

CHEMICAL AND TECHNOLOGICAL SYSTEMS

DOI: 10.15587/2706-5448.2025.344270

COMPREHENSIVE FORMATION OF LEATHER SEMI-FINISHED PRODUCTS USING ENZYMES

pages 6–11

Anatolii Danylkovich, Doctor of Technical Sciences, Professor, Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0002-5707-0419>

Olena Okhmat, PhD, Associate Professor, Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, Kyiv, Ukraine, e-mail: oxmat.oa@knutd.edu.ua, ORCID: <https://orcid.org/0000-0003-0927-8706>

The object of research is the process of complex formation of elastic leather using enzymes of proteolytic and hydrolytic action.

One of the most problematic areas is the decrease in the elasticity of the leather semi-finished product at the stage of its dehydration. Enzyme treatment increases the mobility of the microfibrillar structure of the semi-finished product due to the destruction of physical intermolecular bonds.

During the study, a proteolytic enzyme was used at the stage of bathing the pelt and enzymes of hydrolytic action were used to treat the tanned chrome semi-finished product.

A semi-finished product was obtained, which is characterized by an increase in porosity compared to the original semi-finished product. The porosity of the semi-finished product increases by 22% in the case of using enzyme treatment at the bathing stage and by 67% with repeated treatment of the tanned semi-finished product with enzymes. This is due to the fact that the proposed enzyme treatment promotes the removal of glycosaminoglycans from the dermis at the bathing stage. Further use of enzymes after tanning of the semi-finished product contributes to the destruction of carbohydrate bonds with collagen macromolecules, which ensures an increase in its physicochemical properties. The peculiarity of this effect can be explained by the presence of an active center in enzymes, which forms enzyme-hydrocarbon-collagen complexes with carbohydrates and collagen macromolecules. Inside the formed complexes, the destruction of existing bonds occurs and the separation of carbohydrates from the collagen of the dermis.

This provides the possibility of obtaining a leather semi-finished product, which is characterized by an increase in the tensile strength and elongation at 9.8 MPa by 8.4 and 23.0%, respectively, and these indicators reach 20.7 MPa and 48.0% compared to the indicators of the tanned semi-finished product.

Keywords: enzymatic plasticization, enzymes of proteolytic and hydrolytic action, leather semi-finished product, physicochemical properties.

References

1. de Castro Bizerra, V., Sales, M. B., Fernandes Melo, R. L., Andrade do Nascimento, J. G., Junior, J. B. et al. (2024). Opportunities for cleaner leather processing based on protease enzyme: Current evidence from an advanced bibliometric analysis. *Renewable and Sustainable Energy Reviews*, 191, 114162. <https://doi.org/10.1016/j.rser.2023.114162>
2. Atamanova, A. A., Kolesnyk, T. O., Andreeva, O. A. (2020). Modern research on the properties and use of enzymes. *Visnyk Khmelnytskoho Natsionalnoho Universytetu*, 5 (267), 257–263. Available at: <https://journals.khnu.km.ua/vestnik/?p=4652>
3. Wanyonyi, W. C., Mulaa, F. J.; Mamo, G., Mattiasson, B. (Eds.) (2019). Alkaliphilic Enzymes and Their Application in Novel Leather Processing Technology for Next-Generation Tanneries. *Alkaliphiles in Biotechnology. Advances in Biochemical Engineering/Biotechnology*. Cham: Springer, 195–220. https://doi.org/10.1007/10_2019_95
4. Ma, J., Hou, X., Gao, D., Lv, B., Zhang, J. (2014). Greener approach to efficient leather soaking process: role of enzymes and their synergistic effect. *Journal of Cleaner Production*, 78, 226–232. <https://doi.org/10.1016/j.jclepro.2014.04.058>
5. Khambhaty, Y. (2020). Applications of enzymes in leather processing. *Environmental Chemistry Letters*, 18 (3), 747–769. <https://doi.org/10.1007/s10311-020-00971-5>
6. Dettmer, A., Schacker dos Anjos, P., Gutterres, M. (2013). Enzymes in the Leather Industry, A Special Review Paper. *JALCA*, 108, 146–158. Available at: <https://journals.uc.edu/index.php/JALCA/article/view/3464>
7. Kolesnyk, T. O., Andreeva, O. A. (2020). Research of the process soaking of leather raw material in the presence of enzyme preparations. *Visnyk Khmelnytskoho Natsionalnoho Universytetu*, 2 (283), 251–254. Available at: <https://journals.khnu.km.ua/vestnik/?p=1199>
8. Simion, D., Gaidău, C., Păun, G., Berechet, D. (2023). Applications of Enzymes as Ecologic Alternatives in the Leather Industry. *Leather and Footwear Journal*, 23 (2), 107–114. <https://doi.org/10.24264/lfj.23.2.4>
9. Edmonds, R. (2008). *Proteolytic depilation of lambskins*. [Doctoral dissertation, Massey University]. Available at: <https://mro.massey.ac.nz/bitstream/10179/892/1/Edmonds%20RL%202008%20as%20amended.pdf>
10. Afsar, A., Cetinkaya, F. (2008). Studies on the degreasing of skin by using enzyme in liming process. *Indian Journal of Chemical Technology*, 15 (5), 507–510. Available at: <https://scispace.com/papers/studies-on-the-degreasing-of-skin-by-using-enzyme-in-liming-1ibihp0yh>
11. Lyu, B., Cheng, K., Ma, J., Hou, X., Gao, D., Gao, H. et al. (2017). A cleaning and efficient approach to improve wet-blue sheep leather quality by enzymatic degreasing. *Journal of Cleaner Production*, 148, 701–708. <https://doi.org/10.1016/j.jclepro.2017.01.170>
12. Briki, S., Hamdi, O., Landoulis, A. (2016). Enzymatic dehairing of goat skins using alkaline protease from *Bacillus* sp. SB12. *Protein Expression and Purification*, 121, 9–16. <https://doi.org/10.1016/j.pep.2015.12.021>
13. Skyba, M. Y. (2025). Clean technologies in tannery. *Technologies and Engineering*, 5 (22), 110–122. <https://doi.org/10.30857/2786-5371.2024.5.11>
14. Choudhary, R. B., Jana, A. K., Jha, M. K. (2004). Enzyme technology applications in leather processing. *Indian Journal of chemical technology*, 11 (5), 659–671. Available at: <https://scispace.com/papers/enzyme-technology-applications-in-leather-processing-ugvgeo7n3m>
15. Zhang, Y., Liu, H., Tang, K., Liu, J., Li, X. (2021). Effect of different ions in assisting protease to open the collagen fiber bundles in leather making. *Journal of Cleaner Production*, 293, 126017. <https://doi.org/10.1016/j.jclepro.2021.126017>
16. Širvaityté, J., Valeika, V., Beleška, K., Valeikienė, V. (2006). Bating of pelts after deliming with peracetic acid. *Proceedings of the Estonian Academy of Sciences. Chemistry*, 55 (2), 93–100. <https://doi.org/10.3176/chem.2006.2.06>
17. Harkavenko, S. S., Statsenko, D. V., Zlotenko, B. M. (2016). *Vykorystannia enzymiv u shkriano-vzutlivomu vyrobnytstvi*. Kyiv: KNUTD, 16–18.
18. Kopytina, I., Andreeva, O., Mokrousova, O., Okhmat, O. (2022). Enzymes and approaches to their application in the leather production. *Herald of Khmelnytskyi National University. Technical Sciences*, 313 (5), 227–232. <https://doi.org/10.31891/2307-5732-2022-313-5-227-232>
19. Danylkovich, A. H., Lishchuk, V. I., Strembulevych, L. V. (2015). *Suchasne vyrobnytstvo khutra*. Kyiv: Fenik, 320. Available at: <https://er.knutd.edu.ua/handle/123456789/1754>
20. Souza, F. R. de, Gutterres, M. (2012). Application of enzymes in leather processing: a comparison between chemical and coenzymatic processes. *Brazilian Journal of Chemical Engineering*, 29 (3), 473–482. <https://doi.org/10.1590/s0104-66322012000300004>
21. Biškauskaitė, R., Valeika, V. (2023). Wet Blue Enzymatic Treatment and Its Effect on Leather Properties and Post-Tanning Processes. *Materials*, 16 (6), 2301. <https://doi.org/10.3390/ma16062301>
22. Lasoń-Rydel, M., Sieczyńska, K., Gendaszewska, D., Ławińska, K., Olejnik, T. P. (2024). Use of enzymatic processes in the tanning of leather materials. *AUTEX Research Journal*, 24 (1). <https://doi.org/10.1515/aut-2023-0012>
23. Biškauskaitė-Ulinskė, R., Valeika, V. (2025). Effect of Enzyme on Chromed Leather Dyeing With Acidic Dyes. *Journal of Engineering*, 2025 (1). <https://doi.org/10.1155/je/8884546>
24. Danylkovich, A. H. (2006). *Praktykum z khimii i tekhnolohii shkiry ta khutra*. Kyiv: Feniks, 340.
25. Danylkovich, A. H. (2016). *Osnovni materialy i tekhnolohii vyrobnytstva shkiry*. Kyiv: KNUTD, 175. Available at: https://er.knutd.edu.ua/bitstream/123456789/18043/1/20210713_301.pdf

26. Mokrousova, E., Dzyazko, Y., Volkovich, Y., Nikolskaya, N. (2016). Hierarchical structure of the derma affected by chemical treatment and filling with bentonite: Diagnostics with a method of standard contact porosimetry. *Nanophysics, Nanophotonics, Surface Studies, and Applications: Selected Proceedings of the 3rd International Conference Nanotechnology and Nanomaterials (NANO2015)*. Cham: Springer International Publishing, 277–290. https://link.springer.com/chapter/10.1007/978-3-319-30737-4_23

27. Pervia, N. V. (2019). Assessment of the capability of leather for footwear upper to keep the shape after molding. *Bulletin of the Kyiv National University of Technologies and Design. Technical Science Series*, 3 (134), 62–72. <https://doi.org/10.30857/1813-6796.2019.3.6>

