

INFORMATION TECHNOLOGIES

DOI: 10.15587/2706-5448.2025.343943

ENHANCING WRITER IDENTIFICATION AND WRITER RETRIEVAL WITH CENSURE AND VISION TRANSFORMERS

pages 6–14

Mykyta Shupyliuk, PhD Student, Department of Electronic Computers, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0009-0005-3457-9895>

Vitalii Martovytskyi, PhD, Associate Professor, Department of Electronic Computers, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, e-mail: vitalii.martovytskyi@nure.ua, ORCID: <https://orcid.org/0000-0003-2349-0578>

Yuri Romanenkov, Doctor of Technical Sciences, Vice-Rector for Scientific Work, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-6544-5348>

The object of research is the process of writer identification based on handwritten text. Despite significant progress, existing methods for author identification from handwritten text have limitations that prevent them from achieving maximum accuracy and reliability.

This paper focuses on optimizing and improving the efficiency of writer identification from handwritten text by integrating image preprocessing methods, feature detection, and modern machine learning architectures. To this end, a functional model was developed that uses the CenSurE algorithm to detect key points and extract relevant image areas, and then the Vision Transformer model to identify the writer based on these extracted features. To reduce the variability of the results, experimental validation was conducted using a dual search and classification methodology. The use of the public CVL dataset increases reproducibility and helps in comparative analysis. The findings indicate that the implementation of the proposed approach leads to an improvement in the identification accuracy during retrieval, surpassing the results of other studies. This is evidenced by increased accuracy values of hard top k and soft top k by 1% and mean average precision by 2%. In addition, findings indicate significant performance improvement in the feature detection preprocessing stage. This improvement is quantitatively supported by reductions in both the average time per item and total processing duration by 39%, alongside the increase in total count of patches extracted by 70%.

The results obtained contribute to increasing the reliability of automated handwriting analysis systems, especially for the task of writer identification. This achievement is a valuable tool for graphologists and forensic document experts, supporting such critical tasks as the forensic authorship process.

Keywords: machine learning, writer identification, transformer, image, neural networks, handwriting, preprocessing.

References

1. Hengl, M. (2014). Comparison of the Branches of Handwriting Analysis. *Chasopys Natsionalnoho universytetu "Ostrozka akademiiia". Seriia: Pravo*, 2 (10).
2. Shupyliuk, M., Martovytskyi, V., Bolohova, N., Romanenkov, Y., Osieievskyi, S., Liashenko, S. et al. (2025). Devising an approach to personality identification based on handwritten text using a vision transformer. *Eastern-European Journal of Enterprise Technologies*, 1 (2 (133)), 53–65. <https://doi.org/10.15587/1729-4061.2025.322726>
3. Aliyev, E. (2024). Forensic Handwriting Analysis to Determine the Psychophysiological Traits. *International Journal of Religion*, 5 (6), 511–530. <https://doi.org/10.61707/2r6bmr11>
4. Pandey, N., Singh, B., Singh, S. (2024). Review on handwriting examination on unusual surface. *IP International Journal of Forensic Medicine and Toxicological Sciences*, 8 (4), 125–131. <https://doi.org/10.18231/jijfmts.2023.028>
5. Romanenkov, Y., Pronchakov, Y., Zieiniiev, T. (2020). Algorithmic Support for Auto-modes of adaptive short-term Forecasting in predictive Analytics Systems. *2020 IEEE 15th International Conference on Computer Sciences and Information Technologies (CSIT)*, 230–233. <https://doi.org/10.1109/csit49958.2020.9321875>
6. Christlein, V., Bernecker, D., Hönig, F., Maier, A., Angelopoulou, E. (2017). Writer Identification Using GMM Supervectors and Exemplar-SVMs. *Pattern Recognition*, 63, 258–267. <https://doi.org/10.1016/j.patcog.2016.10.005>
7. Christlein, V., Gropp, M., Fiel, S., Maier, A. (2017). Unsupervised Feature Learning for Writer Identification and Writer Retrieval. *2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)*, 991–997. <https://doi.org/10.1109/icdar.2017.165>
8. Chen, S., Wang, Y., Lin, C.-T., Ding, W., Cao, Z. (2019). Semi-supervised feature learning for improving writer identification. *Information Sciences*, 482, 156–170. <https://doi.org/10.1016/j.ins.2019.01.024>
9. He, S., Schomaker, L. (2019). Deep adaptive learning for writer identification based on single handwritten word images. *Pattern Recognition*, 88, 64–74. <https://doi.org/10.1016/j.patcog.2018.11.003>
10. Helal, L. G., Bertolini, D., Costa, Y. M. G., Cavalcanti, G. D. C., Britto, A. S., Oliveira, L. E. S. (2019). Representation Learning and Dissimilarity for Writer Identification. *2019 International Conference on Systems, Signals and Image Processing (IWSSIP)*, 63–68. <https://doi.org/10.1109/iwssip.2019.8787293>
11. Sulaiman, A., Omar, K., Nasrudin, M. F., Arram, A. (2019). Length Independent Writer Identification Based on the Fusion of Deep and Hand-Crafted Descriptors. *IEEE Access*, 7, 91772–91784. <https://doi.org/10.1109/access.2019.2927286>
12. Kumar, P., Sharma, A. (2020). Segmentation-free writer identification based on convolutional neural network. *Computers & Electrical Engineering*, 85. <https://doi.org/10.1016/j.compeleceng.2020.106707>
13. He, S., Schomaker, L. (2020). FragNet: Writer Identification Using Deep Fragment Networks. *IEEE Transactions on Information Forensics and Security*, 15, 3013–3022. <https://doi.org/10.1109/tifs.2020.2981236>
14. Koepf, M., Kleber, F., Sablatnig, R. (2022). Writer identification and writer retrieval using Vision Transformer for forensic documents. *Document Analysis Systems*. Cham: Springer, 352–366. https://doi.org/10.1007/978-3-031-06555-2_24
15. Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., El Youssfi El Kettani, M. (2021). Writer Identification using Deep Learning with FAST Keypoints and Harris corner detector. *Expert Systems with Applications*, 184, 115473. <https://doi.org/10.1016/j.eswa.2021.115473>
16. He, S., Schomaker, L. (2021). GR-RNN: Global-context residual recurrent neural networks for writer identification. *Pattern Recognition*, 117. <https://doi.org/10.48550/arXiv.2104.05036>
17. Suteddy, W., Agustini, D. A. R., Atmanto, D. A. (2024). Offline Handwriting Writer Identification using Depth-wise Separable Convolution with Siamese Network. *JOIV: International Journal on Informatics Visualization*, 8 (1), 535–541. <https://doi.org/10.62527/joiv.8.1.2148>
18. Kleber, F., Fiel, S., Diem, M., Sablatnig, R. (2013). CVL-DataBase: An Off-Line Database for Writer Retrieval, Writer Identification and Word Spotting. *2013 12th International Conference on Document Analysis and Recognition*, 560–564. <https://doi.org/10.1109/icdar.2013.117>
19. Smelyakov, K., Sandrin, D., Ruban, I., Vitalii, M., Romanenkov, Y. (2018). Search by Image. New Search Engine Service Model. *2018 International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T)*, 181–186. <https://doi.org/10.1109/infocommst.2018.8632117>
20. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T. et al. (2021). *An Image is Worth 16x 16 Words: Transformers for Image Recognition at Scale*. arXiv 2021. <https://doi.org/10.48550/arXiv.2010.11929>
21. Shupyliuk, M., Martovytskyi, V. (2025). Analysis of personality detection and writer identification methods. *Control, Navigation and Communication Systems*, 79 (1), 138–142. <https://doi.org/10.26906/SUNZ.2025.1.138-142>
22. Agrawal, M., Konolige, L., Blas, M. (2008). CenSurE: Center Surround Extremas for Realtime Feature Detection and Matching. *10th European Conference on Computer Vision*. Berlin, Heidelberg: Springer, 102–115. https://doi.org/10.1007/978-3-540-88693-8_8
23. Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. *IEEE Transactions on Systems, Man, and Cybernetics*, 9 (1), 62–66. <https://doi.org/10.1109/tsmc.1979.4310076>

24. Hassani, A., Walton, S., Shah, N., Abuduweili, A., Li, J., Shi, H. (2021). *Escaping the Big Data Paradigm with Compact Transformers*. arXiv:2104.05704. <https://doi.org/10.48550/arXiv.2104.05704>

DOI: 10.15587/2706-5448.2025.344185

DEVELOPMENT OF ADAPTIVE RECONFIGURATION METHOD FOR STREAM DATA PROCESSING SYSTEMS USING SYSTEM METRICS

pages 15–22

Artem Bashtovyi, PhD, Assistant, Department of Software, Lviv Polytechnic National University, Lviv, Ukraine, e-mail: artem.v.bashtovyi@lpnu.ua, ORCID: <https://orcid.org/0000-0003-4304-8605>

Andrii Fechan, Doctor of Technical Sciences, Professor, Department of Software, Lviv Polytechnic National University, Lviv, Ukraine, ORCID: <https://orcid.org/0000-0001-9970-5497>

The object of research is the process of adaptive configuration changes for stream processing applications which is focused on improving specific performance properties. The absence of the generalized automated approach for dynamic reconfiguration of state-store in limited hardware environment is the research problem addressed in this paper. The proposed solution helps to avoid a need for manual application reconfiguration from engineers. The implementation is based on Kafka Streams but designed to be portable across other frameworks that use RocksDB as a state store. Static configuration of modern stream processing systems limits efficiency under variable workloads. In this study, an adaptive module is proposed that monitors system metrics in real-time and automatically updates state-store configurations. The module performs deterministic check to derive new configuration based on predefined thresholds or utilizes a fine-tuned Large Language Model (LLM) to select new configuration values when decisions are vague. The method dynamically applies updates to the affected instance. High-load experimental results reveal the fact that adaptive executions eliminated write stalls, increased memtable hit ratio from 2% to 40% and block-cache hit ratio from 15% to 80%, reduced disk I/O by approximately 50%, and improved throughput by around 5%, at the cost of higher memory consumption. To avoid redundant adaptive updates and outlier-based bias a 10-minute observation frequency was selected. The approach is suitable for systems with fixed resources, state-intensive workloads with high key cardinality. Additionally, it covers the need for safe configuration change under operational constraints. The architecture is framework agnostic for the RocksDB-based based stream processing with state stores.

Keywords: distributed systems, stream processing, Kafka Streams, adaptivity, adaptive, dynamic, RocksDB.

