA) and computer simulation, integrated with CT and MRI 
data, ensuring high accuracy in predicting the functional behaviour of biologi-
cal tissues. The dominant biomechanical factors that help prevent mechanical 
overload of tissues and reduce the risk of complications have been identified. The 
study investigates the kinematic chain "lumbar spine – sacroiliac joint – pelvis", 
assessing the impact of pathological variations in lumbar lordosis and sacral 
inclination angle. For the craniofacial complex, the research examines the bio-
mechanical conditions for successful osseointegration of miniplates, screws, and 
implants in jaw reconstruction.

The practical applications of the obtained results include orthopedics, 
traumatology, dentistry, and rehabilitation medicine. The proposed methods 
contribute to improving surgical planning accuracy, optimizing rehabilitation 
procedures, and developing durable implants adapted to the patient’s anatomical 
features. This will help minimize the risk of complications and accelerate patient 
recovery.

Keywords: biomechanical system modelling, finite element analysis, digital 
simulation, stress-strain state, osseointegration, kinematic analysis, computa-
tional biomechanics of biological tissues.
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The object of research is the axial flux BLDC (Brushless DC) motor, widely 
used in electric vehicles and industrial applications due to its compact design 
and high efficiency. One of the most problematic areas is optimizing the stator 
slot configuration and coil diameter to enhance efficiency and stability. Previous 
studies show that these parameters significantly affect magnetic field distribu-
tion, losses, and overall performance. However, a systematic investigation is still 
needed. Therefore, this study aims to identify optimal parameters to improve 
BLDC motor efficiency and stability.

In the course of the study, an experimental setup with a BLDC motor, 
controller, power supply, and measurement tool were used. The motor was 
tested with different stator slots (12 and 24) and coil diameters (0.2 mm, 0.5 mm, 
0.7 mm). Measurements included power, current, speed, and temperature. Data 
analysis assessed the impact on efficiency and stability, supported by numerical 
simulations for validation and optimization.

Received results show that increasing stator slots from 12 to 24 improves 
magnetic field distribution and motor efficiency, with power output reaching 
3060 W in the optimal configuration. This is due to the proposed stator slot 
variation, which reduces magnetic losses and enhances thermal efficiency.  
In particular, motors with 24 slots and a 0.5 mm coil diameter achieved the high-
est efficiency, while a 0.7 mm coil led to performance decline due to increased 
resistance. The findings highlight the need for an optimal balance between coil 
diameter and stator slot configuration for stable and efficient operation.

This ensures the development of high-performance BLDC motors with 
improved efficiency and stability. Compared to similar configurations, it offers 
higher power output, lower magnetic losses, and better thermal regulation. These 
findings support the advancement of reliable, energy-efficient BLDC motors for 
electric vehicles and industry, with future research focusing on advanced materi-
als and manufacturing techniques for further optimization.

Keywords: BLDC motor, stator slot configuration, coil diameter, opera-
tional stability, motor performance, rotational speed.
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The object of the research is technological processes, seeds and kernels of 
industrial hemp, centrifugal dehullers, dehuller impellers.

The research is aimed at increasing the efficiency of centrifugal dehulling 
of industrial hemp seeds by determining the influence of the number of profile 
holes in the impellers.

Two variants of the impeller design were developed and tested: with four 
and six profile holes. The research was conducted on seeds of the "Glesia" variety 
under stable processing conditions, including optimal humidity (8.4 %) and 
standardized wheel rotation parameters (6000±200 rpm).

According to the research results, it was established:
– an impeller with four profile holes in five dehulling cycles enabled a total 

kernel yield of 34.81 %. Under such conditions, the bulk of the seeds were dehu-
lled in the first three cycles;

– the impeller with six profile holes made it possible to ensure a total kernel 
yield of 34.48 % in three dehulling cycles. Under these conditions, a significant 
part of the kernels was separated in the first two cycles.