DOI: 10.15587/2706-5448.2025.345312

FEATURES OF OBTAINING SELECTIVE METAL OXIDE LAYERS FOR CERAMIC MEMBRANES VIA SOL-GEL METHOD

pages 12–20

Liudmyla Bohdan, PhD Student, Department of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, e-mail: bohdan.liudmyla@iit.kpi.ua, ORCID: <https://orcid.org/0009-0006-5207-7781>

Khrystyna Hutsul, PhD, Assistant, Department of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0002-4760-3605>

Olena Yanushevskaya, PhD, Associate Professor, Department of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0002-3457-8965>

Yuriy Fedenko, PhD, Senior Lecturer, Department of Technology of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0002-8599-1717>

Tetiana Dontsova, Doctor of Technical Sciences, Professor, Head of Department of Technology of Inorganic Substances, Water Treatment and General Chemical Technology, National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0001-8189-8665>

The object of research is metal oxide layers based on SiO_2 , TiO_2 , ZrO_2 for creating intermediate and selective layers on ceramic matrices. One of the most problematic areas is the difficulty of obtaining a uniform, dense, and stable selective layer determines the operational characteristics of the membrane – selectivity, productivity, and fouling resistance. The sol-gel method was used for synthesizing colloidal solutions of SiO_2 , TiO_2 , ZrO_2 and the spin-coating method for applying the resulting suspensions to ceramic matrices. The sizes of SiO_2 , TiO_2 , ZrO_2 particles were determined by turbidimetry, with diameters of 159 nm, 79 nm, and 99 nm, respectively. The results of IR spectroscopy show that the application of TiO_2 selective layer by spin-coating allows for complete coverage of the membrane surface, while the application of ZrO_2 layer results in incomplete coverage with confirmation of the formation of a hydrated precipitate. Studies of morphology by scanning electron microscopy indicate a coarse-grained matrix structure and a more homogeneous medium-grained structure after applying an intermediate SiO_2 layer. The transport properties of ceramic matrices and membranes were determined by their permeability to pure water indicates high permeability of both matrices and membranes. Thus, the sol-gel method in combination with spin-coating has several features, in particular, controlled hydrolysis of precursors and the possibility of step-by-step formation of uniform layers makes it possible to obtain membranes with high water permeability (over 560 cm^3/min) and a stable microfiltration structure after applying only 5 layers.

Compared to similar methods, the proposed approach provides uniform coverage, less particle agglomeration, increased process reproducibility, enabling the creation of ceramic microfiltration membranes for water purification processes.

Keywords: selective layers, metal oxides, spin-coating, ceramic membranes, sol-gel method, water permeability.

References

1. Serhiienko, A. O., Dontsova, T. A., Yanushevskaya, O. I., Nahirniak, S. V., Ahmad, H.-B. (2020). Ceramic membranes: new trends and prospects (short review). Water and water purification technologies. *Scientific and Technical News*, 27 (2), 4–31. <https://doi.org/10.20535/2218-93002722020208817>
2. Gao, Y., Hao, W., Xu, G., Wang, C., Gu, X., Zhao, P. (2022). Enhancement of super-hydrophilic/underwater super-oleophobic performance of ceramic membrane with TiO_2 nanowire array prepared via low temperature oxidation. *Ceramics International*, 48 (7), 9426–9433. <https://doi.org/10.1016/j.ceramint.2021.12.139>
3. Molchan, Y., Bohdan, L., Kyrii, S., Tymoshenko, O., Pylypenko, I., Burmak, A. et al. (2025). Low-cost ceramic membrane supports based on Ukrainian kaolin and saponite. *Functional Materials*, 32 (1), 87–96. <https://doi.org/10.15407/fm32.01.87>
4. Yanushevskaya, O. I., Dontsova, T. A., Aleksyk, A. I., Vlasenko, N. V., Didenko, O. Z., Nypadymka, A. S. (2020). Surface and Structural Properties of Clay Materials Based on Natural Saponite. *Clays and Clay Minerals*, 68 (5), 465–475. <https://doi.org/10.1007/s42860-020-00088-4>
5. Erdem, I. (2017). Sol-gel applications for ceramic membrane preparation. *AIP Conference Proceedings*, 1809, 020011. <https://doi.org/10.1063/1.4975426>
6. Vovk, O. F., Davydova, M. Y., Yanushevskaya, O. I., Kyrii, S. O., Linovytka, V. M., Lapinsky, A. V., Dontsova, T. A. (2024). Antibacterial properties of ceramic membranes with TiO_2 selective layer. *Journal of Chemical Technology*, 32 (2), 351–362. <https://doi.org/10.15421/jchemtech.v32i2.298738>
7. Benreza, E., Deghfl, B., Zoukel, A., Basirun, W. J., Amari, R., Boukhari, A. et al. (2022). Synthesis and properties of copper doped zinc oxide thin films by sol-gel, spin coating and dipping: A characterization review. *Journal of Molecular Structure*, 1267, 133639. <https://doi.org/10.1016/j.jmolstruc.2022.133639>
8. Marzouk, S. S., Naddeo, V., Banat, F., Hasan, S. W. (2021). Preparation of $\text{TiO}_2/\text{SiO}_2$ ceramic membranes via dip coating for the treatment of produced water. *Chemosphere*, 273, 129684. <https://doi.org/10.1016/j.chemosphere.2021.129684>
9. Zeribi, F., Attaf, A., Derbali, A., Saidi, H., Benmebrouk, L., Aida, M. S. et al. (2022). Dependence of the Physical Properties of Titanium Dioxide (TiO_2) Thin Films Grown by Sol-Gel (Spin-Coating) Process on Thickness. *ECS Journal of Solid State Science and Technology*, 11 (2), 023003. <https://doi.org/10.1149/2162-8777/ac5168>
10. Lukong, V. T., Ukoba, K. O., Jen, T. C. (2022). Heat-assisted sol-gel synthesis of TiO_2 nanoparticles structural, morphological and optical analysis for self-cleaning application. *Journal of King Saud University – Science*, 34 (1), 101746. <https://doi.org/10.1016/j.jksus.2021.101746>
11. Al Amin, S. M., Kowser, Md. A. (2024). Influence of Ag doping on structural, morphological, and optical characteristics of sol-gel spin-coated TiO_2 thin films. *Heliyon*, 10 (18), e37558. <https://doi.org/10.1016/j.heliyon.2024.e37558>
12. Bhandarkar, S. A., Prathvi, Kompa, A., Murari, M. S., Kekuda, D., Mohan, R. K. (2021). Investigation of structural and optical properties of spin coated $\text{TiO}_2:\text{Mn}$ thin films. *Optical Materials*, 118, 111254. <https://doi.org/10.1016/j.optmat.2021.111254>
13. Prathvi, Bhandarkar, S. A., Kompa, A., Kekuda, D., S. M. M., Telenkov, M. P., Nagaraja, K. K., Mohan Rao, K. (2021). Spectroscopic, structural and morphological properties of spin coated $\text{Zn}:\text{TiO}_2$ thin films. *Surfaces and Interfaces*, 23, 100910. <https://doi.org/10.1016/j.surfin.2020.100910>
14. Prasad, A., Singh, F., Dhuliya, V., Purohit, L. P., Ramola, R. C. (2024). Structural and optical characteristics of Cr-doped TiO_2 thin films synthesized by sol-gel method. *Optical Materials*, 151, 115411. <https://doi.org/10.1016/j.optmat.2024.115411>
15. Caligulu, U., Darcan, N., Kejanli, H. (2021). Surface morphology and optical properties of Ca and Mn doped TiO_2 nano-structured thin films. *Engineering Science and Technology, an International Journal*, 24 (6), 1292–1300. <https://doi.org/10.1016/j.jestch.2021.05.006>