References

1. Frakoulis, M., Carbone, P., Kalavri, V., Katsifidimos, A. (2023). A survey on the evolution of stream processing systems. *The VLDB Journal*, 33 (2), 507–541. <https://doi.org/10.1007/s00778-023-00819-8>
2. Checkpointing. *Apache Flink*. Available at: <https://nightlies.apache.org/flink/flink-docs-master/docs/dev/datastream/fault-tolerance/checkpointing/> Last accessed: 27.10.2025
3. Bashtovyi, A., Fechan, A. (2023). Change Data capture for migration to event-driven microservices Case Study. *2023 IEEE 18th International Conference on Computer Science and Information Technologies (CSIT)*. IEEE, 1–4. <https://doi.org/10.1109/csit61576.2023.10324262>
4. Vyas, S., Tyagi, R. K., Sahu, S. (2023). Fault Tolerance and Error Handling Techniques in Apache Kafka. *Proceedings of the 5th International Conference on Information Management & Machine Intelligence*. Association for Computing Machinery, 1–5. <https://doi.org/10.1145/3647444.3647844>
5. A persistent key-value store for fast storage environments. *RocksDB*. Available at: <https://rocksdb.org/> Last accessed: 27.10.2025
6. Cardellini, V., Lo Presti, F., Nardelli, M., Russo, G. R. (2022). Runtime Adaptation of Data Stream Processing Systems: The State of the Art. *ACM Computing Surveys*, 54 (11s), 1–36. <https://doi.org/10.1145/3514496>
7. Herodotou, H., Odysseos, L., Chen, Y., Lu, J. (2022). Automatic Performance Tuning for Distributed Data Stream Processing Systems. *2022 IEEE 38th International Conference on Data Engineering (ICDE)*. IEEE, 3194–3197. <https://doi.org/10.1109/icde53745.2022.000296>
8. Venkataraman, S., Panda, A., Ousterhout, K., Armbrust, M., Ghodsi, A., Franklin, M. J. et al. (2017). Drizzle. *Proceedings of the 26th Symposium on Operating Systems Principles*. Association for Computing Machinery, 374–389. <https://doi.org/10.1145/3132747.3132750>
9. Geldenhuys, M., Pfister, B., Scheinert, D., Thamsen, L., Kao, O. (2022). Khaos: Dynamically Optimizing Checkpointing for Dependable Distributed Stream Processing. *Proceedings of the 17th Conference on Computer Science and Intelligence Systems*, 30, 553–561. <https://doi.org/10.15439/2022f225>
10. Sun, D., Peng, J., Zhu, T., Kua, J., Gao, S., Buyya, R. (2025). Toward High-Availability Distributed Stream Computing Systems via Checkpoint Adaptation. *Concurrency and Computation: Practice and Experience*, 37 (15–17). <https://doi.org/10.1002/cpe.70171>
11. Liu, J., Gulisano, V. (2025). On-demand Memory Compression of Stream Aggregates through Reinforcement Learning. *Proceedings of the 16th ACM/SPEC International Conference on Performance Engineering*. Association for Computing Machinery, 240–252. <https://doi.org/10.1145/3676151.3719369>
12. Wladdimiro, D., Arantes, L., Sens, P., Hidalgo, N. (2024). PA-SPS: A predictive adaptive approach for an elastic stream processing system. *Journal of Parallel and Distributed Computing*, 192, 104940. <https://doi.org/10.1016/j.jpdc.2024.104940>
13. Horovushchenko, T., Medzatyi, D., Voichuk, Y., Lebiga, M. (2023). Method for forecasting the level of software quality based on quality attributes. *Journal of Intelligent & Fuzzy Systems*, 44 (3), 3891–3905. <https://doi.org/10.3233/jifs-222394>
14. How to Tune RocksDB for Your Kafka Streams Application (2021). *Confluent*. Available at: <https://www.confluent.io/blog/how-to-tune-rocksdb-kafka-streams-state-stores-performance/> Last accessed: 27.10.2025
15. Oh, S., Moon, G. E., Park, S. (2024). ML-Based Dynamic Operator-Level Query Mapping for Stream Processing Systems in Heterogeneous Computing Environments. *2024 IEEE International Conference on Cluster Computing (CLUSTER)*. IEEE, 226–237. <https://doi.org/10.1109/cluster59578.2024.00027>
16. Vysotska, V., Kyrychenko, I., Demchuk, V., Gruzdo, I. (2024). Holistic Adaptive Optimization Techniques for Distributed Data Streaming Systems. *Proceedings of the 8th International Conference on Computational Linguistics and Intelligent Systems. Volume II: Modeling, Optimization, and Controlling in Information and Technology Systems Workshop (MOCITSW-CoLInS 2024)*. <https://doi.org/10.31110/collins/2024-2/009>
17. Dong, S., Kryczka, A., Jin, Y., Stumm, M. (2021). RocksDB: Evolution of Development Priorities in a Key-value Store Serving Large-scale Applications. *ACM Transactions on Storage*, 17 (4), 1–32. <https://doi.org/10.1145/3483840>
18. Bashtovyi, A. V., Fechan, A. V. (2025). Evaluating fault recovery in distributed applications for stream processing applications: business insights based on metrics. *Radio Electronics, Computer Science, Control*, 3, 17–27. <https://doi.org/10.15588/1607-3274-2025-3-2>

DOI: 10.15587/2706-5448.2025.344630

DEVELOPMENT OF CLUSTERING MODELS FOR EXTENDED OPINION HOLDERS BASED ON AGGREGATED STYLOMETRIC AND SENTIMENT FEATURES OF CHAT MESSAGES

pages 23–30

Heorhii Chyzhuk, PhD Student, Assistant, Department of Computer Engineering and Electronics, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, e-mail: george.chyzhuk@gmail.com, ORCID: <https://orcid.org/0000-0001-9284-4195>

Valeriy Sydorenko, PhD, Associate Professor, Department of Computer Engineering and Electronics, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, ORCID: <https://orcid.org/0000-0002-4449-073X>

The subject of research is the methods and technologies for monitoring holder opinion groups in social media based on stylometric and sentiment

features. One of the most important problems is the increasing complexity of text content, which makes user behavior analysis more difficult because of anonymity, informal language, slang, emojis, and non-standard writing styles. Stable, long-term behavioral patterns are not captured by methods based on single-message evaluation.

This research proposes a holder-level clustering method based on aggregated stylometric and sentiment features taken from several messages per user. The methodology includes agglomerative hierarchical clustering, which is enhanced by decision tree analysis for feature selection and cluster interpretability, quantile normalization, dimensionality reduction via PCA (LiveJournal provided six components explaining 81.7% of the variance, while Instagram provided four components explaining 83.5% of the variance), and data preprocessing (VarianceThreshold, removal of highly correlated features). Ultimately, the majority of users were covered by two clusters for LiveJournal and three clusters for Instagram. The result is a set of clustering models that efficiently group holders into logical, understandable clusters based on their overall communication style and emotional expression. The primary advantages of the proposed approach are as follows: holder-level aggregation ensures stability and consistency in profiling; two-stage clustering with intermediate feature selection enhances explainability; the method demonstrates cross-platform applicability, validated on both LiveJournal and Instagram. As a result, over time, more accurate and dynamic user profiles can be developed, enabling improved sentiment analysis, automated moderation, and customized user interaction. This approach offers significant benefits over conventional single-message analysis methods in terms of results transparency, behavioral insight depth, and profile stability. Customized social media recommendations, automated moderation, and social sentiment analysis can all benefit from the study's findings.

Keywords: clustering models, natural language processing, semantic and sentiment analysis, explainable artificial intelligence.

References

1. Sydorenko, V., Kravchenko, S., Rychok, Y., Zeman, K. (2020). Method of Classification of Tonal Estimations Time Series in Problems of Intellectual Analysis of Text Content. *Transportation Research Procedia*, 44, 102–109. <https://doi.org/10.1016/j.trpro.2020.02.015>
2. Sydorenko, V., Rychok, Y., Oladko, M. (2022). Method for Evaluation the Pattern of Internet Service Customers Based on Stylometric Analysis Oof their Text Content. *2022 IEEE 4th International Conference on Modern Electrical and Energy System (MEES)*, 1–6. <https://doi.org/10.1109/mees58014.2022.10005654>
3. F. Mosteller and D.L. Wallace Inference and Disputed Authorship; The Federalist. Addison-Wesley Series in Behavioral Science; Quantitative Methods. Reading, Mass., Palo Alto, London, Addison-Wesley Publishing Company, Inc., 1964, XV p. 287 p., \$12.50. (1965). *Recherches Économiques de Louvain*, 31 (8), 721–721. <https://doi.org/10.1017/s0770451800020777>
4. Stamatatos, E. (2008). A survey of modern authorship attribution methods. *Journal of the American Society for Information Science and Technology*, 60 (3), 538–556. <https://doi.org/10.1002/asi.21001>
5. Rangel, F., Rosso, P., Koppel, M., Stamatatos, E., Inches, G. (2013). *Overview of the Author Profiling Task at PAN 2013. Working Notes of CLEF 2013 Conference*. Valencia: CEUR, 1179. <https://ceur-ws.org/Vol-1179/CLEF2013wn-PAN-RangelEt2013.pdf>
6. Giorgi, S., Preoțiu-Pietro, D., Buffone, A., Rieman, D., Ungar, L., Schwartz, H. A. (2018). The Remarkable Benefit of User-Level Aggregation for Lexical-based Population-Level Predictions. *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing*. Brussels: Association for Computational Linguistics, 1167–1172. <https://doi.org/10.18653/v1/d18-1148>
7. Chyžmak, H., Sydorenko, V. (2023). Classification models of direct opinion holders in the space of stylometric and sentiment features of chat messages. *2023 IEEE 5th International Conference on Modern Electrical and Energy System (MEES)*, 1–6. <https://doi.org/10.1109/mees61502.2023.10402395>
8. Rychok, Yu. S., Sydorenko, V. M. (2021). Model otsinky sentyment-komponent u zadachakh sentyment-analizu skladnogo tekstovoho kontenta. *Fizychni protsesy ta polia tekhnichnykh i biologichnykh obiektiv*. Kremenchuk, 83–86.
9. *LiveJournal*. Available at: <https://www.livejournal.com>
10. *Instagram*. Available at: <https://www.instagram.com>
11. Ali, S., Abuhmed, T., El-Sappagh, S., Muhammad, K., Alonso-Moral, J. M., Confalonieri, R. et al. (2023). Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence. *Information Fusion*, 99, 101805. <https://doi.org/10.1016/j.inffus.2023.101805>
12. *GitHub – agentcooper/node-livejournal: LiveJournal API*. Available at: <https://github.com/agentcooper/node-livejournal>
13. 7 000 000 Russian comments from Instagram (2025). Available at: <https://t.me/danokhlopkov/395>
14. VarianceThreshold. *Scikit-learn*. Available at: https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html
15. Kuhn, M., Johnson, K. (2013). *Applied Predictive Modeling*. New York: Springer. <https://doi.org/10.1007/978-1-4614-6849-3>
16. Amaralunga, D., Cabrera, J. (2001). Analysis of Data From Viral DNA Microchips. *Journal of the American Statistical Association*, 96 (456), 1161–1170. <https://doi.org/10.1198/016214501753381814>
17. Aitchison, J., Brown, J. A. C. (1958). The Lognormal Distribution. *The Incorporated Statistician*, 8 (3), 145. <https://doi.org/10.2307/2986416>
18. Box, G. E. P., Cox, D. R. (1964). An analysis of transformations. *Journal of the Royal Statistical Society, Series B*, 26 (2), 211–252. Available at: <http://www.econ.illinois.edu/~econ508/Papers/boxcox64.pdf>
19. Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in space. *The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science*, 2 (11), 559–572. <https://doi.org/10.1080/14786440109462720>
20. Nielsen, F. (2016). *Hierarchical Clustering. Introduction to HPC with MPI for Data Science*. Cham: Springer, 195–211. https://doi.org/10.1007/978-3-319-21903-5_8
21. Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. *Nature Machine Intelligence*, 1 (5), 206–215. <https://doi.org/10.1038/s42256-019-0048-x>
22. Phillips, P. J., Hahn, C. A., Fontana, P. C., Yates, A. N., Greene, K., Broniatowski, D. A., Przybocinski, M. A. (2021). *Four principles of explainable artificial intelligence*. National Institute of Standards and Technology. <https://doi.org/10.6028/nist.ir.8312>

DOI: 10.15587/2706-5448.2025.339277

A PRIVACY-PRESERVING EDGE DATA AGGREGATION FOR TINYML ENERGY FORECASTING IN HOUSEHOLDS

pages 31–38

Anton Komin, PhD Student, Department of Information Technologies, Sumy State University, Sumy, Ukraine, e-mail: anton.komin2@gmail.com, ORCID: <https://orcid.org/0000-0003-0328-3934>

Olha Boiko, PhD, Associate Professor, Senior Lecturer, Department of Information Technologies, Sumy State University, Sumy, Ukraine, ORCID: <https://orcid.org/0000-0001-8557-2267>

The object of this research is the use of tiny machine learning (ML) forecasting models and low-power edge processing as a part of a hybrid energy management system (HEMS) with a particular emphasis on ensuring end-user data privacy and trust. The research addresses the challenge of the collection, aggregation, and processing of sensitive data in smart grid operational modes decision-making tasks.