According to the results of the analysis of the dehulling indicators, it  
was noted:

– in the first two cycles, the wheel with six holes separated up to 29.71 % of 
the kernels, and the wheel with four holes – up to 22.02 %;

– the use of the design of the wheel with six holes reduced the remains of 
undehulled seeds after the third cycle to 4.24 % of the initial mass, while the wheel 
with four holes – up to 16.23 %.

The advantages of the centrifugal dehulling method, which is based on the 
principle of converting kinetic energy into impact, were noted. This made it pos-
sible to separate the shells from the kernels without prior calibration of industrial 
hemp seeds.

The research results demonstrated the advantages of the improved design, 
which includes an impeller with six profile holes, and the prospects of its use to 
increase the productivity of industrial hemp seed dehulling.

Keywords: hemp seeds, seed kernels, centrifugal dehulling, impeller, impel-
ler profile holes, dehulling efficiency.
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The object of the study in the work is the temperature regime of melting in 
a cupola.

The existing problem is that due to the aggressive high-temperature 
environment, continuous measurement of the parameters of the internal 
environment in the working space of the cupola furnace is too difficult. Even 
with the implementation of such a possibility, errors of the first and second 
types may occur. This necessitates indirect control of the temperature regime, 
which could provide a solution to the identification problem – whether the 
control system is really operating in normal mode and meets the accuracy 
requirements, or whether there is a parametric failure along the corresponding 
control circuit.

The existence of the specified problem requires solutions related to the 
definition of criteria for evaluating the temperature regime, by which it would be 
possible to verify the reliable functioning of the melting control system.

A criterion for evaluating the temperature regime of melting by the viscosity 
of the slag as a function of its composition is proposed, which allows identifying 
the temperature regime of melting with an accuracy of 96 %. This result is due to 
the proposed two-stage procedure, in which the first stage is the construction of 
mathematical models that describe the influence of the slag composition on the 
viscosity, and the second is the construction of a criterion based on the density 
distribution of the discriminant function for both temperature regimes. Using the 
obtained criterion also makes it possible to determine the areas of chemical com-
positions, by which the temperature regime can also be identified. The relation-
ships between the variables for the identification procedure are presented in the 

form of a structural diagram. The proposed solutions will allow determining the 
quality of the functioning of the temperature control loop in the melting control 
system based on periodic control.

The presented study will be useful for machine-building enterprises that 
have foundries in their structure, where cast iron is smelted for the manufacture 
of castings.

Keywords: cupola melting, slag composition, temperature regime in the 
cupola furnace, slag viscosity, temperature control loop in the cupola furnace.
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The object of the study is the process of cyclic recycling of polyvinyl chloride 
(PVC). The main problem of multiple recycling of polyvinyl chloride is poor ther-
mal stability. This problem is associated with insufficient stabilization of polyvinyl 
chloride at the stage of manufacturing the initial product. Usually, such products are 
difficult to recycle, since the content of additives in polyvinyl chloride is designed 
for one-time manufacturing of products and does not provide for repeated cyclic 
recycling. In addition, it may be necessary to modify the PVC composition to 
obtain the characteristics necessary for a new application. The thermal stability of 
polyvinyl chloride can be improved by various methods of physical modification. 
One of the key methods is the introduction of a stabilizer in a rational amount.  
To solve the problems set in the work, PVC composites with an adjustable stabilizer 
content from 2 to 5 mass parts were manufactured. The manufactured composites 
were recycled up to 5 times. At each cycle of PVC composites processing, thermal 
stability and melting point were determined using the RM-200C Hapro rheometer 
plastograph (Harbin University of Science and Technology Harbin Technology 
Co. Ltd, China). Mechanical properties were also determined on a tensile machine 
according to ISO 527-2:2012, Charpy impact strength according to ISO 179 and 
ASTM D256, and melt flow index according to ISO 1133:199.