16. Pérez-Jiménez, L. E., Solis-Cortazar, J. C., Rojas-Blanco, L., Perez-Hernandez, G., Martinez, O. S., Palomera, R. C. et al. (2019). Enhancement of optoelectronic properties of TiO₂ films containing Pt nanoparticles. *Results in Physics*, 12, 1680–1685. <https://doi.org/10.1016/j.rinp.2019.01.046>
17. Baqiah, H., Mustafa Awang Kechik, M., Pasupuleti, J., Zhang, N., Mohammed Al-Hada, N., Fat Chau, C. et al. (2023). Nanostructure, optical, electronic, photoluminescence and magnetic properties of Co-doped ZrO₂ sol-gel films. *Results in Physics*, 55, 107194. <https://doi.org/10.1016/j.rinp.2023.107194>
18. Mathew Simon, S., George, G., Sajna, M. S., Prakashan, V. P., Anna Jose, T., Vasudevan, P. et al. (2021). Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO₂-ZrO₂ composite coatings: A comprehensive review. *Applied Surface Science Advances*, 6, 100173. <https://doi.org/10.1016/j.apsadv.2021.100173>
19. Ali, M. M., Haque, Md. J., Kabir, M. H., Kaiyum, M. A., Rahman, M. S. (2021). Nano synthesis of ZnO-TiO₂ composites by sol-gel method and evaluation of their antibacterial, optical and photocatalytic activities. *Results in Materials*, 11, 100199. <https://doi.org/10.1016/j.rinma.2021.100199>
20. Chi, N., Wang, Y. (2022). Synthesis and application of CuO-TiO₂ hybrid nanostructures as Photocatalyst for degradation of p-nitrophenol in wastewater. *International Journal of Electrochemical Science*, 17 (10), 221061. <https://doi.org/10.20964/2022.10.50>
21. Gutierrez-Sanchez, C. D., Tellez-Jurado, L., Dorantes-Rosales, H. J. (2024). Synthesis of zirconia nanoparticles by sol-gel. Influence of acidity-basicity on the stability transformation, particle, and crystallite size. *Ceramics International*, 50 (11), 20547–20560. <https://doi.org/10.1016/j.ceramint.2024.03.177>
22. Shishodia, G., Gupta, S., Pahwa, N., Shishodia, P. K. (2024). ZrO₂ Nanoparticles Synthesized by the Sol-Gel Method: Dependence of Size on pH and Annealing Temperature. *Journal of Electronic Materials*, 53 (9), 5159–5168. <https://doi.org/10.1007/s11664-024-11185-8>
23. Chen, M., Heijman, S. G. J., Rietveld, L. C. (2021). State-of-the-Art Ceramic Membranes for Oily Wastewater Treatment: Modification and Application. *Membranes*, 11 (11), 888. <https://doi.org/10.3390/membranes1110888>
24. Cai, Y., Wang, Y., Chen, X., Qiu, M., Fan, Y. (2015). Modified colloidal sol-gel process for fabrication of titania nanofiltration membranes with organic additives. *Journal of Membrane Science*, 476, 432–441. <https://doi.org/10.1016/j.memsci.2014.11.034>
25. Schiffer, S., Matyssek, A., Hartinger, M., Bolduan, P., Mund, P., Kulozik, U. (2021). Effects of selective layer properties of ceramic multi-channel microfiltration membranes on the milk protein fractionation. *Separation and Purification Technology*, 259, 118050. <https://doi.org/10.1016/j.seppur.2020.118050>
26. Molchan, Y., Vorobyova, V., Vasyliev, G., Pylypenko, I., Shtyka, O., Maniecki, T., Dontsova, T. (2024). Physicochemical and antibacterial properties of ceramic membranes based on silicon carbide. *Chemical Papers*, 78 (16), 8659–8672. <https://doi.org/10.1007/s11696-024-03695-w>
27. Fedenko, Y. M., Dontsova, T. A., Astrelin, I. M. (2012). Turbidimetrychnyi metod otsinky rozmiriv nanochastynok u "bilykh zoliakh" ZrO₂. *Scientific news of NTUU "KPI"*, 1, 155–158. Available at: <https://ela.kpi.ua/server/api/core/bitstreams/769d2666-ee3f-478d-9aa1-ba83db3a4453/content>
28. Kurylenko, V. S., Tereshkov, M. V., Fedenko, Yu. M., Lapinskyi, A. V., Yanushhevskaya, O. I., Dontsova, T. A. (2025). Prospects of using DLP 3D printing technology to produce membrane ceramic modules. *Journal of Chemical Technology*, 33 (2), 508–518. <https://doi.org/10.15421/jchemtechv33i2.317663>
29. Dixit, C. K., Bhakta, S., Kumar, A., Suib, S. L., Rusling, J. F. (2016). Fast nucleation for silica nanoparticle synthesis using a sol-gel method. *Nanoscale*, 8 (47), 19662–19667. <https://doi.org/10.1039/c6nr07568a>
30. Chang, C., Rad, S., Gan, L., Li, Z., Dai, J., Shahab, A. (2023). Review of the sol-gel method in preparing nano TiO₂ for advanced oxidation process. *Nanotechnology Reviews*, 12 (1). <https://doi.org/10.1515/ntrev-2023-0150>
31. Takada, T. (2020). Removal of F- from Water Using Tempered Mesoporous Carbon Modified with Hydrated Zirconium Oxide. C – *Journal of Carbon Research*, 6 (1), 13. <https://doi.org/10.3390/c6010013>
32. Pylypenko, M. M., Yanko, T. B., Stadnik, Y. S., Drobyshevskaya, A. O. (2019). Processing substandard materials of magnesium-thermal zirconium production. *Problems of Atomic Science and Technology*, 5, 135–141. Available at: <https://nasplib.isoftware.kiev.ua/handle/123456789/195204>
33. Omar, M. F., Ismail, Abd. K., Sumpono, I., Alim, E. A., Nawi, M. N., Rahim Mukri, M. A. (2012). FTIR Spectroscopy Characterization of Si-C bonding in SiC Thin Film prepared at Room Temperature by Conventional 13.56MHz RF PECVD. *Malaysian Journal of Fundamental and Applied Sciences*, 8 (4), 242–244. <https://doi.org/10.11113/mjfas.v8n4.156>
34. Zakirov, M., Korotchenkov, O., Rybak, Ya. (2016). Photoluminescence of ZnS Luminophore Sonofragmented in Isopropyl Alcohol Solution. *Journal of Nano- and Electronic Physics*, 8 (4 (1)). [https://doi.org/10.21272/jnep.8\(4\(1\)\).04002](https://doi.org/10.21272/jnep.8(4(1)).04002)
35. Al-Amin, M., Dey, S. C., Rashid, T. U., Ashaduzzaman, M., Shamsuddin, S. M. (2016). Solar assisted photocatalytic degradation of reactive azo dyes in presence of anatase titanium dioxide. *International Journal of Latest Research in Engineering and Technology*, 2 (3), 14–21. Available at: https://www.researchgate.net/publication/299441386_Solar_Assisted_Photocatalytic_Degradation_of_Reactive_Azo_Dyes_in_Presence_of_Anatase_Titanium_Dioxide
36. Chougala, L. S., Yatnatti, M. S., Linganagoudar, R. K., Kamble, R. R., Kadadevarmath, J. S. (2017). A Simple Approach on Synthesis of TiO₂ Nanoparticles and its Application in dye Sensitized Solar Cells. *Journal of Nano- and Electronic Physics*, 9 (4). [https://doi.org/10.21272/jnep.9\(4\).04005](https://doi.org/10.21272/jnep.9(4).04005)
37. Ramachandran, M., Subadevi, R., Rajkumar, P., Muthupradeepa, R., Yuvakumar, R., Sivakumar, M. (2021). Upshot of Concentration of Zirconium (IV) Oxy-nitrate Hexa Hydrate on Preparation and Analyses of Zirconium Oxide (ZrO₂) Nanoparticles by Modified Co-Precipitation Method. *Journal of Nanoscience and Nanotechnology*, 21 (11), 5707–5713. <https://doi.org/10.1166/jnn.2021.19488>

ECOLOGY AND ENVIRONMENTAL TECHNOLOGY

DOI: 10.15587/2706-5448.2025.345030

DETERMINATION OF THE LARGEST LYAPUNOV EXPONENT OF CHAOS IN THE DYNAMICS OF HAZARDOUS PARAMETERS OF A GAS ENVIRONMENT FOR THE RAPID IGNITION DETECTION

pages 21–26

Igor Tolok, PhD, Associate Professor, Rector, National University of Civil Protection of Ukraine, Cherkasy, Ukraine, ORCID: <https://orcid.org/0000-0001-6309-9608>

Boris Pospelov, Doctor of Technical Sciences, Professor, Independent Researcher, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-0957-3839>

Evgeniy Rybka, Doctor of Technical Sciences, Professor, Science and Innovation Center, National University of Civil Protection of Ukraine, Cherkasy, Ukraine, e-mail: e.a.ribka@gmail.com, ORCID: <https://orcid.org/0000-0002-5396-5151>

Serhii Savchenko, Vice-Rector, National University of Civil Protection of Ukraine, Cherkasy, Ukraine, ORCID: <https://orcid.org/0009-0005-6506-4552>

Yuriii Kozar, Doctor of Legal Sciences, Professor, Department of Theory and History of State and Law, Uzhhorod National University, Uzhhorod, Ukraine, ORCID: <https://orcid.org/0000-0002-6424-6419>

Olekci Krainiukov, Doctor of Geographical Sciences, Professor, Department of Ecology and Environmental Management, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-5264-3118>

Konstantin Sporyshev, Doctor of Science in Public Administration, Educational and Scientific Institute for Management Training, National Academy of the National Guard of Ukraine, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0003-4737-9698>

Larysa Maladyka, PhD, Associate Professor, Department of Fire Prevention in Populated Areas, National University of Civil Protection of Ukraine, Cherkasy, Ukraine, ORCID: <https://orcid.org/0000-0003-1644-0812>

Vyacheslav Surianinov, PhD, Department of Reinforced Concrete Constructions and Transport Constructions, Odesa State Academy of Civil Engineering and Architecture, Odesa, Ukraine, ORCID: <https://orcid.org/0009-0006-9620-4287>

Maksym Harifullin, PhD, Research Center, Lviv State University of Internal Affairs, Lviv, Ukraine, ORCID: <https://orcid.org/0000-0002-6469-4924>

The object of research is the largest Lyapunov exponent of the dynamics of hazardous gas environment parameters in premises at intervals of reliable absence and presence of ignition of materials in premises. The problem is to determine and develop a strategy for using the largest Lyapunov exponent on a one-dimensional sample of real contaminated measurements of hazardous gas environment parameters in premises for the prompt detection of material ignitions. An experimental verification of the determination of the largest Lyapunov exponent of the dynamics of the main hazardous gas environment parameters during ignition of materials in a laboratory chamber at intervals of reliable absence and occurrence of ignition was performed. It was established that during ignition of materials, the values of the largest Lyapunov exponent indicate a decrease in stability and a transition to chaos in the dynamics of temperature and carbon monoxide concentration for all the test materials under study. This indicates a loss of the degree of "order" in the dynamics of temperature and carbon monoxide concentration. At the same time, the value of the largest Lyapunov exponent of the dynamics of the specific optical density of smoke does not change significantly and remains stable with some decrease in stability during ignition of the material. It was found that the use of such a parameter for detecting the ignition of materials has significant advantages in the case of using the dynamics of temperature and carbon monoxide concentration of the gas environment of the premises. The results obtained are useful from a theoretical point of view for determining the largest Lyapunov exponent for a one-dimensional sample of real contaminated measurements for an arbitrary dangerous parameter of the gas environment at an arbitrary observation interval. The practical significance lies in the possibility of further improving existing fire protection systems of objects in order to prevent fires.

Keywords: largest Lyapunov exponent, operational detection of ignition, dangerous parameters of the gas environment, premises.