An in-depth literature review revealed that failing to meet user expectations for control and privacy often leads to dissatisfaction and disengagement. This study introduced a complex solution that tries to solve the indicated gap and proposes a prototype of a HEMS data aggregation subsystem designed to supply information to an energy consumption forecasting module based on mobile ML models.

The developed LSTM-based household energy consumption forecasting models were converted into CoreML and TensorFlow Lite formats, maintained accuracy with an RMSE of 0.211 kWh, inference time under 0.5 ms, 800 kB size on disk, and up to 20 MB RAM usage. These results confirm their feasibility for deployment in HEMS forecasting subsystems on low-power edge devices.

To supply these models with data, a prototype of the HEMS data aggregation system was developed. It uses open-source software (Home Assistant, InfluxDB) and a scalable, privacy-centered container architecture that keeps sensitive data at the edge. Tests on Raspberry Pi 5 (16 GB) showed 97.2% availability over 72 hours, with 12% RAM usage, 18% CPU load, and CPU temperatures of 44–51°C when processing 1440 records per sensor daily. This confirms reliable aggregation with low resource demands and good scalability.

Considering the results, the models and prototype can be considered as the sensing and edge computing layers of HEMS, providing the necessary data for operational mode selection in household microgrids.

Keywords: energy management systems, energy efficiency, Internet of Things, smart grid.

References

1. Saleem, M., Shakir, M., Usman, M., Bajwa, M., Shabbir, N., Shams Ghahfarokhi, P., Daniel, K. (2023). Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids. *Energies*, 16 (12), 4835. <https://doi.org/10.3390/en16124835>
2. Avancini, D. B., Rodrigues, J. J. P. C., Rabélo, R. A. L., Das, A. K., Kozlov, S., Solic, P. (2020). A new IoT-based smart energy meter for smart grids. *International Journal of Energy Research*, 45 (1), 189–202. <https://doi.org/10.1002/er.5177>
3. Gumz, J., Fettermann, D. C. (2024). User's perspective in smart meter research: State-of-the-art and future trends. *Energy and Buildings*, 308, 114025. <https://doi.org/10.1016/j.enbuild.2024.114025>
4. Ji, W., Chan, E. H. W. (2020). Between users, functions, and evaluations: Exploring the social acceptance of smart energy homes in China. *Energy Research & Social Science*, 69, 101637. <https://doi.org/10.1016/j.erss.2020.101637>
5. Boiko, O., Komin, A., Malekian, R., Davidsson, P. (2024). Edge-Cloud Architectures for Hybrid Energy Management Systems: A Comprehensive Review. *IEEE Sensors Journal*, 24 (10), 15748–15772. <https://doi.org/10.1109/jsen.2024.3382390>
6. Loomans, N., Alkemade, F. (2024). Exploring trade-offs: A decision-support tool for local energy system planning. *Applied Energy*, 369, 123527. <https://doi.org/10.1016/j.apenergy.2024.123527>
7. Parfenenko, Yu. V., Shendryk, V. V., Kholiavka, Ye. P., Pavlenko, P. M. (2023). Comparison of short-term forecasting methods of electricity consumption in microgrids. *Radio Electronics, Computer Science, Control*, 1, 14. <https://doi.org/10.15588/1607-3274-2023-1-2>
8. Komin, A., Boiko, O. (2025). Mobile energy consumption forecasting in microgrids: evaluation of converted models. *Visnyk of Kherson National Technical University*, 2 (1 (92)), 84–92. <https://doi.org/10.35546/kntu2078-4481.2025.1.2.12>
9. Elhanashi, A., Dini, P., Saponara, S., Zheng, Q. (2024). Advancements in TinyML: Applications, Limitations, and Impact on IoT Devices. *Electronics*, 13 (17), 3562. <https://doi.org/10.3390/electronics13173562>
10. Neural network classifier. Updatable models. *GitHub*. Available at: <https://apple.github.io/coremltools/docs-guides/source/updatable-neural-network-classifier-on-mnist-dataset.html>
11. *On-Device Training with LiteRT*. Available at: https://ai.google.dev/edge/litet/models/ondevice_training
12. Understanding Home Energy Management. *Home Assistant*. Available at: <https://www.home-assistant.io/docs/energy/>
13. Azlan, A. T. B. N. N., Mativenga, P. T., Zhu, M., Mirhosseini, N. (2023). Industry 4.0 energy monitoring system for multiple production machines. *Procedia CIRP*, 120, 613–618. <https://doi.org/10.1016/j.procir.2023.09.047>
14. Energy Management for Home Assistant. *Emhass*. Available at: <https://emhass.readthedocs.io/en/latest/index.html>
15. InfluxDB OSS v2. *Influxdata*. Available at: <https://docs.influxdata.com/influxdb/v2/>
16. Reference. *FastAPI*. Available at: <https://fastapi.tiangolo.com/reference/>
17. *Caddy*. Available at: <https://caddyserver.com/docs/>
18. Manuals. *Docker*. Available at: <https://docs.docker.com/manuals/>
19. *Telegraf*. *GitHub*. Available at: <https://github.com/influxdata/telegraf>
20. Raspberry Pi 5. *Raspberry Pi*. Available at: <https://www.raspberrypi.com/products/raspberry-pi-5/>
21. Shelly Plus Plug S. *Shelly*. Available at: <https://kb.shelly.cloud/knowledge-base/shelly-plus-plug-s-1>
22. Kastner, L., Langer, M., Lazar, V., Schomacker, A., Speith, T., Sterz, S. (2021). On the Relation of Trust and Explainability: Why to Engineer for Trustworthiness. *2021 IEEE 29th International Requirements Engineering Conference Workshops (REW)*. IEEE, 169–175. <https://doi.org/10.1109/rew53955.2021.00031>
23. Alhandi, S. A., Kamaludin, H., Alduais, N. A. M. (2023). Trust Evaluation Model in IoT Environment: A Comprehensive Survey. *IEEE Access*, 11, 11165–11182. <https://doi.org/10.1109/access.2023.3240990>
24. Aaqib, M., Ali, A., Chen, L., Nibouche, O. (2023). IoT trust and reputation: a survey and taxonomy. *Journal of Cloud Computing*, 12 (1). <https://doi.org/10.1186/s13677-023-00416-8>
25. Junior, F. M. R., Kamienski, C. A. (2021). A Survey on Trustworthiness for the Internet of Things. *IEEE Access*, 9, 42493–42514. <https://doi.org/10.1109/access.2021.3066457>
26. Stover, O., Karve, P., Mahadevan, S. (2023). Reliability and risk metrics to assess operational adequacy and flexibility of power grids. *Reliability Engineering & System Safety*, 231, 109018. <https://doi.org/10.1016/j.ress.2022.109018>
27. Kelly, S., Kaye, S.-A., Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. *Telematics and Informatics*, 77, 101925. <https://doi.org/10.1016/j.tele.2022.101925>
28. Vanegas Cantarero, M. M. (2020). Of renewable energy, energy democracy, and sustainable development: A roadmap to accelerate the energy transition in developing countries. *Energy Research & Social Science*, 70, 101716. <https://doi.org/10.1016/j.erss.2020.101716>
29. Martin, A., Agnoletti, M.-F., Brangier, É. (2021). Ordinary users, precursory users and experts in the anticipation of future needs: Evaluation of their contribution in the elaboration of new needs in energy for housing. *Applied Ergonomics*, 94, 103394. <https://doi.org/10.1016/j.apergo.2021.103394>
30. Farhan, M., Reza, T. N., Badal, F. R., Islam, Md. R., Muyeen, S. M., Tasneem, Z. et al. (2023). Towards next generation Internet of Energy system: Framework and trends. *Energy and AI*, 14, 100306. <https://doi.org/10.1016/j.egyai.2023.100306>
31. Puthal, D., Mohanty, S. P., Yeun, C. Y., Damiani, E., Pradhan, B. (2023). Pervasive AI for Secure and Scalable IoT- Edge-Cloud Continuum: A Big Picture. *2023 IEEE International Conference on High Performance Computing & Communications, Data Science & Systems, Smart City & Dependability in Sensor, Cloud & Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys)*. IEEE, 566–573. <https://doi.org/10.1109/hpcc-dss-smartcity-dependsys60770.2023.00083>
32. Qureshi, K. N., Alhudhaif, A., Hussain, A., Iqbal, S., Jeon, G. (2022). Trust aware energy management system for smart homes appliances. *Computers & Electrical Engineering*, 97, 107641. <https://doi.org/10.1016/j.compeleceng.2021.107641>
33. Boomsma, M., Vringer, K., Soest, D. van. (2025). The impact of real-time energy consumption feedback on residential gas and electricity usage. *Journal of Environmental Economics and Management*, 132, 103163. <https://doi.org/10.1016/j.jeem.2025.103163>
34. Hesselman, C., Grossi, P., Holz, R., Kuipers, F., Xue, J. H., Jonker, M. (2020). A Responsible Internet to Increase Trust in the Digital World. *Journal of Network and Systems Management*, 28 (4), 882–922. <https://doi.org/10.1007/s10922-020-09564-7>
35. Dorahaki, S., MollahassaniPour, M., Rashidinejad, M. (2023). Optimizing energy payment, user satisfaction, and self-sufficiency in flexibility-constrained smart home energy management: A multi-objective optimization approach. *E-Prime – Advances in Electrical Engineering, Electronics and Energy*, 6, 100385. <https://doi.org/10.1016/j.eprime.2023.100385>
36. Vigurs, C., Maidment, C., Fell, M., Shipworth, D. (2021). Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review. *Energies*, 14 (5), 1285. <https://doi.org/10.3390/en14051285>
37. Siitonen, P., Honkapuro, S., Annala, S., Wolff, A. (2022). Customer perspectives on demand response in Europe: a systematic review and thematic synthesis. *Sustainability: Science, Practice and Policy*, 19 (1). <https://doi.org/10.1080/15487733.2022.2154986>
38. Pfeiffer, C., Hatzl, S., Fleiß, E., Posch, A. (2024). How end users perceive their energy data within the spectrum of personal information: A two-stage

clustering approach. *Energy Reports*, 11, 2011–2022. <https://doi.org/10.1016/jegyr.2024.01.053>

39. Struminskaya, B., Toepoel, V., Lugtig, P., Haan, M., Luiten, A., Schouten, B. (2020). Understanding Willingness to Share Smartphone-Sensor Data. *Public Opinion Quarterly*, 84 (3), 725–759. <https://doi.org/10.1093/poq/nfaa044>

40. Begier, B. (2014). Effective cooperation with energy consumers. *Journal of Information, Communication and Ethics in Society*, 12 (2), 107–121. <https://doi.org/10.1108/jices-07-2013-0021>

DOI: 10.15587/2706-5448.2025.342927

DEVELOPMENT OF STRATEGIES FOR ENHANCING CYBERSECURITY AND DIGITAL TRUST IN AZERBAIJAN'S DIGITAL LANDSCAPE

pages 39–56

Khayala Alasgarova, PhD, Assistant, Department of Economics and Business, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan, e-mail: khayala.alasgarova@unec.edu.az, ORCID: <https://orcid.org/0009-0003-8489-2025>

Sahib Ramazanov, PhD, Assistant Professor, Department of Economics and Business, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan, ORCID: <https://orcid.org/0000-0003-2582-3188>

This research focuses on assessing cybersecurity practices and the level of digital trust in Azerbaijan and identifying key weaknesses using real-world data.