The study found that increasing the stabilizer content by only 1–2 parts by 
mass from its base concentration of 3 parts by mass increases the life of the PVC 
composite by 1.5–2 times. A stabilizer content of 4–5 parts by mass allows main-
taining sufficiently stable physical and mechanical characteristics of the PVC 
composite during 5 processing cycles.

As a result of the research, a PVC formulation suitable for cyclic processing 
was proposed, which is achieved by introducing 4–5 mass parts of the stabilizer 
at the stage of primary PVC production. This allows maintaining the mechanical 
characteristics of the material, valuable for the final application during multiple 
processing compared to typical PVC composites used on the market for the 
production of window profiles.

Keywords: thermal degradation, rheometric analysis, plastogram, tensile 
strength, impact strength, melt flow index, extrusion.
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The problem of using wood is to ensure resistance to high-temperature 
flame and application technology. Therefore, the object of research was to 
change the parameters of thermal destruction of wood during fire protection 
by impregnation and intumescent coating. It has been proven that for wood 
treated by impregnation, the destruction processes slow down, so the mass loss is 
reduced by 3–5 times, the process increases in the region of higher temperatures 
with a significant coke residue. As for wood treated with intumescent coating, in 
the temperature range of 200–300 °C, pentaerythritol begins to decompose with 
the formation of aldehydes and a foam coke center is formed. The beginning of 
intensive mass loss coincides with the temperature of 320–330 °C, on which 
the sublimation peak of melamine is superimposed, starting at a temperature of 
330 °C, which ends at a temperature of more than 420 °C. The obtained activa-
tion energy of wood is 30.03 kJ/mol, treatment of wood with impregnating agents 
increases the activation energy during its thermal decomposition by more than 
two times, and treatment with an intumescent coating by more than 4.4 times. 
After pyrolysis of wood treated with flame retardants, the mixtures of destruc-
tion products differ significantly in the content of carbon dioxide, nitrogen and 
the amount of combustible gases. Thus, for wood treated with the composition 
DSA-1, the amount of nitrogen increased by more than 46 times, and the amount 
of combustible gases decreased by more than 3 times. An even greater difference 
was recorded during treatment of wood with an intumescent coating. In particu-
lar, it was found that the amount of combustible gases decreased by more than  
4 times, and the amount of nitrogen increased by more than 56 times. The practi-
cal significance lies in the fact that the results obtained were taken into account 
when developing a reactive coating. Thus, there are grounds to argue about the 
possibility of directed regulation of the wood protection process through the use 
of coatings capable of forming a protective layer on the surface.

Keywords: protective agents, fire resistance, volatile products, mass loss, 
surface treatment, protection efficiency.
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The object of research is the stabilization of the ettringite phase in cement 
systems containing gypsum-alumina cement and nanoparticles. One of the 
most problematic areas is the instability of the ettringite phase, which affects the 
durability and mechanical characteristics of materials. The main problems are 
insufficient consideration of transitions between macro-, micro- and nanolevels 
when forming the structure of the hardening system. Multicomponent mixtures 
cannot be calculated using existing models, since a significant number of initial 
parameters and characteristics are not taken into account. The transition of sys-
tems from one level to another is not taken into account, namely the transition 
of systems from macro- to micro- and to nanolevel. The study used nanomodi-
fication of cement systems based on gypsum-alumina cement by introducing 
synthesized composites (carbon nanoparticles) into the hardening matrix. The 
influence of the raw material mixture components on the correction of the fac-
tors of instability of the ettringite phase, the processes of structure formation was 
studied, which allows in the future to eliminate these shortcomings and control 
the structure formation at different levels of the hardening matrix system. The 
optimal amount of calcium sulfate for the formation of ettringite was obtained –  
30–40 % of the composition mass. This is due to the fact that the proposed 
composition of GC-40/G – 70/30 % has a significant amount of calcium hy-
droaluminates in the hydration process, the compressive and bending strengths 
are, respectively, 14 and 10 MPa. In particular, a dispersed medium resistant to 
delamination is formed, the water release of which is stabilized within 3 hours. 
Obtaining such values is ensured due to the fact that ettringite is formed in the 
early stages of hardening and provides an increase in the strength of the stone at 
a high speed. Compared with similar known gypsum-alumina cements, this pro-
vides advantages in the formation of high-basic ettringite. The results obtained 
are recommended for use in the construction of tunnels, restoration of hydraulic 
structures and transport infrastructure.