References

- Otroshev, Y., Rybka, Y., Danilin, O., Zhuravskyi, M. (2019). Assessment of the technical state and the possibility of its control for the further safe operation of building structures of mining facilities. *E3S Web of Conferences*, 123, 01012. <https://doi.org/10.1051/e3sconf/201912301012>
- Semko, A., Beskrovnyaya, M., Vinogradov, S., Hritsina, I., Yagudina, N. (2014). The usage of high speed impulse liquid jets for putting out gas blowouts. *Journal of Theoretical and Applied Mechanics*, 3, 655–664.
- Vasyukov, A., Loboichenko, V., Bushtec, S. (2016). Identification of bottled natural waters by using direct conductometry. *Ecology, Environment and Conservation*, 22 (3), 1171–1176.
- Pospelov, B., Andronov, V., Rybka, E., Meleshchenko, R., Borodich, P. (2018). Studying the recurrent diagrams of carbon monoxide concentration at early ignitions in premises. *Eastern-European Journal of Enterprise Technologies*, 3 (9 (93)), 34–40. <https://doi.org/10.15587/1729-4061.2018.133127>
- Pospelov, B., Andronov, V., Rybka, E., Skliarov, S. (2017). Design of fire detectors capable of self-adjusting by ignition. *Eastern-European Journal of Enterprise Technologies*, 4 (9 (88)), 53–59. <https://doi.org/10.15587/1729-4061.2017.108448>
- Cencini, M., Cecconi, F., Vulpiani, A. (2009). *Chaos. Series on Advances in Statistical Mechanics*. WORLD SCIENTIFIC, 480. <https://doi.org/10.1142/7351>
- Dieci, L., Van Vleck, E. S. (2002). Lyapunov Spectral Intervals: Theory and Computation. *SIAM Journal on Numerical Analysis*, 40 (2), 516–542. <https://doi.org/10.1137/s0036142901392304>
- Cheng, C., Sun, F., Zhou, X. (2011). One fire detection method using neural networks. *Tsinghua Science and Technology*, 16 (1), 31–35. [https://doi.org/10.1016/s1007-0214\(11\)70005-0](https://doi.org/10.1016/s1007-0214(11)70005-0)
- Ding, Q., Peng, Z., Liu, T., Tong, Q. (2014). Multi-Sensor Building Fire Alarm System with Information Fusion Technology Based on D-S Evidence Theory. *Algorithms*, 7 (4), 523–537. <https://doi.org/10.3390/a7040523>
- Pospelov, B., Rybka, E., Samoilov, M., Morozov, I., Bezuhla, Y., Butenko, T. et al. (2022). Defining the features of amplitude and phase spectra of dangerous factors of gas medium during the ignition of materials in the premises. *Eastern-European Journal of Enterprise Technologies*, 2 (10 (116)), 57–65. <https://doi.org/10.15587/1729-4061.2022.254500>
- Jiang YueZhong, J. Y., Wang GuiYan, W. G., LüLeiChang, L., Yuan SuPing, Y. S., Ma Ling, M. L. (2004). Studies on pulp-oriented cultivation techniques of poplar wood. *Scientia Silvae Sinicae*, 40 (1), 123–130.
- Bei, P., Liwei, C., Chang, L. (2012). An Experimental Study on the Burning Behavior of Fabric used Indoor. *Procedia Engineering*, 43, 257–261. <https://doi.org/10.1016/j.proeng.2012.08.044>
- Peng, X., Liu, S., Lu, G. (2005). Experimental analysis on heat release rate of materials. *Journal of Chongqing University*, 28, 122–125.
- Pospelov, B., Rybka, E., Savchenko, A., Dashkovska, O., Harbuz, S., Naden, E. et al. (2022). Peculiarities of amplitude spectra of the third order for the early detection of indoor fires. *Eastern-European Journal of Enterprise Technologies*, 5 (10 (119)), 49–56. <https://doi.org/10.15587/1729-4061.2022.265781>
- Pospelov, B., Andronov, V., Rybka, E., Chubko, L., Bezuhla, Y., Gordiichuk, S. et al. (2023). Revealing the peculiarities of average bicoherence of frequencies in the spectra of dangerous parameters of the gas environment during fire. *Eastern-European Journal of Enterprise Technologies*, 1 (10 (121)), 46–54. <https://doi.org/10.15587/1729-4061.2023.272949>
- Pospelov, B., Rybka, E., Polkovnychenko, D., Myskovets, I., Bezuhla, Y., Butenko, T. et al. (2023). Comparison of bicoherence on the ensemble of realizations and a selective evaluation of the bispectrum of the dynamics of dangerous parameters of the gas medium during fire. *Eastern-European Journal of Enterprise Technologies*, 2 (10 (122)), 14–21. <https://doi.org/10.15587/1729-4061.2023.276779>
- Sadkovyi, V., Pospelov, B., Rybka, E., Kreminskyi, B., Yashchenko, O., Bezuhla, Y. et al. (2022). Development of a method for assessing the reliability of fire detection in premises. *Eastern-European Journal of Enterprise Technologies*, 3 (10 (117)), 56–62. <https://doi.org/10.15587/1729-4061.2022.259493>
- Pospelov, B., Andronov, V., Rybka, E., Bezuhla, Y., Liashevskaya, O., Butenko, T. et al. (2022). Empirical cumulative distribution function of the characteristic sign of the gas environment during fire. *Eastern-European Journal of Enterprise Technologies*, 4 (10 (118)), 60–66. <https://doi.org/10.15587/1729-4061.2022.263194>
- Hesketh, G., Newman, J. S. (1992). Fire detection using cross-correlations of sensor signals. *Fire Safety Journal*, 18 (4), 355–374. [https://doi.org/10.1016/0379-7112\(92\)90024-7](https://doi.org/10.1016/0379-7112(92)90024-7)
- Gottuk, D. T., Wright, M. T., Wong, J. T., Pham, H. V., Rose-Pehrson, S. L. (2002). *Prototype early warning fire detection system: test series 4 results*. Available at: <https://apps.dtic.mil/sti/citations/ADA399480>
- Nakamura, T. (2022). *Nonlinear systems and Lyapunov spectrum*. Available at: <https://sites.google.com/view/lyapunov-spectrum/home>
- Prat-Guitart, N., Nugent, C., Mullen, E., Mitchell, F. J. G., Hawthorne, D., Belcher, C. M., Yearsley, J. M. (2019). Peat Fires in Ireland. *Coal and Peat Fires: A Global Perspective*. Elsevier, 451–482. <https://doi.org/10.1016/b978-0-12-849885-9.00020-2>
- Fonollosa, J., Solórzano, A., Marco, S. (2018). Chemical Sensor Systems and Associated Algorithms for Fire Detection: A Review. *Sensors*, 18 (2), 553. <https://doi.org/10.3390/s18020553>
- Liu, C., Zhang, C., Mu, Y., Liu, J., Zhang, Y. (2017). Emission of volatile organic compounds from domestic coal stove with the actual alternation of flaming and smoldering combustion processes. *Environmental Pollution*, 221, 385–391. <https://doi.org/10.1016/j.envpol.2016.11.089>
- Quintiere, J. G. (2016). *Principles of Fire Behavior*. CRC Press, 437. <https://doi.org/10.1201/9781315369655>
- Gann, R. G., Bryner, N. P. (2008). Chapter 2 Combustion Products and Their Effects on Life Safety. *Fire Protection Handbook*. National Fire Protection Assoc, 11–34.

27. Stec, A. A. (2017). Fire toxicity – The elephant in the room? *Fire Safety Journal*, 91, 79–90. <https://doi.org/10.1016/j.firesaf.2017.05.003>

28. McKenna, S. T., Birtles, R., Dickens, K., Walker, R. G., Spearpoint, M. J., Stec, A. A., Hull, T. R. (2018). Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate. *Chemosphere*, 196, 429–439. <https://doi.org/10.1016/j.chemosphere.2017.12.017>

29. Pospelov, B., Andronov, V., Rybka, E., Popov, V., Semkiv, O. (2018). Development of the method of frequencytemporal representation of fluctuations of gaseous medium parameters at fire. *Eastern-European Journal of Enterprise Technologies*, 2 (10 (92)), 44–49. <https://doi.org/10.15587/1729-4061.2018.125926>

30. Schuster, H. G., Just, W. (2005). *Deterministic chaos: an introduction*. John Wiley & Sons. <https://doi.org/10.1002/3527604804>

31. Broer, H. W., Takens, F. (2011). *Dynamical systems and chaos*. New York: Springer, 313. <https://doi.org/10.1007/978-1-4419-6870-8>

32. Vogel, M. (2019). Chaos in nature, 2nd edition. *Contemporary Physics*, 60 (3), 271–272. <https://doi.org/10.1080/00107514.2019.1660722>

33. Vambol, S., Vambol, V., Kondratenko, O., Koloskov, V., Suchikova, Y. (2018). Substantiation of expedience of application of high-temperature utilization of used tires for liquefied methane production. *Journal of Achievements in Materials and Manufacturing Engineering*, 2 (87), 77–84. <https://doi.org/10.5604/01.3001.0012.2830>

34. Winter, L., Taylor, P., Bellenger, C., Grimshaw, P., Crowther, R. G. (2023). The application of the Lyapunov Exponent to analyse human performance: A systematic review. *Journal of Sports Sciences*, 41 (22), 1994–2013. <https://doi.org/10.1080/02640414.2024.2308441>

35. Dubinin, D., Cherkashyn, O., Maksymov, A., Beliuchenko, D., Hovalenkov, S., Shevchenko, S., Avetisyan, V. (2020). Investigation of the effect of carbon monoxide on people in case of fire in a building. *Sigurnost*, 62 (4), 347–357. <https://doi.org/10.31306/s.62.4.2>

36. Hulse, L. M., Galea, E. R., Thompson, O. F., Wales, D. (2020). Perception and recollection of fire hazards in dwelling fires. *Safety Science*, 122, 104518. <https://doi.org/10.1016/j.ssci.2019.104518>