The object of the research is cybersecurity practices and digital trust among organizations and users in Azerbaijan.

The research solves the problem of insufficient empirical data on cybersecurity practices and digital trust in Azerbaijan, which contributes to low awareness, weak security implementation, frequent cyber incidents, and limited trust in digital services and legislation.

The research methodology included a quantitative survey of 129 participants, Spearman correlation analysis, and risk heatmap modeling. Data analysis was conducted using a personal computer with Microsoft Excel and (Statistical Package for the Social Sciences) SPSS software.

The results show that 55% of organizations have moderate cybersecurity awareness, 17.8% have low awareness, and 35.5% do not provide cybersecurity training to employees. Although 76% of banks use multi-factor authentication (MFA), 40.3% have experienced fraud incidents. Spearman correlation analysis indicates a negative relationship between awareness and cyber incidents (-0.33) and between training and incidents (-0.29), while MFA usage shows a positive correlation with fraud detection (+0.3446). In addition, 64.3% of users feel somewhat safe, and 41.1% identify public education as the most important area requiring improvement.

The findings demonstrate that insufficient training, incomplete adoption of modern protective measures, and weak public education increase cybersecurity risks even in organizations with moderate awareness. The results can support the State Service for Special Communication and Information Security (SSSCIS) in improving the National Cybersecurity Strategy and assist banks, businesses, and educational institutions in strengthening cybersecurity practices for the period 2025–2030.

Keywords: cybersecurity, digital trust, phishing attacks, data breach, fraudulent activities.

References

1. Maurer, T., Morgus, R. (2014). Compilation of existing cybersecurity and information security related definitions. *New America*. Available at: https://static.newamerica.org/attachments/175-compilation-of-existing-cybersecurity-and-information-security-related-definitions/OTI_Compilation_of_Existing_Cybersecurity_and_Information_Security_Related_Definitions_Updated122015.pdf
2. Hao, X., Li, Y., Ren, S., Wu, H., Hao, Y. (2023). The role of digitalization on green economic growth: Does industrial structure optimization and green innovation matter? *Journal of Environmental Management*, 325, 116504. <https://doi.org/10.1016/j.jenvman.2022.116504>
3. Kluiters, L., Srivastava, M., Tyll, L. (2022). The impact of digital trust on firm value and governance: an empirical investigation of US firms. *Society and Business Review*, 18 (1), 71–103. <https://doi.org/10.1108/sbr-07-2021-0119>
4. Uchendu, B., Nurse, J. R. C., Bada, M., Furnell, S. (2021). Developing a cyber security culture: Current practices and future needs. *Computers & Security*, 109, 102387. <https://doi.org/10.1016/j.cose.2021.102387>
5. Shikaliyev, R. (2023). Cybersecurity analysis of industrial control systems. *Problems of Information Society*, 14 (2), 47–54. <https://doi.org/10.25045/jpisv14.i2.06>
6. Manjikian, M. (2017). *Cybersecurity Ethics*. Routledge, 246. <https://doi.org/10.4324/9781315196275>
7. Kostopoulos, G. K. (2017). *Cyberspace and cybersecurity*. Auerbach Publications. <https://doi.org/10.1201/9781315116488>
8. Verissimo, P., Rodrigues, L. (2001). Fundamental Security Concepts. *Distributed Systems for System Architects*. Boston: Springer, 377–393. https://doi.org/10.1007/978-1-4615-1663-7_16
9. Kim, L.; Hübner, U. H., Mustata Wilson, G., Morawski, T. S., Ball, M. J. (Eds.) (2022). *Cybersecurity: Ensuring Confidentiality, Integrity, and Availability of Information*. *Nursing Informatics*. Cham: Springer, 391–410. https://doi.org/10.1007/978-3-030-91237-6_26
10. Shah, S. S., Shah, S. A. H. (2024). Trust as a determinant of social welfare in the digital economy. *Social Network Analysis and Mining*, 14 (1). <https://doi.org/10.1007/s13278-024-01238-5>
11. Herath, S. K., Herath, L. M., Yoo, J. K. (2024). Opportunities and Challenges of Digital Audits and Compliance. *Impact of Digitalization on Reporting, Tax Avoidance, Accounting, and Green Finance*, 1–35. <https://doi.org/10.4018/978-8-3693-1678-8.ch001>
12. Ablyazov, T., Asaturova, J., Koscheyev, V. (2018). Digital technologies: new forms and tools of business activity. *SHS Web of Conferences*, 44, 00004. <https://doi.org/10.1051/shsconf/20184400004>
13. Osburg, T. (2019). Changing Relevance of Trust in Digital Worlds. *Media Trust in a Digital World*, 15–33. https://doi.org/10.1007/978-3-030-30774-5_2
14. Huda, M. (2023). Trust as a key element for quality communication and information management: insights into developing safe cyber-organisational sustainability. *International Journal of Organizational Analysis*, 32 (8), 1539–1558. <https://doi.org/10.1108/ijoja-12-2022-3532>
15. Guo, Y. (2022). Digital Trust and the Reconstruction of Trust in the Digital Society: An Integrated Model based on Trust Theory and Expectation Confirmation Theory. *Digital Government: Research and Practice*, 3 (4), 1–19. <https://doi.org/10.1145/3543860>
16. PwC UK. Available at: <https://www.pwc.co.uk> Last accessed: 09.01.2025.
17. Tariq, N. (2018). Impact of cyberattacks on financial institutions. *Journal of Internet Banking and Commerce*, 23 (2), 1–11. Available at: <https://www.icomercentral.com/open-access/impact-of-cyberattacks-on-financial-institutions.pdf>
18. Rezaei, F. (2019). Iran's Military Capability: The Structure and Strength of Forces. *Insight Turkey*, 21 (4), 183–216. Available at: <https://www.insightturkey.com/articles/irans-military-capability-the-structure-and-strength-of-forces>
19. Berglyd, K. J. T. (2022). *Strategic Culture and State Behaviour in Cyberspace: How Iran's Strategic Culture Influences its Behaviour in Cyberspace*. [Master's Thesis]. Available at: <https://www.duo.uio.no/bitstream/handle/10852/96599/1/STV4992-Master-s-Thesis-Knut-Joachim-Tander-Berglyd-Spring-2022.pdf>
20. Perwej, Dr. Y., Qamar Abbas, S., Pratap Dixit, J., Akhtar, Dr. N., Kumar Jaiswal, A. (2021). A Systematic Literature Review on the Cyber Security. *International Journal of Scientific Research and Management*, 9 (12), 669–710. <https://doi.org/10.18535/ijjsrm/v9i12.ec04>
21. Saleh, M. E., Aly, A. A., Omara, F. A. (2016). Data Security Using Cryptography and Steganography Techniques. *International Journal of Advanced Computer Science and Applications*, 7 (6). <https://doi.org/10.14569/ijacs.2016.070651>
22. Chio, C., Freeman, D. (2018). *Machine learning and security: Protecting systems with data and algorithms*. O'Reilly Media, 383. Available at: <https://virtualmmx.ddns.net/gbooks/MachineLearningandSecurity.pdf>
23. Carr, M., Shahandashti, S. F.; Hölbl, M., Rannenberg, K., Welzer, T. (Eds.) (2020). Revisiting Security Vulnerabilities in Commercial Password Managers. *ICT Systems Security and Privacy Protection*. Cham: Springer, 265–279. https://doi.org/10.1007/978-3-030-58201-2_18

24. Stobert, E., Biddle, R. (2018). The Password Life Cycle. *ACM Transactions on Privacy and Security*, 21 (3), 1–32. <https://doi.org/10.1145/3183341>

25. Rizvi, S., Orr, R., Cox, A., Ashokkumar, P., Rizvi, M. R. (2020). Identifying the attack surface for IoT network. *Internet of Things*, 9, 100162. <https://doi.org/10.1016/j.iot.2020.100162>

26. Borky, J. M., Bradley, T. H. (2019). Protecting Information with Cybersecurity. *Effective Model-Based Systems Engineering*. Cham: Springer, 345–404. https://doi.org/10.1007/978-3-319-95669-5_10

27. Michael, K., Kobran, S., Abbas, R., Hamdoun, S. (2019). Privacy, Data Rights and Cybersecurity: Technology for Good in the Achievement of Sustainable Development Goals. *2019 IEEE International Symposium on Technology and Society (ISTAS)*. <https://doi.org/10.1109/istas48451.2019.8937956>

28. Chitadze, N. (2023). Basic Principles of Information and Cyber Security. *Analyzing New Forms of Social Disorders in Modern Virtual Environments*, 193–223. <https://doi.org/10.4018/978-1-6684-5760-3.ch009>

29. Lundgren, B., Möller, N. (2019). Defining Information Security. *Science and Engineering Ethics*, 25 (2), 419–441. <https://doi.org/10.1007/s11948-017-9992-1>

30. Villalón-Fonseca, R. (2022). The nature of security: A conceptual framework for integral-comprehensive modeling of IT security and cybersecurity. *Computers & Security*, 120, 102805. <https://doi.org/10.1016/j.cose.2022.102805>

31. Saber, J. A. (2016). *Determining small business cybersecurity strategies to prevent data breaches*. [Doctoral dissertation; Walden University]. Available at: <https://scholarworks.waldenu.edu/dissertations/4991/>

32. Razikin, K., Soewito, B. (2022). Cybersecurity decision support model to designing information technology security system based on risk analysis and cybersecurity framework. *Egyptian Informatics Journal*, 23 (3), 383–404. <https://doi.org/10.1016/j.eij.2022.03.001>

33. Abrahams, T. O., Ewuga, S. K., Dawodu, S. O., Adegbite, A. O., Hassan, A. O. (2024). A review of cybersecurity strategies in modern organizations: examining the evolution and effectiveness of cybersecurity measures for data protection. *Computer Science & IT Research Journal*, 5 (1), 1–25. <https://doi.org/10.51594/csitrjv5i1.699>