Keywords: binder, solution, ettringite, ettringite stabilization, aluminate 
cements, sulfoaluminate cements.
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The object of this study is the potential of artificial intelligence (AI) and 
machine learning (ML) techniques for thermal management in electronic 
devices. One of the most problematic aspects identified is the challenge of en-
suring performance, reliability, and energy efficiency across diverse systems, 
including semiconductors, data centers, and consumer electronics. In the course 
of the research, the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) methodology was used to systematically analyze 150 studies. 
These studies employed various approaches, such as predictive modeling, opti-
mization algorithms, and real-time control systems.

Our findings indicate that AI-driven thermal management can reduce 
energy consumption by up to 81.81 %, depending on the cooling method 
and optimization. Reinforcement learning-based HVAC control achieves 
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17.4 % energy savings, while ML-driven power management in manycore 
systems reduces energy use by 30 % and lowers peak chip temperatures  
by 17 °C. Neural network-based thermal forecasting achieves <1 % error, im-
proving prediction accuracy. Additionally, LSTM models for thermal prognosis 
achieve a 3.45 % relative prediction error, outperforming traditional regression  
methods.

These results highlight the potential of AI in optimizing thermal behavior 
across data centers, smart buildings, and manycore chip architectures. Key 
limitations were also identified, including limited data availability, challenges in 
model interpretability, and integration with legacy systems. The study provides 
a roadmap for scalable AI-driven thermal management. Emerging trends such 
as physics-informed ML models and the integration of cooling technologies 
promise innovation. Compared to conventional methods, these advancements 
deliver clear benefits in sustainability and adaptability.

Keywords: artificial intelligence (AI), machine learning (ML), thermal 
management, semiconductor thermal dissipation, predictive modelling, energy-
efficient computing.
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The object of the study are the processes occurring in electric drives of 
sucker rod pumping units, which are used for mechanical oil production.

When designing oil pumping units, one of the issues is the synthesis of 
control systems for the electric drives of pump jacks. In the synthesis of the con-
trol system, it is important to take into account as many factors as possible that 
influence the performance of the well and its equipment. When synthesizing the 
criterion for optimal operation of the system, it is necessary to take into account 
changes in the technical condition of the oil production facility and the condi-
tions of the reservoir operation. This is implemented using a control system that 
adjusts the electric drive speed according to the real operating conditions of the 
well. This approach allows improving the productivity of the oil pumping unit 
and increasing its economic efficiency.

The main focus is on the synthesis of a control system for the electric drive of 
a pump jack, which makes it possible to balance the intensity of fluid inflow into 
the well and its withdrawal. An optimization criterion is proposed, which takes 
into account different fluid inflow rates, thus adapting the electric drive operation 
to the specific conditions of each well.

The study used the theory of classical variational calculus. To find the 
minimum of the functional, and therefore the optimal parameters of the control 
system, a quadratic form, which is a Lyapunov function, was used.

The study resulted in the formulae for calculating the key operational 
parameters of the pump jack electric drive. The synthesized optimization 
criterion links the unit’s productivity to parameters such as the number of 
crankshaft rotations, the rod pump delivery coefficient, and the load torque of 
the drive motor.

In practice, the proposed optimization criterion for the electric drive opera-
tion will enable improving the efficiency of the oil pumping unit through the ra-
tional selection of the drive motor’s speed and torque. This, in turn, will enhance 
the well’s operating conditions and extend its operational life.

Keywords: sucker rod pumping unit, optimization criterion, control sys-
tem, pump jack, electric drive, well, functional.
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