37. Optical/Heat Multisensor Detector (2019). *Discovery*, 1, 4.

38. Kantz, H., Schreiber, T. (2004). *Nonlinear Time Series Analysis*. Cambridge University Press, 396.

39. Skokos, Ch. (2009). The Lyapunov Characteristic Exponents and Their Computation. *Dynamics of Small Solar System Bodies and Exoplanets*. Springer, 63–135. https://doi.org/10.1007/978-3-642-04458-2_2

40. Wolf, A., Swift, J. B., Swinney, H. L., Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. *Physica D: Nonlinear Phenomena*, 16 (3), 285–317. [https://doi.org/10.1016/0167-2789\(85\)90011-9](https://doi.org/10.1016/0167-2789(85)90011-9)

41. Rosenstein, M. T., Collins, J. J., De Luca, C. J. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. *Physica D: Nonlinear Phenomena*, 65 (1-2), 117–134. [https://doi.org/10.1016/0167-2789\(93\)90009-p](https://doi.org/10.1016/0167-2789(93)90009-p)

42. Kantz, H. (1994). A robust method to estimate the maximal Lyapunov exponent of a time series. *Physics Letters A*, 185 (1), 77–87. [https://doi.org/10.1016/0375-9601\(94\)90991-1](https://doi.org/10.1016/0375-9601(94)90991-1)

43. Heilmann, O. (2023). *Multifunctional Echo State Networks: Effects of Topology and Memory on the Reconstruction of Chaotic Attractors*. Available at: https://elib.dlr.de/195462/1/Heilmann_Oliver_20.03.2023_fuer_SS2023.pdf

44. Busse, A. M. (2004). *Classification of Processes by the Lyapunov exponent*, Technical Report, Universität Dortmund, Sonderforschungsbereich 475 Komplexitätsreduktion in Multivariaten Datenstrukturen. Dortmund, 70. Available at: <https://hdl.handle.net/10419/22583>

45. De Micco, L., Antonelli, M., Crespo, M. L., Cicuttin, A. (2017). HW/SW code-sign of maximum Lyapunov exponent estimator. *2017 IEEE 8th Latin American Symposium on Circuits & Systems (LASCAS)*. IEEE, 1–4. <https://doi.org/10.1109/lascas.2017.7948066>

FOOD PRODUCTION TECHNOLOGY

DOI: 10.15587/2706-5448.2025.344768

IMPROVEMENT OF A MOBILE VACUUM EVAPORATOR FOR THE PRODUCTION OF MULTICOMPONENT VEGETABLE SEMI-FINISHED PRODUCTS WITH ADJUSTABLE THICKENING FOR NEW PRODUCT FORMULATIONS

pages 27–33

Lyudmila Chuiko, PhD, Head of Research Department, State Biotechnological University, Kharkiv, Ukraine, e-mail: chuiko.lyudmila8@gmail.com, ORCID: <https://orcid.org/0000-0003-2377-7501>

Nataliia Tytarenko, Department of Equipment and Engineering of Processing and Food Production, State Biotechnological University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-9745-883X>

Andrii Milenin, PhD, Associate Professor, Department of Equipment and Engineering of Processing and Food Production, State Biotechnological University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0003-3521-1652>

Hanna Chmil, Doctor of Economic Sciences, Professor, Department of Marketing, Reputation Management and Customer Experience, State Biotechnological University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-3703-9940>

Sergei Sabadash, PhD, Associate Professor, Department Technology and Food Safety, Sumy National Agrarian University, Sumy, Ukraine, ORCID: <https://orcid.org/0000-0002-0371-8208>

Eldar Ibaiev, Independent Researcher, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0003-3090-3553>

The object of research is the process of manufacturing multicomponent vegetable semi-finished products with adjustable thickening of the mass from

Jerusalem artichoke, carrot and pumpkin on an improved mobile vacuum evaporator. Traditional evaporators are characterized by high energy and metal consumption, the presence of a steam jacket with complex temperature range regulation, which leads to an increase in the cycle duration and losses of natural ingredients. The lack of mobility of traditional equipment does not allow it to be used in mobile lines of agricultural complexes and craft production, which is relevant for decentralized use of the device, for example, in front-line regions. In the course of improving the mobile vacuum evaporator, classical methods were used to analyze heat and mass transfer, determine the content and degree of preservation of useful natural ingredients in the conditions of mobile production of multicomponent semi-finished products with adjustable thickening. The design improvement is based on the use of a film-like electric heater of the radiant type, additional increase in the useful heat exchange surface due to the use of a mixer with a heating circuit and Peltier elements for secondary air recovery. Such actions contributed to increasing the resource efficiency of the technological cycle and stabilizing the temperature effect during the controlled thickening of natural masses.

The duration of controlled thickening of multicomponent masses was reduced by 37%, the specific heat consumption by 15.5%, the loss of vitamin C by 21%, the preservation of inulin (94%), β-carotene (87%) and 88% preservation of polyphenols. It is the introduction of electric heating of the working chamber of the apparatus and the artificial increase in the useful heat exchange surface actually due to the mixer circuit, which is heated by 27%, which contributes to the stabilization of the temperature field. And the use of an air thermal insulation jacket allows for the recovery of secondary warm air, further increasing the resource efficiency of the technological cycle. The improvement of the apparatus contributes to the resource-saving processing of plant raw materials into polycomponent semi-finished products of high readiness with adjustable thickening, in particular within 25–45% of dry matter for further introduction into the formulations of new products. A polycomponent semi-finished product of high readiness with adjustable thickening can be used in functional drinks, baby food, confectionery fillings

and meat and vegetable products. A comparison of the improved design with basic evaporators is characterized by resource efficiency, mobility for agricultural sectors in conditions of decentralized processing, for example in front-line regions.

Keywords: vacuum evaporator, film-like electric heater, polycomponent semi-finished products, heat recovery, polycomponent vegetable mass.