34. Priyadarshini, I.; Le, D., Kumar, R., Mishra, B. K., Khari, M., Chatterjee, J. M. (Eds.) (2019). Introduction on cybersecurity. *Cyber security in parallel and distributed computing: Concepts, techniques, applications and case studies*, 1–37. <https://doi.org/10.1002/9781119488330>

35. Astani, M., Ready, K. J. (2016). Trends and preventive strategies for mitigating cybersecurity breaches in organizations. *Issues in Information Systems*, 17 (2). https://doi.org/10.48009/2_iis_2016_208-214

36. Paleri, P. (2022). *Revisiting National Security: Prospecting Governance for Human Well-Being*. Singapore: Springer. <https://doi.org/10.1007/978-981-16-8293-3>

37. Taheroost, H. (2022). Cybersecurity vs. Information Security. *Procedia Computer Science*, 215, 483–487. <https://doi.org/10.1016/j.procs.2022.12.050>

38. Mishra, A. (2022). *Modern Cybersecurity Strategies for Enterprises: Protect and Secure Your Enterprise Networks, Digital Business Assets, and Endpoint Security with Tested and Proven Methods*. BPB Publications, 564. Available at: <https://bpbonline.com/products/modern-cybersecurity-strategies-for-enterprises>

39. Brundage, M., Avin, S., Clark, J., Toner, H., Eckersley, P., Garfinkel, B. et al. (2018). *The malicious use of artificial intelligence: Forecasting, prevention, and mitigation*. arXiv. <https://doi.org/10.48550/arXiv.1802.07228>

40. Alexei, A., Alexei, A. (2023). The difference between cyber security vs information security. *Journal of Engineering Science*, 29 (4), 72–83. [https://doi.org/10.52326/jes.utm.2022.29\(4\).008](https://doi.org/10.52326/jes.utm.2022.29(4).008)

41. Safitra, M. F., Lubis, M., Fakhrurroja, H. (2023). Counterattacking Cyber Threats: A Framework for the Future of Cybersecurity. *Sustainability*, 15 (18), 13369. <https://doi.org/10.3390/su151813369>

42. Ahmed, S., Khan, M. (2023). Securing the Internet of Things (IoT): A comprehensive study on the intersection of cybersecurity, privacy, and connectivity in the IoT ecosystem. *AI, IoT and the Fourth Industrial Revolution Review*, 13 (9), 1–17. Available at: https://ru.scribd.com/document/798142114/Securing-the-Internet-of-Things?utm_source

43. Al Hayajneh, A., Thakur, H. N., Thakur, K. (2023). The Evolution of Information Security Strategies: A Comprehensive Investigation of INFOSEC Risk Assessment in the Contemporary Information Era. *Computer and Information Science*, 16 (4). <https://doi.org/10.5539/cis.v16n4p1>

44. Manning, E. (2023). *Optimizing Incident Management Processes for Effective Cybersecurity Incident Response*. [Master's thesis; National College of Ireland]. Available at: <https://norma.ncirl.ie/7296/>

45. Manoharan, A., Sarker, M. (2022). Revolutionizing cybersecurity: unleashing the power of artificial intelligence and machine learning for next-generation threat detection. *International Research Journal of Modernization in Engineering Technology & Science*, 4 (12). <https://doi.org/10.56726/irjmets32644>

46. Salem, A. H., Azzam, S. M., Emam, O. E., Abohany, A. A. (2024). Advancing cybersecurity: a comprehensive review of AI-driven detection techniques. *Journal of Big Data*, 11 (1). <https://doi.org/10.1186/s40537-024-00957-y>

47. Tar, S. J. (2024). *Factors That Influence Cybersecurity Risk Management Within the Department of Homeland Security*. [Doctoral dissertation; Capitol Technology University].

48. Stine, K., Quinn, S., Witte, G., Gardner, R. K. (2020). *Integrating Cybersecurity and Enterprise Risk Management (ERM)*. National Institute of Standards and Technology. <https://doi.org/10.6028/nist.ir.8286>

49. Loi, M., Christen, M. (2020). Ethical Frameworks for Cybersecurity. *The Ethics of Cybersecurity*, 73–95. https://doi.org/10.1007/978-3-030-29053-5_4

50. Ganin, A. A., Quach, P., Panwar, M., Collier, Z. A., Keisler, J. M., Marchese, D. et al. (2017). Multicriteria Decision Framework for Cybersecurity Risk Assessment and Management. *Risk Analysis*, 40 (1), 183–199. <https://doi.org/10.1111/risa.12891>

51. Cardona, L. A. L. (2021). Technological trends. *Ingéniería Solidaria*, 17 (1), 1–28. <https://doi.org/10.16925/2357-6014.2021.01.02>

52. Gangwar, S., Narang, V. (2022). A Survey on Emerging Cyber Crimes and Their Impact Worldwide. *Research Anthology on Combating Cyber-Aggression and Online Negativity*. IGI Global Scientific Publishing, 1583–1595. <https://doi.org/10.4018/978-1-6684-5594-4.ch080>

53. Allende López, M., Da Silva, M. M. (2019). *Quantum Technologies: Digital Transformation, Social Impact, and Cross-sector Disruption*. Inter-American Development Bank. <https://doi.org/10.18235/0001613>

54. Fukushima, A. (2021). *Promises and challenges of digital connectivity*. European University Institute. Available at: <https://cadmus.eui.eu/entities/publication/e9f6e26a-af6f-514f-8e9e-a36f99888c18>

55. Source: Statista 2023. ResearchGate. Available at: https://www.researchgate.net/figure/Source-Statista-2023_fig1_373775351

56. Uma, M., Padmavathi, G. (2013). A survey on various cyber attacks and their classification. *International Journal of Network Security*, 15 (5), 390–396. Available at: <http://ijns.journal.com.tw/contents/ijns-v15-n5/ijns-2013-v15-n5-p390-396.pdf>

SYSTEMS AND CONTROL PROCESSES

DOI: 10.15587/2706-5448.2025.341926

EVALUATION OF THE EFFICIENCY OF LARGE LANGUAGE MODELS FOR EXTRACTING ENTITIES FROM UNSTRUCTURED DOCUMENTS

pages 57–67

Oleksandr Shyshatskyi, PhD Student, Department of Software Engineering, Dnipro University of Technology, Dnipro, Ukraine, ORCID: <https://orcid.org/0009-0008-6008-7079>

Borys Moroz, Doctor of Technical Sciences, Department of Software Engineering, Dnipro University of Technology, Dnipro, Ukraine, ORCID: <https://orcid.org/0000-0002-5625-0864>

Maksym Ievlanov, Doctor of Technical Sciences, Department of Information Control Systems, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, e-mail: maksym.ievlanov@nure.ua, ORCID: <https://orcid.org/0000-0002-6703-5166>

Ihor Levykin, Doctor of Technical Sciences, Department of Media Systems and Technologies, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0001-8086-237X>

Dmytro Moroz, PhD, Department of Software Engineering, Dnipro University of Technology, Dnipro, Ukraine, ORCID: <https://orcid.org/0000-0003-2577-3352>

The object of research is arrays of unstructured documents located on public websites of rural and urban communities of Ukraine.

The study is devoted to solving the problem of choosing a large language model (LLM), which is the best for applied use in solving named entity recognition (NER) problems during document processing. Modern researchers recognize that such a choice is significantly influenced by the features of the subject area and the language of document creation. However, when studying the feasibility of using LLM to solve NER problems, the features of the operation of such models are practically not taken into account. The issues of evaluating such features remain largely unexplored.

A method for recognizing selected varieties of legal unstructured texts in the Ukrainian language is proposed. Unlike existing ones, this method solves the NER problem for those documents that are subject to recognition/classification. Metrics for the cost of processing input and output tokens are proposed and a methodology for evaluating the cost of using LLM is developed. Based on these results, a comparative evaluation of the application of common LLMs to solve the NER problem on Ukrainian texts that need to be recognized was conducted. According to the evaluation results, it was recognized that: (I) GPT-4o is the best in terms of accuracy and quality of processing (Precision = 0.919; Recall = 0.954; F1 = 0.936); (II) GPT-4o-mini with discounts is the best in terms of average document processing cost (0.00045 USD per document); (III) GPT-4.1-mini with discounts is the best in terms of quality/cost ratio (the indicator value is 0.938). The GPT-4.1-mini LLM is recommended as the best for applied application.

The evaluation results obtained allow to significantly simplify the choice of LLM, which is advisable to use for creating information systems and technologies for processing unstructured documents created in Ukrainian.

Keywords: legal unstructured document, structured document annotation, token processing cost, GPT-4.1-mini.

References

1. Jonker, A., Gomstyn, A. (2025). *Structured vs. unstructured data: What's the difference?* IBM. Available at: <https://www.ibm.com/think/topics/structured-vs-unstructured-data> Last accessed: 26.08.2025
2. *What is text mining?* IBM. Available at: <https://www.ibm.com/think/topics/text-mining> Last accessed: 26.08.2025
3. *What Percentage of Data is Unstructured?* 3 Must-Know Statistics (2024). Edge Delta. Available at: <https://edgedelta.com/company/blog/what-percentage-of-data-is-unstructured> Last accessed: 26.08.2025
4. *Shcho take rozpiznannia imenovanykh sutnostei (NER) – pryklad, vypadky vykorystannia, perevahy ta problemy* (2025). Shaip. Available at: <https://uk.shaip.com/blog/named-entity-recognition-and-its-types/> Last accessed: 26.08.2025
5. Seow, W. L., Chaturvedi, I., Hogarth, A., Mao, R., Cambria, E. (2025). A review of named entity recognition: from learning methods to modelling paradigms and tasks. *Artificial Intelligence Review*, 58 (10). <https://doi.org/10.1007/s10462-025-11321-8>
6. Pitsilou, V., Papadakis, G., Skoutas, D. (2024). Using LLMs to Extract Food Entities from Cooking Recipes. *2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW)*. Utrecht, 21–28. <https://doi.org/10.1109/icdew61823.2024.00008>
7. Brach, W., Koštál, K., Ries, M. (2025). The Effectiveness of Large Language Models in Transforming Unstructured Text to Standardized Formats. *IEEE Access*, 13, 91808–91825. <https://doi.org/10.1109/access.2025.3573030>
8. Zeginis, D., Kalampokis, E., Tarabanis, K. (2024). Applying an ontology-aware zero-shot LLM prompting approach for information extraction in Greek: the case of DIAVGEIA.gov.gr. *Proceedings of the 28th Pan-Hellenic Conference on Progress in Computing and Informatics*. New York, 324–330. <https://doi.org/10.1145/3716554.3716603>
9. Liu, Y., Hou, J., Chen, Y., Jin, J., Wang, W. (2025). LLM-ACNC: Aerospace Requirement Texts Knowledge Graph Construction Utilizing Large Language Model. *Aerospace*, 12 (6), 463. <https://doi.org/10.3390/aerospace12060463>
10. Truhn, D., Loeffler, C. M., Müller-Franzes, G., Nebelung, S., Hewitt, K. J., Brandner, S. et al. (2023). Extracting structured information from unstructured histopathology reports using generative pre-trained transformer 4 (GPT-4). *The Journal of Pathology*, 262 (3), 310–319. <https://doi.org/10.1002/path.6232>
11. Hu, Y., Chen, Q., Du, J., Peng, X., Keloth, V. K., Zuo, X. et al. (2024). Improving large language models for clinical named entity recognition via prompt engineering. *Journal of the American Medical Informatics Association*, 31 (9), 1812–1820. <https://doi.org/10.1093/jamia/ocad259>
12. del Moral-González, R., Gómez-Adorno, H., Ramos-Flores, O. (2025). Comparative analysis of generative LLMs for labeling entities in clinical notes. *Genomics & Informatics*, 23 (1). <https://doi.org/10.1186/s44342-024-00036-x>
13. Campillos-Llanos, L., Valverde-Mateos, A., Capllonch-Carrión, A. (2025). Hybrid natural language processing tool for semantic annotation of medical texts in Spanish. *BMC Bioinformatics*, 26 (1). <https://doi.org/10.1186/s12859-024-05949-6>
14. Xu, Q., Liu, Y., Wang, D., Huang, S. (2025). Automatic recognition of cross-language classic entities based on large language models. *Npj Heritage Science*, 13 (1). <https://doi.org/10.1038/s40494-025-01624-y>
15. Shyshatskyi, O. (2025). *Dataset and additional materials*. GitHub. Available at: <https://github.com/oshyshatskyi-phd/public-docs-processing> Last accessed: 26.08.2025
16. *Gemini models that support batch predictions*. Google Cloud. Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/batch-prediction-gemini#models_that_support_batch_predictions Last accessed: 21.06.2025
17. *Pricing*. OpenAI platform. Available at: <https://platform.openai.com/docs/pricing> Last accessed: 21.06.2025
18. *Models & Pricing*. Deepseek API Docs. Available at: https://api-docs.deepseek.com/quick_start/pricing Last accessed: 21.06.2025