References

1. Zahorulko, A., Cherevko, O., Zagorulko, A., Yancheva, M., Budnyk, N., Nakhonechna, Y. et al. (2021). Design of an apparatus for low-temperature processing of meat delicacies. *Eastern-European Journal of Enterprise Technologies*, 5 (11 (113)), 6–12. <https://doi.org/10.15587/1729-4061.2021.240675>
2. Cherevko, O., Mikhaylov, V., Zahorulko, A., Zagorulko, A., Gordienko, I. (2021). Development of a thermal-radiation single-drum roll dryer for concentrated food stuff. *Eastern-European Journal of Enterprise Technologies*, 1 (11 (109)), 25–32. <https://doi.org/10.15587/1729-4061.2021.224990>
3. Kasabova, K., Zagorulko, A., Zahorulko, A., Shmachenko, N., Simakova, O., Goriainova, I. et al. (2021). Improving pastille manufacturing technology using the developed multicomponent fruit and berry paste. *Eastern-European Journal of Enterprise Technologies*, 3 (11 (111)), 49–56. <https://doi.org/10.15587/1729-4061.2021.231730>
4. Pylypenko, O. (2017). Development of Ukrainian food industry. *Scientific Works of NUFT*, 23 (3). 15–25. Available at: http://nbuv.gov.ua/UJRN/Npnukht_2017_23_3_4
5. Zahorulko, A., Zagorulko, A., Yancheva, M., Ponomarenko, N., Tesliuk, H., Silchenko, E. et al. (2020). Increasing the efficiency of heat and mass exchange in an improved rotary film evaporator for concentration of fruit-and-berry puree. *Eastern-European Journal of Enterprise Technologies*, 6 (8 (108)), 32–38. <https://doi.org/10.15587/1729-4061.2020.218695>
6. Kiptelava, L., Zagorulko, A., Zagorulko, A. (2015). Improvement of equipment for manufacture of vegetable convenience foods. *Eastern-European Journal of Enterprise Technologies*, 2 (10 (74)), 4–8. <https://doi.org/10.15587/1729-4061.2015.39455>
7. O'Shea, N., Ktenioudaki, A., Smyth, T. P., McLoughlin, P., Doran, L., Auty, M. A. E. et al. (2015). Physicochemical assessment of two fruit by-products as functional ingredients: Apple and orange pomace. *Journal of Food Engineering*, 153, 89–95. <https://doi.org/10.1016/j.jfoodeng.2014.12.014>
8. Huang, L., Bai, L., Zhang, X., Gong, S. (2019). Re-understanding the antecedents of functional foods purchase: Mediating effect of purchase attitude and moderating effect of food neophobia. *Food Quality and Preference*, 73, 266–275. <https://doi.org/10.1016/j.foodqual.2018.11.001>
9. Marco, S.-C., Adrien, S., Isabelle, M., Manuel, V.-O., Dominique, P. (2019). Flash Vacuum-Expansion Process: Effect on the Sensory, Color and Texture Attributes of Avocado (*Persea americana*) Puree. *Plant Foods for Human Nutrition*, 74 (3), 370–375. <https://doi.org/10.1007/s11130-019-00749-3>
10. Zahorulko, A., Zagorulko, A., Kasabova, K., Liashenko, B., Postadzhiev, A., Sashnova, M. (2022). Improving a tempering machine for confectionery masses. *Eastern-European Journal of Enterprise Technologies*, 2 (11 (116)), 6–11. <https://doi.org/10.15587/1729-4061.2022.254873>
11. Zahorulko, A., Zagorulko, A., Kasabova, K., Shmachenko, N. (2020). Improvement of zefir production by addition of the developed blended fruit and vegetable paste into its recipe. *Eastern-European Journal of Enterprise Technologies*, 2 (11 (104)), 39–45. <https://doi.org/10.15587/1729-4061.2020.185684>
12. Zagorulko, A., Zahorulko, A., Kasabova, K., Chuiko, L., Yakovets, L., Pugach, A. et al. (2022). Improving the production technology of functional paste-like fruit-and-berry semi-finished products. *Eastern-European Journal of Enterprise Technologies*, 4 (11 (118)), 43–52. <https://doi.org/10.15587/1729-4061.2022.262924>
13. Zahorulko, A., Zagorulko, A., Mykhailov, V., Ibaiev, E. (2021). Improved rotary film evaporator for concentrating organic fruit and berry puree. *Eastern-European Journal of Enterprise Technologies*, 4 (11 (112)), 92–98. <https://doi.org/10.15587/1729-4061.2021.237948>
14. Habanova, M., Saraiva, J. A., Holovicova, M., Moreira, S. A., Fidalgo, L. G., Haban, M. et al. (2019). Effect of berries/apple mixed juice consumption on the positive modulation of human lipid profile. *Journal of Functional Foods*, 60, 103417. <https://doi.org/10.1016/j.jff.2019.103417>
15. Cherevko, A., Kiptelava, L., Mikhaylov, V., Zagorulko, A., Zagorulko, A. (2015). Development of energy-efficient ir dryer for plant raw materials. *Eastern-European Journal of Enterprise Technologies*, 4 (8 (76)), 36–41. <https://doi.org/10.15587/1729-4061.2015.47777>
16. Savchenko, T., Lutska, N., Vlasenko, L., Sashnova, M., Zahorulko, A., Minenko, S. et al. (2025). Risk analysis and cybersecurity enhancement of Digital Twins in dairy production. *Technology Audit and Production Reserves*, 2 (2 (82)), 37–49. <https://doi.org/10.15587/2706-5448.2025.325422>
17. Zahorulko, A., Voronenko, I., Minenko, S., Pugach, A., Nazarenko, O., Lebedenko, O. et al. (2025). Improving the mobile structure of a vertical modular solar dryer for the agricultural sector From field to fork. *Eastern-European Journal of Enterprise Technologies*, 1 (11 (133)), 6–16. <https://doi.org/10.15587/1729-4061.2025.323607>
18. Zahorulko, A., Voronenko, I., Nikolaienko, M., Minenko, S., Ponomarenko, N., Zakharchenko, R. et al. (2025). Design of a combined apparatus for low-temperature processing of confectionery products based on plant-based multicomponent semi-finished products. *Eastern-European Journal of Enterprise Technologies*, 4 (11 (136)), 15–24. <https://doi.org/10.15587/1729-4061.2025.335468>
19. Borchani, M., Masmoudi, M., Ben Amira, A., Abbès, F., Yaich, H., Besbes, S. et al. (2019). Effect of enzymatic treatment and concentration method on chemical, rheological, microstructure and thermal properties of prickly pear syrup. *LWT*, 113, 108314. <https://doi.org/10.1016/j.lwt.2019.108314>
20. Bezusov, A., Totsenko, O. (2017). Analysis of modern methods in tomato processing industry. *Food Science and Technology*, 11 (2). <https://doi.org/10.15673/fst.v11i2.513>
21. Zahorulko, A., Voronenko, I., Nikolaienko, M., Shevchenko, A., Tytarenko, N., Zhelieva, T. (2025). Justification of the practical implementation of innovative technologies for obtaining polycomponent vegetable semi-finished products for new generation food products. *EUREKA: Life Sciences*, 2, 68–76. <https://doi.org/10.21303/2504-5695.2025.003890>
22. Faure, E., Shcherba, A., Stupka, B., Voronenko, I., Baikenov, A. (2023). A method for reliable permutation transmission in short-packet communication systems. *Lecture Notes on Data Engineering and Communications Technologies*. Cham: Springer, 178, 177–195. https://doi.org/10.1007/978-3-031-35467-0_12
23. Granaturov, V., Kaptur, V., Politova, I. (2015). Determination of tariffs for telecommunication services on the cost simulation modeling. *Economic Annals – XXI*, 1-2 (1), 52–56. Available at: <https://ea21journal.world/wp-content/uploads/2022/04/ea-V147-13.pdf>
24. Taskila, S., Ahokas, M., Järvinen, J., Toivanen, J., Tanskanen, J. P. (2017). Concentration and Separation of Active Proteins from Potato Industry Waste Based on Low-Temperature Evaporation and Ethanol Precipitation. *Scientifica*, 2017, 1–6. <https://doi.org/10.1155/2017/5120947>
25. Bozhenko, V., Boyko, A., Voronenko, I. (2023). Corruption as an obstacle of sustainable development. Leadership, Entrepreneurship and Sustainable Development Post COVID-19. *NILBEC 2022. Springer Proceedings in Business and Economics*. Cham: Springer, 395–407. https://doi.org/10.1007/978-3-031-28131-0_27
26. Voronenko, I., Nehrey, M., Laptieva, A., Babenko, V., Rohoza, K. (2022). National cybersecurity: assessment, risks and trends. *International Journal of Embedded Systems*, 15 (3), 226. <https://doi.org/10.1504/ijes.2022.124854>
27. Nehrey, M., Voronenko, I., Salem, A.-B. M. (2022). Cybersecurity Assessment: World and Ukrainian Experience. *2022 12th International Conference on Advanced Computer Information Technologies (ACIT)*, 335–340. <https://doi.org/10.1109/acit54803.2022.9913081>
28. Voronenko, I., Klymenko, N., Nahorna, O. (2022). Challenges to Ukraine's Innovative Development in a Digital Environment. *Management and Production Engineering Review*, 13 (4), 48–58. <https://doi.org/10.24425/mper.2022.142394>
29. Zahorulko, A., Zagorulko, A. (2025). Pat. No. 158521 UA. *State biotechnological university*. MPK B01D 1/22. No. u202401910; declared: 11.04.2024; published: 19.02.2025, Bul. No. 8, 4. Available at: <https://sis.nipo.gov.ua/uk/search/detail/1842500/>

DOI: 10.15587/2706-5448.2025.346265

DETERMINING THE INFLUENCE OF SOME FACTORS
ON IMPROVING THE QUALITY OF SHERRY WINE
MATERIAL

pages 34–43

Hasil Fataliyev, Doctor of Technical Sciences, Professor, Department of Food Engineering and Expertise, Azerbaijan State Agricultural University (ASAU), Ganja, Azerbaijan, ORCID: <https://orcid.org/0000-0002-5310-4263>

Natavan Gadimova, Candidate of Technical Sciences, Associate Professor, Department of Engineering and Applied Sciences, Department of Food Engineering, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan, ORCID: <https://orcid.org/0000-0003-1939-1796>

Azer Taghiyev, Doctor of Philosophy in Engineering, Senior Lecturer, Department of Winery and Technology, Azerbaijan Cooperative University, Baku, Azerbaijan, ORCID: <https://orcid.org/0009-0004-2008-2258>

Konul Baloghlanova, Doctor of Philosophy of Technical Science, Department of Technology of Organic Substances and Complete Molecular Compounds, Azerbaijan State Oil and Industry University (ASOIU), Baku, Azerbaijan, ORCID: <https://orcid.org/0009-0008-6902-4293>

Alakbar Alakbarov, Department of Food Engineering and Expertise, Azerbaijan State Agricultural University (ASAU), Ganja, Azerbaijan, ORCID: <https://orcid.org/0009-0002-0657-1595>

The object of research is the production of Sherry must and wine materials, as well as the processes that occur during this production.

Factors affecting the quality of Sherry wine material – particularly the amount of juice yield, different combinations of fining agents, the duration and course of fermentation, and the role of the grape variety – have not been sufficiently studied. It was found that increasing the juice yield per ton of grapes from 50 to 75 decaliters led to an increase in aldehydes from 61.2 mg/dm³ to 86.1 mg/dm³, esters from 67.3 mg/dm³ to 86.7 mg/dm³, higher alcohols by 40 mg/dm³, and terpenes by up to 100 mg/dm³ in the resulting wine material. An increase in phenolic compounds and oxidation-reduction potential (ORP) caused oxidation uncharacteristic of Sherry wine material, leading to a decrease in quality. Sensory analysis showed a decline in quality scores by 0.02–0.10 points. The effect of fining agents reduced the content of phenolic compounds and titratable acids, while color values shifted positively. Juice samples were fermented both with (experimental) and without (control) the addition of nutrient supplements. Compared with the control, fermentation in the experimental samples was completed 2 days earlier. Increasing the dose of sulfur dioxide added to the juice from 50 mg/dm³ to 120 mg/dm³ resulted in a decrease in alcohol content and an increase in titratable acidity in the fermented samples. Wine materials prepared from Bayan, Fetyaska, and Rkatsiteli grape varieties are suitable for Sherry production; however, in terms of optimal composition, Fetyaska wine material was considered superior.

The obtained results can be applied in family-owned vineyards and wine-making enterprises.

Keywords: juice, Sherry wine material, phenolic compounds, nitrogenous substances, ethyl alcohol, yeast solution.