DOI: 10.15587/2706-5448.2025.344562

DEVELOPMENT OF AN OPTOELECTRONIC IMAGE SEGMENTATION METHOD FROM UNMANNED AERIAL VEHICLES BASED ON THE ANT COLONY OPTIMIZATION ALGORITHM UNDER THE INFLUENCE OF SALT-AND-PEPPER NOISE

pages 68–75

Igor Ruban, Doctor of Technical Sciences, Professor, Rector, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-4738-3286>

Hennadii Khudov, Doctor of Technical Sciences, Professor, Head of Department of Radar Troops Tactic, Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine, e-mail: 2345kh_hg@ukr.net, ORCID: <https://orcid.org/0000-0002-3311-2848>

Vladyslav Khudov, PhD, Junior Researcher, Department of Information Technology Security, Kharkiv National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-9863-4743>

Oleksandr Makoveichuk, Doctor of Technical Sciences, Associate Professor, Department of Computer Sciences and Software Engineering, Higher Education Institution "Academician Yuriy Bugay International Scientific and Technical University", Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0003-4425-016X>

Irina Khizhnyak, Scientific and Methodological Department for Quality Assurance in Educational Activities and Higher Education, Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0003-3431-7631>

Ihor Butko, Doctor of Technical Sciences, Professor, Department of Computer Sciences and Software Engineering, Higher Education Institution 'Academician

Yuriy Bugay International Scientific and Technical University, Kyiv, Ukraine, ORCID: <https://orcid.org/0000-0002-2859-0351>

Andrii Hryzo, PhD, Associate Professor, Head of Research Laboratory, Department of Radar Troops Tactic, Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0003-2483-5953>

Rostyslav Khudov, Department of Theoretical and Applied Informatics, V. N. Karazin Kharkiv National University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-6209-209X>

Petro Mynko, PhD, Associate Professor, Department of Higher Mathematics, National University of Radio Electronics, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-2621-8900>

Oleksii Baranik, PhD, Associate Professor, Head of Department of Aviation Armament Complexes, Ivan Kozhedub Kharkiv National Air Force University, Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-1499-7943>

The object of research is the process of segmenting an image from an unmanned aerial vehicle based on the ant algorithm under the influence of salt-and-pepper noise.

"Salt"-and-"pepper" noise occurs due to data transmission errors, failures of digital camera sensors or malfunctions during recording/reading of information. It is characterized by the random appearance of individual pixels in the image, the value of which is equal to the minimum ("pepper") or maximum ("salt") brightness level.

Unlike the known ones, the method of segmenting an optoelectronic image based on the ant algorithm provides image segmentation under the influence of salt-and-pepper noise and involves:

- initialization of initial parameters;
- calculation of the length of the path segment of agents;
- calculation of the attractiveness of the route for the agent;
- updating the pheromone concentration;
- calculation of the probability of transition of agents;
- calculation of the objective function;
- movement of agents;
- determination of the best route of agents.

Experimental studies have shown that the segmentation method based on the ant algorithm provides a reduction in segmentation errors of the first kind on average:

- in the absence of salt-and-pepper noise – 4%;
- at the intensity of salt-and-pepper noise $\sigma = 5-21\%$;
- at the intensity of salt-and-pepper noise $\sigma = 15-10\%$.

The segmentation method based on the ant algorithm provides a reduction in segmentation errors of the second kind on average:

- in the absence of salt-and-pepper noise – 3%;
- at the intensity of salt-and-pepper noise $\sigma = 5-15\%$;
- at the intensity of salt-and-pepper noise $\sigma = 15-6\%$.

The practical significance of the segmentation method based on the ant algorithm is to ensure high-quality image segmentation under the influence of salt-and-pepper noise.

Keywords: optoelectronic image, segmentation, ant colony optimization algorithm, salt-and-pepper noise.

References

1. Zhang, Z., Zhu, L. (2023). A Review on Unmanned Aerial Vehicle Remote Sensing: Platforms, Sensors, Data Processing Methods, and Applications. *Drones*, 7 (6), 398. <https://doi.org/10.3390/drones7060398>
2. Nersisyan, G. (2024). Upcoming Military Applications of Unmanned Aerial Vehicles with Digital Cameras and Other Sensors. *Journal of Student Research*, 13 (1). <https://doi.org/10.47611/jstv13i1.2378>
3. Bazrafkan, A., Igathinathane, C., Bandillo, N., Flores, P. (2025). Optimizing integration techniques for UAS and satellite image data in precision agriculture – a review. *Frontiers in Remote Sensing*, 6. <https://doi.org/10.3389/frsen.2025.1622884>
4. Bovik, A. C. (2010). *Handbook of Image and Video Processing*. Massachusetts: Academic Press, 1384. Available at: https://books.google.com.ua/books/about/Handbook_of_Image_and_Video_Processing.html?id=UM_GCfJe88sC&redir_esc=y
5. Bishop, C. M. (2016). *Pattern Recognition and Machine Learning (Information Science and Statistics)*. Springer, 778. Available at: https://books.google.com.ua/books/about/Pattern_Recognition_and_Machine_Learning.html?hl=ru&id=kOxDtAEACAAJ&redir_esc=y
6. Khudov, H., Ruban, I., Makoveichuk, O., Stepanenko, Y., Khizhnyak, I., Glukhov, S. et al. (2021). Improved Imaging Model in the Presence of Multiplicative Spatially Extended Cloaking Interference. *International Journal of Emerging Technology and Advanced Engineering*, 11 (11), 189–198. https://doi.org/10.46338/ijetae1121_22
7. Khudov, H., Makoveichuk, O., Misiuk, D., Butko, I., Khizhnyak, I., Shamrai, N. (2021). The Visual Information Structures Formation Model for the Visual Information Systems Processing. *2021 IEEE 3rd International Conference on Advanced Trends in Information Theory (ATIT)*. Kyiv, 15–19. <https://doi.org/10.1109/atit54053.2021.9678806>
8. Babak, V., Zaporozhets, A., Kuts, Y., Fryz, M., Scherbak, L. (2025). *Noise signals: Modelling and Analyses*. Cham: Springer, 222. <https://doi.org/10.1007/978-3-031-71093-3>
9. Wang, C., Pedrycz, W., Li, Z., Zhou, M. (2021). Residual-driven Fuzzy C-Means Clustering for Image Segmentation. *IEEE/CAA Journal of Automatica Sinica*, 8 (4), 876–889. <https://doi.org/10.1109/jas.2020.1003420>
10. Rahman, A., Ali, H., Badshah, N., Zakarya, M., Hussain, H., Rahman, I. U. et al. (2022). *Power Mean Based Image Segmentation in the Presence of Noise*. <https://doi.org/10.21203/rs.3.rs-1204261/v1>
11. Wang, Z., Zhao, Z., Guo, E., Zhou, L. (2023). *Clean Label Disentangling for Medical Image Segmentation with Noisy Labels*. arXiv:2311.16580v1. <https://doi.org/10.48550/arXiv.2311.16580>
12. Wang, L., Guo, D., Wang, G., Zhang, S. (2021). Annotation-Efficient Learning for Medical Image Segmentation Based on Noisy Pseudo Labels and Adversarial Learning. *IEEE Transactions on Medical Imaging*, 40 (10), 2795–2807. <https://doi.org/10.1109/tmi.2020.3047807>
13. Benfenati, A., Catozzi, A., Franchini, G., Porta, F. (2026). Unsupervised noisy image segmentation using Deep Image Prior. *Mathematics and Computers in Simulation*, 239, 986–1003. <https://doi.org/10.1016/j.matcom.2025.07.052>
14. Zhang, X. (2023). Image denoising and segmentation model construction based on IWOA-PCNN. *Scientific Reports*, 13 (1). <https://doi.org/10.1038/s41598-023-47089-6>
15. Gadetska, S., Dubnitskiy, V., Kushneruk, Y., Ponochovnyi, Y., Khodyrev, A. (2025). Determination of parameter-limited estimates of extreme value distributions and modeling of conditions for their occurrence using STATGRAPHICS and MATLAB. *Advanced Information Systems*, 9 (3), 32–41. <https://doi.org/10.20998/2522-9052.2025.3.04>
16. Ruban, I., Khudov, H., Khudov, V., Makoveichuk, O., Khizhnyak, I., Shamrai, N. et al. (2025). Development of an image segmentation method from unmanned aerial vehicles based on the ant colony algorithm under the influence of speckle noise. *Technology Audit and Production Reserves*, 4 (2 (84)), 80–86. <https://doi.org/10.15587/2706-5448.2025.334993>
17. Gonzalez, R., Woods, R. E. (2002). *Digital Image Processing*. Prentice Hall. Available at: [https://uodiyala.edu.iq/uploads/PDF%20ELIBRARY%20UODIYALA/EL31/\(%20DSP%20Book\)%20-%20Gonzalez%20e%20Woods%20-%20Digital%20Image%20Processing%20\(2nd%20ed\)%20-%20Prentice%20Hall%202002%20\(the%20only.pdf](https://uodiyala.edu.iq/uploads/PDF%20ELIBRARY%20UODIYALA/EL31/(%20DSP%20Book)%20-%20Gonzalez%20e%20Woods%20-%20Digital%20Image%20Processing%20(2nd%20ed)%20-%20Prentice%20Hall%202002%20(the%20only.pdf)
18. Dorigo, M., Stutzle, T. (2004). *Ant Colony Optimization*. Cambridge: MIT Press. <https://doi.org/10.7551/mitpress/1290.001.0001>
19. Khudov, H., Hridasov, I., Khizhnyak, I., Yuzova, I., Solomenko, Y. (2024). Segmentation of image from a first-person-view unmanned aerial vehicle based on a simple ant algorithm. *Eastern-European Journal of Enterprise Technologies*, 4 (9 (130)), 44–55. <https://doi.org/10.15587/1729-4061.2024.310372>
20. Bezkoštovni resursi BPLA. *PortalGIS.pro*. Available at: <https://portalgis.pro/bpla/bezkoštovni-resursy-bpla>

DOI: 10.15587/2706-5448.2025.345825

**DEVELOPMENT OF A SIMULATION MODEL
OF A WEB-ORIENTED SERVO DRIVE FREQUENCY
CONTROL SYSTEM BASED ON "DIGITAL TWINS"
TECHNOLOGY**

pages 76–90

Leonid Zamikhovskyi, Doctor of Technical Sciences, Professor, Head of Department of Information and Telecommunication Technologies and Systems, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine, e-mail: leozam@ukr.net, ORCID: <https://orcid.org/0000-0002-6374-8580>

Mykola Nykolaychuk, PhD, Associate Professor, Department of Information and Telecommunication Technology and Systems, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine, ORCID: <https://orcid.org/0000-0001-6185-2272>

Ivan Levytskyi, PhD, Associate Professor, Department of Information and Telecommunication Technology and Systems, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine, ORCID: <https://orcid.org/0000-0001-6538-7734>

The object of this research is the information processes of interaction between virtual components of a WEB-oriented simulation model of a frequency control system for a synchronous servo drive. The research problem lies in the need for a comprehensive solution to the tasks of developing simulation models of control systems for technological objects based on advanced algorithms, procedures, and unified hardware and software tools.