References

1. Avdanina, D., Zghun, A. (2022). Sherry Wines: Worldwide Production, Chemical Composition and Screening Conception for Flor Yeasts. *Fermentation*, 8 (8), 381. <https://doi.org/10.3390/fermentation8080381>
2. Durán-Guerrero, E., Castro, R., García-Moreno, M. de V., Rodríguez-Dodero, M. del C., Schwarz, M., Guillén-Sánchez, D. (2021). Aroma of Sherry Products: A Review. *Foods*, 10 (4), 753. <https://doi.org/10.3390/foods10040753>
3. Guerrero-Chanivet, M., Valcárcel-Muñoz, M. J., García-Moreno, M. V., Rodríguez-Dodero, M. C., Guillén-Sánchez, D. A. (2024). Influence of the type of Sherry wine and the seasoning length of time on the organic acids, volatile compounds, and sensory profile of Brandy de Jerez. *Journal of Food Composition and Analysis*, 125, 105780. <https://doi.org/10.1016/j.jfca.2023.105780>
4. Butrón-Benítez, D., Valcárcel-Muñoz, M. J., García-Moreno, M. V., Rodríguez-Dodero, M. C., Guillén-Sánchez, D. A. (2025). Influence of pH and Sulfur Dioxide in Unaged Wine Distillates on the Physicochemical and Sensory Profile of the Brandies de Jerez. *Food and Bioprocess Technology*, 18 (5), 4707–4722. <https://doi.org/10.1007/s11947-024-03704-6>
5. Valcárcel-Muñoz, M. J., Guerrero-Chanivet, M., del Carmen Rodríguez-Dodero, M., Butrón-Benítez, D., de Valme García-Moreno, M., Guillén-Sánchez, D. A. (2023). Analytical and Chemometric Characterization of Sweet Pedro Ximénez Sherry Wine during Its Aging in a Criaderas y Solera System. *Foods*, 12 (9), 1911. <https://doi.org/10.3390/foods12091911>
6. Sánchez-Ponce, L., Granado-Castro, M. D., Casanueva-Marencio, M. J., Galindo-Riaño, M. D., Díaz-de-Alba, M. (2021). Sherry wine industry by-product as potential biosorbent for the removal of Cr(VI) from aqueous medium. *Biomass Conversion and Biorefinery*, 13 (14), 12489–12507. <https://doi.org/10.1007/s13399-021-02053-0>
7. Ruiz-Muñoz, M., Cordero-Bueso, G., Izquierdo-Cañas, P. M., Mena-Morales, A., Cantoral, J. M. (2022). Improving an Industrial Sherry Base Wine by Yeast Enhancement Strategies. *Foods*, 11 (8), 1104. <https://doi.org/10.3390/foods11081104>
8. Pastor-Vega, N., Carbonero-Pacheco, J., Mauricio, J. C., Moreno, J., García-Martínez, T., Nitin, N. et al. (2023). Flor yeast immobilization in microbial bio-capsules for Sherry wine production: microvinification approach. *World Journal of Microbiology and Biotechnology*, 39 (10). <https://doi.org/10.1007/s11274-023-03713-1>
9. Butrón-Benítez, D., Valcárcel-Muñoz, M. J., García-Moreno, M. V., Rodríguez-Dodero, M. C., Guillén-Sánchez, D. A. (2024). Chemical and Sensory Profile of Grape Distillates Aged in *Quercus alba* Casks Previously Used for Sherry Wine or Brandy. *Molecules*, 29 (22), 5303. <https://doi.org/10.3390/molecules29225303>
10. Guerrero-Chanivet, M., García-Moreno, M. V., Valcárcel-Muñoz, M. J., Guillén-Sánchez, D. A. (2023). Determining the impact of seasoning on the volatile chemical composition of the oak wood of different Sherry Casks[®] by DTD-GC-MS. *Wood Science and Technology*, 57 (4), 861–878. <https://doi.org/10.1007/s00226-023-01478-2>
11. Cruces-Montes, S. J., Merchán-Clavellino, A., Romero-Moreno, A., Paramio, A. (2020). Perception of the Attributes of Sherry Wine and Its Consumption in Young People in the South of Spain. *Foods*, 9 (4), 417. <https://doi.org/10.3390/foods9040417>
12. Kishkovskaya, S. A., Tanashchuk, T. N., Shalamitskiy, M. Yu., Zagoryiko, V. I., Shiryaev, M. I., Avdanina, D. A. et al. (2020). Natural Yeast Strains of *Saccharomyces cerevisiae* that are Promising for Sherry Production. *Applied Biochemistry and Microbiology*, 56 (3), 329–335. <https://doi.org/10.1134/s0003683820030060>
13. Cordero-Bueso, G., Ruiz-Muñoz, M., Florido-Barba, A., Manuel Cantoral Fernández, J. (2023). Update on the role of *Saccharomyces cerevisiae* in Sherry wines. *New Advances in Saccharomyces*. IntechOpen. <https://doi.org/10.5772/intechopen.1003733>
14. Sancho-Galán, P., Amores-Arrocha, A., Palacios, V., Jiménez-Cantizano, A. (2020). Identification and Characterization of White Grape Varieties Autochthonous of a Warm Climate Region (Andalusia, Spain). *Agronomy*, 10 (2), 205. <https://doi.org/10.3390/agronomy10020205>
15. Cordero-Bueso, G., Ruiz-Muñoz, M., González-Moreno, M., Chirino, S., Bernal-Grande, M., Cantoral, J. (2018). The Microbial Diversity of Sherry Wines. *Fermentation*, 4 (1), 19. <https://doi.org/10.3390/fermentation4010019>
16. Andreu-García, P., Jiménez-Cantizano, A., Sancho-Galán, P., Palacios, V., Castro-Mejías, R., Amores-Arrocha, A. (2023). The Use of Overripe Grapes and Their Skins for Naturally Sweet Wines Production in a Warm Climate Zone. *Agronomy*, 13 (11), 2686. <https://doi.org/10.3390/agronomy13112686>
17. Fataliyev, H., Malikov, A., Lezgiyev, Y., Gadimova, N., Musayev, T., Aliyeva, G. (2024). Identifying of the wine-making potential of the autochthonous madrasa grape variety of different colors and quality. *Eastern-European Journal of Enterprise Technologies*, 2 (11 (128)), 56–63. <https://doi.org/10.15587/1729-4061.2024.302971>

18. Fataliyev, H., Malikov, A., Lazgiyev, Y., Heydarov, E., Agayeva, S., Baloghlanova, K. et al. (2023). Effect of maceration regime on phenolic compound quantity and color quality of madrasa wine samples. *Food Science and Technology*, 17 (4). <https://doi.org/10.15673/fstv17i4.2784>
19. Fataliyev, H., Lezgiyev, Y., Aghazade, Y., Gadimova, N., Heydarov, E., Ismailov, M. (2024). Identifying the influence of various technological techniques on the indicators of the composition of bunches and wine samples of the madrasa grape variety. *Eastern-European Journal of Enterprise Technologies*, 6 (11 (132)), 50–62. <https://doi.org/10.15587/1729-4061.2024.318532>
20. Fataliyev, H., Aghazade, Y., Heydarov, E., Gadimova, N., Ismailov, M., Imanova, K. (2025). Identifying the factors affecting the production of juice and wine from the autochthonous Bayanshira grape variety. *Eastern-European Journal of Enterprise Technologies*, 1 (11 (133)), 38–50. <https://doi.org/10.15587/1729-4061.2025.323382>
21. Fataliyev, H., Gadimova, N., Huseynova, S., Isgandarova, S., Heydarov, E., Mammadova, S. (2024). Enrichment of functional drinks using grape pomace extracts, analysis of physicochemical indicators. *Eastern-European Journal of Enterprise Technologies*, 3 (11 (129)), 37–45. <https://doi.org/10.15587/1729-4061.2024.307039>
22. Fataliyev, H., Isgandarova, S., Gadimova, N., Mammadova, A., Ismailov, M., Mammadzade, M. (2024). Identification of the effect of ripening conditions on the yield of rose hips and their processed products. *Eastern-European Journal of Enterprise Technologies*, 4 (11 (130)), 26–35. <https://doi.org/10.15587/1729-4061.2024.309597>
23. Fataliyev, H., Mammadzade, M., Ismailov, M., Gadimova, N., Mammadova, N., Musayev, T. (2025). Identifying the factors affecting the preparation of wine material from cherry fruits. *Eastern-European Journal of Enterprise Technologies*, 2 (11 (134)), 77–88. <https://doi.org/10.15587/1729-4061.2025.326471>
24. Salimov, V., Huseynova, A., Guliyeva, A., Alizade, S., Mammadova, R. (2025). Assessment of Biomorphological and Economically Important Traits of some Local Grape Varieties and Clones of Azerbaijan. *Advances in Biology & Earth Sciences*, 10 (2). <https://doi.org/10.62476/abes.102303>
25. Gadimova, N., Fataliyev, H., Allahverdiyeva, Z., Musayev, T., Akhundova, N., Babashli, A. (2022). Obtaining and investigation of the chemical composition of powdered malt and polymalt extracts for application in the production of non-alcoholic functional beverages. *Eastern-European Journal of Enterprise Technologies*, 5 (11 (119)), 66–74. <https://doi.org/10.15587/1729-4061.2022.265762>
26. Sheskin, D. J. (2020). *Handbook of Parametric and Nonparametric Statistical Procedures*. Chapman and Hall/CRC, 1928. <https://doi.org/10.1201/9780429186196>

DOI: 10.15587/2706-5448.2025.348365

EVALUATION OF pH-MODIFIED CHICKPEA PROTEIN ISOLATE AS A FUNCTIONAL FAT REPLACER IN GERMAN-STYLE COOKED SAUSAGES

pages 44–49

Iryna Kurmakova, Doctor of Technical Sciences, Professor, Department of Chemistry, Technology and Pharmacy, T. H. Shevchenko National University "Chernihiv Colehium", Chernihiv, Ukraine, ORCID: <https://orcid.org/0000-0002-8916-6546>

Nadiia Lapytska, PhD, Senior Lecturer, Department of Chemistry, Technology and Pharmacy, T. H. Shevchenko National University "Chernihiv Colehium", Chernihiv, Ukraine, ORCID: <https://orcid.org/0000-0003-2431-4373>

Hanna Novik, PhD, Associate Professor, Department of Food Technologies, Oles Honchar Dnipro National University, Dnipro, Ukraine, ORCID: <https://orcid.org/0000-0003-4045-4878>

Olena Bondar, PhD, Senior Lecturer, Department of Chemistry, Technology and Pharmacy, T. H. Shevchenko National University "Chernihiv Colehium", Chernihiv, Ukraine, ORCID: <https://orcid.org/0000-0002-9612-0546>

Olha Vasylenko, PhD, Associate Professor, Department of Higher Mathematics and Physics, Sumy National Agrarian University, Sumy, Ukraine, e-mail: vasylenko.sumy@gmail.com, ORCID: <https://orcid.org/0000-0003-1643-0702>

Tetiana Holovko, Doctor of Technical Science, Professor, Department of Meat Technology, State Biotechnological University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0001-7059-3620>

Maksym Zhrebkin, PhD, Senior Lecturer, Department of Meat Technology, State Biotechnological University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0001-8365-0495>

Iryna Levchenko, PhD, Associate Professor, Department of Fodder Technology and Animal Feeding, Sumy National Agrarian University, Sumy, Ukraine, ORCID: <https://orcid.org/0009-0003-9117-4005>

Oleh Starynskyi, PhD Student, Department of Food Technologies, Sumy National Agrarian University, Sumy, Ukraine, ORCID: <https://orcid.org/0009-0001-1789-1669>

The object of research is boiled German-type sausages with reduced fat content. The technological complexity of fat reduction in traditional meat emulsions is a major problem, which inevitably leads to a deterioration in both physicochemical parameters (emulsion stability) and sensory characteristics, such as texture and juiciness. This study was aimed at assessing the ability of chickpea protein isolate (CPI), modified using the pH-adjustment method, to act as a functional fat substitute. At the first stage, a comparison of the techno-functional properties of the modified isolate (solubility, WHC, OHC, EAI and ESI) with those of the native protein was carried out. All functional parameters of CPI were significantly improved by pH-treatment ($p < 0.05$). The solubility increased from 24.33% to 82.67%, and the emulsifying activity index (EAI) from 27.33 to 48.33 mL^2/g , which are significant changes for meat systems. For the experiment, modified CPI was introduced at concentrations of 1% (sample CPI1) and 2% (sample CPI2) for partial fat replacement. This was compared with the results of the high-fat control (23%). This combination allowed to significantly ($p < 0.05$) reduce the mass fraction of fat in the finished products. Sample CPI1 showed a decrease of 26.1%, and sample CPI2 showed a decrease of 40.6%. At the same time, the technological yield showed a clear trend towards growth (from 90.67% to 99.00%). Sensory analysis (on a 9-point scale) showed that sample CPI1 (1% CPI) had a sensory profile that was statistically indistinguishable ($p > 0.05$) from the control in all parameters, including taste (8.05 vs. 8.07) and aroma (7.63 vs. 7.78). However, sample CPI2 showed a significant deterioration in organoleptic properties ($p < 0.05$). Thus, pH-modified CPI proved its effectiveness as a fat substitute, and the 1% dosage was identified as the best method for preparing healthy cooked sausages without compromising on taste.

Keywords: chickpea protein isolate, pH adjustment, fat substitute, meat products, traditional sausages, vegetable protein.

References

1. Onyeaka, H., Nwaiwu, O., Obileke, K., Miri, T., Al-Sharify, Z. T. (2023). Global nutritional challenges of reformulated food: A review. *Food Science & Nutrition*, 11 (6), 2483–2499. <https://doi.org/10.1002/fsn3.3286>
2. Bronzato, S., Durante, A. (2017). A Contemporary Review of the Relationship between Red Meat Consumption and Cardiovascular Risk. *International Journal of Preventive Medicine*, 8 (1). https://doi.org/10.4103/ijpm.ijpm_206_16
3. Helikh, A., Filon, A. (2025). Biochemical variability of vegetable juice powders: a key factor in modulating the physicochemical properties and safety profile of vegan fermented sausages. *Technology Audit and Production Reserves*, 4 (3 (84)), 52–59. <https://doi.org/10.15587/2706-5448.2025.334830>
4. Helikh, A., Filon, A. (2025). Study of the amino acid profile of alternative proteins (*Helix pomatia*, *Lissachatina fulica*, *Helix aspersa*) and their potential application in a healthy diet: optimization of a modern brandade recipe. *Technology Audit and Production Reserves*, 2 (3 (82)), 71–79. <https://doi.org/10.15587/2706-5448.2025.326896>
5. Peerzade, I. J., Kudre, T., Halami, P. M.; Yaradoddi, J. S., Meti, B. S., Mudgulkar, S. B., Agsar, D. (Eds.) (2024). *Poultry and Meat Processing*. Frontiers in Food

Biotechnology. Singapore: Springer, 427–444. https://doi.org/10.1007/978-981-97-3261-6_23

- 6. Egea, M., Álvarez, D., Peñaranda, I., Panella-Riera, N., Linares, M. B., Garido, M. D. (2020). Fat Replacement by Vegetal Fibres to Improve the Quality of Sausages Elaborated with Non-Castrated Male Pork. *Animals*, 10 (10), 1872. <https://doi.org/10.3390/ani10101872>
- 7. Morales-Olán, G., Antonieta Ríos-Corripio, M., Rojas-López, M., Velasco-Velasco, J., Selene Hernández-Cázares, A. (2025). Effects of flour, starch and pea (*Pisum sativum L.*) protein as fat substitutes during storage of pork sausages. *Czech Journal of Food Sciences*, 43 (3), 194–204. <https://doi.org/10.17221/211/2024-cjfs>
- 8. Navarré, A., Musto, L., Nazareth, T. (2025). Beyond Meat Substitution: A Multifaceted Review of Plant-Based and Alternative Proteins, from Environmental Impact to Analytical Technologies. *Foods*, 14 (13), 2312. <https://doi.org/10.3390/foods14132312>
- 9. Partanen, M., Liikonen, V., Väkeväinen, K., Gómez Gallego, C., Kolehmainen, M. (2025). Digestion, Metabolism, and Health Effects of Plant Proteins and Their Food Formulations: A Systematic Scoping Review of Clinical Post-prandial Studies and in vitro Methods. *Food Reviews International*, 1–30. <https://doi.org/10.1080/87559129.2025.2525430>
- 10. van den Berg, L. A., Mes, J. J., Mensink, M., Wanders, A. J. (2022). Protein quality of soy and the effect of processing: A quantitative review. *Frontiers in Nutrition*, 9. <https://doi.org/10.3389/fnut.2022.1004754>
- 11. Patil, N. D., Bains, A., Sridhar, K., Bhaswant, M., Kaur, S., Tripathi, M. et al. (2024). Extraction, Modification, Biofunctionality, and Food Applications of Chickpea (*Cicer arietinum*) Protein: An Up-to-Date Review. *Foods*, 13 (9), 1398. <https://doi.org/10.3390/foods13091398>
- 12. Zhang, Y., Huang, X., Zeng, X., Li, L., Jiang, Y. (2023). Preparation, functional properties, and nutritional evaluation of chickpea protein concentrate. *Cereal Chemistry*, 100 (2), 310–320. <https://doi.org/10.1002/cche.10608>
- 13. Zhang, J., Liu, Q., Chen, Q., Sun, F., Liu, H., Kong, B. (2022). Synergistic modification of pea protein structure using high-intensity ultrasound and pH-shifting technology to improve solubility and emulsification. *Ultrasonics Sonochemistry*, 88, 106099. <https://doi.org/10.1016/j.ultsonch.2022.106099>
- 14. Chen, Q., Guan, J., Wang, Z., Wang, Y., Wang, X., Chen, Z. (2024). Improving the Gelation Properties of Pea Protein Isolates Using Psyllium Husk Powder: Insight into the Underlying Mechanism. *Foods*, 13 (21), 3413. <https://doi.org/10.3390/foods13213413>
- 15. Gao, D., Helikh, A., Filon, A., Duan, Z., Vasylenko, O. (2022). Effect of pH-shifting treatment on the gel properties of pumpkin seed protein isolate. *Journal of Chemistry and Technologies*, 30 (2), 198–204. <https://doi.org/10.15421/jchemtech.v30i2.241145>
- 16. Morr, C. V., German, B., Kinsella, J. E., Regenstein, J. M., Buren, J. P. V., Kilara, A. et al. (1985). A Collaborative Study to Develop a Standardized Food Protein Solubility Procedure. *Journal of Food Science*, 50 (6), 1715–1718. <https://doi.org/10.1111/j.1365-2621.1985.tb10572.x>
- 17. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 72 (1–2), 248–254. [https://doi.org/10.1016/0003-2697\(76\)90527-3](https://doi.org/10.1016/0003-2697(76)90527-3)
- 18. Quinn, J. R., Paton, D. (1979). A practical measurement of water hydration capacity of protein materials. *Cereal Chemistry*, 56 (1), 38–40. Available at: https://www.cerealsgrains.org/publications/cc/backissues/1979/Documents/chem56_38.pdf
- 19. Lin, M. J., Humbert, E. S., Sosulski, F. W. (1974). Certain functional properties of sunflower meal products. *Journal of Food Science*, 39 (2), 368–370. <https://doi.org/10.1111/j.1365-2621.1974.tb02896.x>
- 20. Pearce, K. N., Kinsella, J. E. (1978). Emulsifying properties of proteins: evaluation of a turbidimetric technique. *Journal of Agricultural and Food Chemistry*, 26 (3), 716–723. <https://doi.org/10.1021/jf60217a041>
- 21. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. *Zeitschrift Für Analytische Chemie*, 22 (1), 366–382. <https://doi.org/10.1007/bf01338151>
- 22. Soxhlet, F. (1879). Die gewichtsanalytische Bestimmung des Milchfettes. *Dinglers Polytechnisches Journal*, 232, 461–465. Available at: <https://cyberlipid.gerli.com/wp-content/uploads/sites/3/2018/09/soxhlet.pdf>
- 23. *Official methods of analysis of AOAC International* (2022). AOAC International.
- 24. Lawless, H. T., Heymann, H. (2010). *Sensory Evaluation of Food*. New York: Springer. <https://doi.org/10.1007/978-1-4419-6488-5>
- 25. *How to feed the world in 2050* (2009). Food and Agriculture Organization of the United Nations. Available at: <https://www.fao.org/4/ak542e/ak542e00.pdf>
- 26. Leip, A., Billen, G., Garnier, J., Grizzetti, B., Lassaletta, L., Reis, S. et al. (2015). Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. *Environmental Research Letters*, 10 (11), 115004. <https://doi.org/10.1088/1748-9326/10/11/115004>
- 27. Prymenko, V., Sefikhanova, K., Helikh, A., Golovko, M., Vasylenko, O. (2022). Choice justification of dairy raw materials according to indicators of their structure for obtaining selenium-protein dietary supplements. *Journal of Chemistry and Technologies*, 30 (1), 79–87. <https://doi.org/10.15421/jchemtech.v30i1.241139>
- 28. Yang, F., Ren, L., Sun, J., Gu, C. (2025). A study of the purchase intention of alternative foods. *Scientific Reports*, 15 (1). <https://doi.org/10.1038/s41598-025-90014-2>