A project of a frequency control system for a SIMOTICS S-1FK2 synchronous servo drive was developed using a PLC S7-1500 and a FC SINAMICS S210 within the TIA Portal environment. Application software for the frequency control system was developed in FBD language with an integrated specialized technological object "SpeedAxis".

During the development of the simulation model, a "Digital Twins" were generated for the frequency converter with an integrated synchronous servo drive. To ensure interaction between the virtual components of the simulation model, procedures for basic parameterization and loading of the TIA Portal project components into the "Digital Twins" were implemented.

Testing and investigation of the information exchange processes between the virtual components of the simulation model were carried out in "on-line" mode using the capabilities of the integrated WEB-server.

The tests were conducted at speeds of 2000 rpm and 4000 rpm, switched periodically every 12 sec. Parameters of the reference and actual speed, as well as the instantaneous voltage, current, torque, and output power of the virtual frequency converter, were measured and analyzed.

Based on the test results, the feasibility and correctness of the joint operation of the simulation model components in an isochronous real-time mode with a 1 ms synchronization cycle were confirmed, demonstrating the effectiveness of the approach based on "Digital Twins" technology.

Keywords: WEB control system, TIA Portal, Digital Twin, simulation model, PLC, frequency converter Sinamics.

References

1. Luo, X., Liu, Q., Madathil, A. P., Xie, W. (2024). Predictive digital twin-driven dynamic error control for slow-tool-servo ultraprecision diamond turning. *CIRP Annals*, 73 (1), 377–380. <https://doi.org/10.1016/j.cirp.2024.04.080>
2. Vered, Y., Elliott, S. J. (2023). The use of digital twins to remotely update feedback controllers for the motion control of nonlinear dynamic systems. *Mechanical Systems and Signal Processing*, 185, 109770. <https://doi.org/10.1016/j.ymssp.2022.109770>
3. Wang, H., Yang, Z., Zhang, Q., Sun, Q., Lim, E. (2024). A Digital Twin Platform Integrating Process Parameter Simulation Solution for Intelligent Manufacturing. *Electronics*, 13 (4), 802. <https://doi.org/10.3390/electronics13040802>
4. Ebadpour, M., Jamshidi, M. (Behdad), Talla, J., Hashemi-Dezaki, H., Peroutka, Z. (2023). Digital Twin Model of Electric Drives Empowered by EKF. *Sensors*, 23 (4), 2006. <https://doi.org/10.3390/s23042006>
5. de Oliveira Hansen, J. P., da Silva, E. R., Bilberg, A., Bro, C. (2021). Design and development of Automation Equipment based on Digital Twins and Virtual Commissioning. *Procedia CIRP*, 104, 1167–1172. <https://doi.org/10.1016/j.procir.2021.11.196>
6. Guerra-Zubiaga, D., Kuts, V., Mahmood, K., Bondar, A., Nasajpour-Esfahani, N., Otto, T. (2021). An approach to develop a digital twin for industry 4.0 systems: manufacturing automation case studies. *International Journal of Computer Integrated Manufacturing*, 34 (9), 933–949. <https://doi.org/10.1080/0951192x.2021.1946857>
7. Balla, M., Haffner, O., Kučera, E., Cigánek, J. (2023). Educational Case Studies: Creating a Digital Twin of the Production Line in TIA Portal, Unity, and Game4Automation Framework. *Sensors*, 23 (10), 4977. <https://doi.org/10.3390/s23104977>
8. Horvath, D., Klaucu, M., Stremy, M. (2024). Virtual Commissioning with TIA Step7 and Simulink without S-Functions. *Journal of Engineering*, 2024 (1). <https://doi.org/10.1155/2024/2822711>
9. Uddin, M. M. (2021). *Development of advanced process control for controlling a digital twin as a part of virtual commissioning*. [Master's thesis; University of Gävle]. Available at: <https://www.diva-portal.org/smash/get/diva2:1599802/FULLTEXT01.pdf>
10. Catalog ST 70: Products for Totally Integrated Automation – SIMATIC (E86060-K4770-A101-C2-7600) (2025). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109744167/simatic-st70-complete-english-2025_1.pdf
11. S7-1500 / S7-1500T Motion Control overview: Function Manual (Version 7.0, A5E03879256-AH) (2022). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109812056/s71500_s71500t_motion_control_overview_function_manual_en-US_en-US.pdf?utm_source
12. Motion Control Drives D32: SINAMICS S210 servo drive system (Update 04/2025) (Catalog D32) (2025). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109754381/motion-control-drives-D32-complete-English-2025-01_Update-04-2025.pdf
13. S210-S-1FK2/S-1FT2: Operating Instructions (A5E52380168B AF) (2025). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109982746/S210_S-1FK2_S-1FT2_op_instr_0525_en-US.pdf
14. Totally Integrated Automation (TIA) documentation (2024). *Siemens*. Available at: <https://docs.tia.siemens.cloud/>
15. TIA Openness – Automated Engineering: Application examples for production machine building (DI FA PMA APC) (2025). *Siemens*. Available at: <https://support.industry.siemens.com/cs/document/109821826>
16. S7-PLCSIM Advanced: Function Manual (V7 Upd1) (A5E37039512-AJ) (2025). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109826194/s7-plcsim_advanced_function_manual_en-US.pdf
17. DriveSim Engineer: Function Manual (A5E52754110B AD) (2024). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109986376/DriveSim_Engineer_fct_man_1224_en-US.pdf
18. Nazarenko, I. V., Nykolaychuk, M. Ya., Ferenets, V. D., Sukhanov, D. Ye. (2014). Construction and modeling of unified control systems of actuating mechanisms for objects of gas-transport system. *Eastern-European Journal of Enterprise Technologies*, 1 (2 (67)), 41–48. <https://doi.org/10.15587/1729-4061.2014.21204>
19. Zamikhovskyi, L., Levytskyi, I., Nykolaychuk, M. (2021). Designing a system that removes metallic inclusions from bulk raw materials on the belt conveyor. *Eastern-European Journal of Enterprise Technologies*, 3 (2 (111)), 79–87. <https://doi.org/10.15587/1729-4061.2021.234235>
20. SIMATIC NET: Industrial Ethernet/PROFINET Industrial Ethernet (SYH_IE-Net_76). Siemens Industry Online Support (2019). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/27069465/SYH_IE-Net_76.pdf
21. Application Example. Configuring technology objects with the SIMATIC S7-1500 and SINAMICS S210 (New) in TIA Portal. SINAMICS S210. (2024). *Siemens*. Available at: <https://support.industry.siemens.com/>

cs/document/109749795/configuring-technology-objects-with-simatic-s7-1500-and-sinamics-s210-in-tia-portal?dti=0&lc=en-MK

22. Application example: Simulating HMI projects in connection with SIMATIC controllers and PLCSIM / PLCSIM Advanced (WinCC Unified V20, PLCSIM V20, PLCSIM Advanced V7) (2025). *Siemens*. Available at: https://support.industry.siemens.com/cs/attachments/109748099/109748099_Simulation_of_WinCC_Unified_and.Controllers_V2.pdf

23. DriveSim Engineer (2024). *Siemens*. Available at: <https://www.siemens.com/global/en/products/drives/digital-drivetrain/simulate/drivesim-engineer.html>

24. Application example: All about motion control with SIMATIC S7-1500 (Entry ID 109803969) (2025). *Siemens*. Available at: <https://support.industry.siemens.com/cs/ww/en/view/109803969>

25. SINAMICS S – Drive optimization guide (2023). *Siemens*. Available at: <https://support.industry.siemens.com/cs/document/60593549/sinamics-s-drive-optimization-guide?dti=0&lc=en-UA>

26. Zamikhovskyi, L., Nykolaychuk, M., Levytskyi, I. (2024). Organizing the automated system of dispatch control over pump units at water pumping stations. *Eastern-European Journal of Enterprise Technologies*, 5 (2 (131)), 61–75. <https://doi.org/10.15587/1729-4061.2024.313531>

27. Zamikhovskyi, L., Zamikhovska, O., Ivanyuk, N., Mirzoieva, O., Nykolaychuk, M. (2025). Development of an anti-surge protection system for gas pumping units based on hardware and software vibration monitoring tools. *Eastern-European Journal of Enterprise Technologies*, 4 (2 (136)), 117–132. <https://doi.org/10.15587/1729-4061.2025.337736>

DOI: 10.15587/2706-5448.2025.346398

**ASSESSMENT OF STRIKE EFFECTIVENESS AGAINST
ENEMY LANDING GROUPS CONSIDERING
SEQUENTIAL VOLLEYS AND COMBAT POTENTIAL
REDUCTION IN COMPUTER SIMULATION**

pages 91–96

Oleksii Neizhpapa, Vice Admiral, Commander of the Ukrainian Navy, Odesa, Ukraine, ORCID: <https://orcid.org/0009-0007-0037-0166>

Maksym Maksymov, Doctor of Technical Sciences, Professor, Chief Researcher, Scientific Research Center of the Armed Forces of Ukraine "State Oceanarium" of the Institute of the Naval Forces of National University "Odesa Maritime Academy", Odesa, Ukraine, ORCID: <https://orcid.org/0000-0002-3292-3112>

Oleksandr Toshev, PhD Student, Department of Computer Technologies of Automation, Odesa Polytechnic National University, Odesa, Ukraine, e-mail: toshevoleksandr@outlook.com, ORCID: <https://orcid.org/0009-0000-4093-2556>

The object of research is a naval landing operations and interactions between anti-ship missiles and naval forces in a variety of simulation scenarios. Computer simulation is an essential tool for modeling and evaluating complex processes. Strategy-oriented video games allow model and interact with multi-layered systems in a modern warfare, in a variety of scenarios. This research presents a framework for modeling naval landing operation in a strategic wargame. The model focused on the interactions between attacking player using transport ships for naval landing, fire-support ships, minesweepers, electronic warfare units, and interceptor aircraft, and defending player which using anti-ship missile launchers and naval minefields. A key objective is to identify optimal defensive strategies under resource constraints, calculation possible unit interactions, to estimate possible outcomes, which can help that determine the best tools to prevent or execute successful naval landing operation.

The methodology was implemented using stochastic mathematical model to estimate the effectiveness of anti-ship missiles against different types of ships with different defensive setups. The methodology proposes different approaches, for the defending side player, targeting the most vulnerable or most important parts of attacking player convoy to ensure the most effective way to prevent naval landing operation.

Experiment results show the importance of dynamic targets prioritization for the defending player, and allows increase the efficiency of the provided resources up to two times compared to the basic targeting algorithm.

The given framework allows to improve realism of naval combat simulations in a video game and offers a scalable foundation for game balance adjustments or potential application in tactical training environments.

Keywords: computer simulations, simulation framework, naval landing, anti-ship missiles, stochastic models.

References

1. Sun, Q., Zhang, C., Liu, N., Zhou, W., Qi, N. (2019). Guidance laws for attacking defended target. *Chinese Journal of Aeronautics*, 32 (10), 2337–2353. <https://doi.org/10.1016/j.cja.2019.05.011>
2. Hull, D. G., Radke, J. J., Mack, R. E. (1991). Time-to-go prediction for homing missiles based on minimum-time intercepts. *Journal of Guidance, Control, and Dynamics*, 14 (5), 865–871. <https://doi.org/10.2514/3.20725>
3. Gao, P., Du, Z., Zhang, L., Zhao, P., Liu, H., Yan, M. (2021). Damage assessment for large-scale surface warship systems using a dynamic location damage tree model quantified based on the multilevel Monte Carlo simulation. *Ocean Engineering*, 237, 109597. <https://doi.org/10.1016/j.oceaneng.2021.109597>
4. Lukosch, H. K., Bekebrede, G., Kurapatil, S., Lukosch, S. G. (2018). A Scientific Foundation of Simulation Games for the Analysis and Design of Complex Systems. *Simulation & Gaming*, 49 (3), 279–314. <https://doi.org/10.1177/104687118768858>
5. Ridolfi, G., Mooij, E., Corpino, S. (2012). Complex-Systems Design Methodology for Systems-Engineering Collaborative Environment. *Systems Engineering – Practice and Theory*. <https://doi.org/10.5772/32186>
6. Palumbo, N., Blauwkap, R., Lloyd, J. (2010). Basic Principles of Homing Guidance. *Johns Hopkins Apl Technical Digest*, 29, 25–41. Available at: https://www.researchgate.net/publication/292646184_Basic_Principles_of_Homing_Guidance
7. Vego, M. (2020). *General Naval Tactics; Theory and Practice*. Annapolis: Naval Institute Press, 464.
8. Perelman, A., Shima, T., Rusnak, I. (2011). Cooperative Differential Games Strategies for Active Aircraft Protection from a Homing Missile. *Journal of Guidance, Control, and Dynamics*, 34 (3), 761–773. <https://doi.org/10.2514/1.51611>
9. Maksimov, M. V., Pelykh, S. N., Maslov, O. V., Baskakov, V. E. (2009). Model of cladding failure estimation for a cycling nuclear unit. *Nuclear Engineering and Design*, 239 (12), 3021–3026. <https://doi.org/10.1016/j.nucengdes.2009.08.025>
10. Ranajit, D., Sirisha, Ch. V., Kumar, C. M. (2018). Homing Guidance Design Challenges for Tactical Missile. *IFAC-PapersOnLine*, 51 (1), 36–41. <https://doi.org/10.1016/j.ifacol.2018.05.007>
11. Pelykh, S. N., Maksimov, M. V. (2013). A method of fuel rearrangement control considering fuel element cladding damage and burnup. *Problems of Atomic Science and Technology*, 87 (5), 84–90. https://www.researchgate.net/publication/289947830_A_method_of_fuel_rearrangement_control_considering_fuel_element_cladding_damage_and_burnup

DOI: 10.15587/2706-5448.2025.347074

**IDENTIFICATION OF DANGEROUS SITUATIONS IN
THE ROAD INFRASTRUCTURE USING UNMANNED
AERIAL VEHICLES**

pages 97–102

Nurzhigit Smailov, PhD, Professor, Institute of Mechanics and Machine Science Named by Academician U. A. Dzholdasbekov, Almaty, Kazakhstan, ORCID: <https://orcid.org/0000-0002-7264-2390>

Yerzhan Nussupov, Doctoral Student in Telecommunication, Department of Electronics, Telecommunications, and Space Technologies, Satbayev University, Almaty, Kazakhstan, ORCID: <https://orcid.org/0009-0008-5118-3683>

Kyrmyzy Taisariyeva, PhD, Professor, Department of Electronics, Telecommunications, and Space Technologies, Satbayev University, Almaty, Kazakhstan, ORCID: <https://orcid.org/0000-0002-1949-4288>

Aidar Kuttybayev, Candidate of Technical Sciences, Professor, Satbayev University, Almaty, Kazakhstan, ORCID: <https://orcid.org/0000-0003-3997-8324>

Baigulbayeva Moldir, Faculty of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Almaty, Kazakhstan, ORCID: <https://orcid.org/0000-0003-4049-4319>

Mukhit Turumbetov, PhD, Department of Electronics, Telecommunications, and Space Technologies, Satbayev University, Almaty, Kazakhstan, ORCID: <https://orcid.org/0000-0002-2477-8875>

Yulian Hryhoriev, PhD, Associate Professor, Department of Open Pit Mining, Kryvyi Rih National University, Kryvyi Rih, Ukraine, ORCID: <https://orcid.org/0000-0002-1780-5759>, e-mail: yulian.hryhoriev@knu.edu.ua

Serhii Lutsenko, PhD, Associate Professor, Department of Open Pit Mining, Kryvyi Rih National University, Kryvyi Rih, Ukraine, ORCID: <https://orcid.org/0000-0002-5992-3622>

The object of the research is the developed automated computational model (AI-driven system) for real-time monitoring and analysis of road traffic, focusing on the identification and assessment of dangerous situations (traffic violations, congestion, and accident risks). This paper examines how the increased number of people moving to cities and their vehicles increases the likelihood of traffic accidents on public roads. It is also noted that traditional inspections are carried out very slowly and do not fully detect violations of traffic rules. To overcome these limitations, it is proposed a novel automated computational model for vehicle and accident tracking, based on UAVs combined with computer vision and artificial intelligence technologies. The proposed model allows for real-time threat detection and evaluation. The study, modeled in the MATLAB environment using real traffic data from drone-captured video. This model demonstrates significant improvements in operational metrics, an average detection achieved accuracy 89% for vehicles and critical events (e.g., congestion, deviations). The model successfully visualizes risk areas with heat maps and predicts short-term traffic pattern changes, increasing the reliability of traffic management and expanding the possibilities of traffic risk forecasting. The results obtained during the simulation can be used in practice by transport services, road, and maintenance organizations, particularly at difficult intersections and on highly accident-prone highways in urban, heavily built-up areas.

Keywords: infrastructure, security, risks, monitoring, traffic, incidents, drones, aircraft, damage, urbanization.

References

- Outay, F., Mengash, H. A., Adnan, M. (2020). Applications of unmanned aerial vehicle (UAV) in road safety, traffic and highway infrastructure management: Recent advances and challenges. *Transportation Research Part A: Policy and Practice*, 141, 116–129. <https://doi.org/10.1016/j.tra.2020.09.018>
- Hryhoriev, Y., Lutsenko, S., Systierov, O., Kuttybayeva, A., Kuttybayeva, A. (2023). Implementation of sustainable development approaches by creating the mining cluster: the case of MPP "Inguletskiy". *IOP Conference Series: Earth and Environmental Science*, 1254 (1), 012055. <https://doi.org/10.1088/1755-1315/1254/1/012055>
- Wu, Y., Abdel-Aty, M., Zheng, O., Cai, Q., Zhang, S. (2020). Automated Safety Diagnosis Based on Unmanned Aerial Vehicle Video and Deep Learning Algorithm. *Transportation Research Record: Journal of the Transportation Research Board*, 2674 (8), 350–359. <https://doi.org/10.1177/0361198120925808>
- Zhu, C., Zhu, J., Bu, T., Gao, X. (2022). Monitoring and Identification of Road Construction Safety Factors via UAV. *Sensors*, 22 (22), 8797. <https://doi.org/10.3390/s22228797>
- Cristea, V.-M., Baigulbayeva, M., Ongarbayev, Y., Smailov, N., Akkazin, Y., Ubaidulayeva, N. (2023). Prediction of Oil Sorption Capacity on Carbonized Mixtures of Shungite Using Artificial Neural Networks. *Processes*, 11 (2), 518. <https://doi.org/10.3390/pr11020518>
- Taissariyeva, K., Abdykadyrov, A., Mussilimov, K., Jobalayeva, G., Marxuly, S. (2025). Analysis and Modeling of Environmental Monitoring Using Multicopters. *International Journal of Innovative Research and Scientific Studies*, 8 (3), 2947–2960.
- Dosbayev, Z., Abdurakhmanov, R., Akhmetova, O., Nurtas, M., Iztayev, Z., Zhaidakbaeva, L., Shaimerdenova, L. (2021). Audio Surveillance: Detection of Audio-Based Emergency Situations. *Advances in Computational Collective Intelligence*. Cham: Springer International Publishing, 413–424. https://doi.org/10.1007/978-3-030-88113-9_33
- Seidaliyeva, U., Smailov, N. (2025). Leveraging drone technology for enhanced safety and route planning in rock climbing and extreme sports training. *Retos*, 63, 598–609. <https://doi.org/10.47197/retos.v63.110869>
- Taissariyeva, K., Karakılıç, M., Mussilimov, K., Hataş, H. (2025). A Novel Single-Source 13-Level Switched-Capacitor Inverter With Triple Voltage Gain. *IEEE Access*, 13, 135074–135088. <https://doi.org/10.1109/access.2025.3594159>
- Li, R., Yu, J., Li, F., Yang, R., Wang, Y., Peng, Z. (2023). Automatic bridge crack detection using Unmanned aerial vehicle and Faster R-CNN. *Construction and Building Materials*, 362, 129659. <https://doi.org/10.1016/j.conbuildmat.2022.129659>
- Alawad, W., Halima, N. B., Aziz, L. (2023). An Unmanned Aerial Vehicle (UAV) System for Disaster and Crisis Management in Smart Cities. *Electronics*, 12 (4), 1051. <https://doi.org/10.3390/electronics12041051>
- Li, X., Chen, Y., Chen, Z., Huang, Z. (2025). Coverage path planning of bridge inspection with Unmanned aerial vehicle. *Engineering Applications of Artificial Intelligence*, 156, 111253. <https://doi.org/10.1016/j.engappai.2025.111253>
- Wójcik, W., Kalizhanova, A., Kulyk, Y., Knysh, B., Kvyetnyy, R., Kulyk, A. et al. (2022). The Method of Time Distribution for Environment Monitoring Using Unmanned Aerial Vehicles According to an Inverse Priority. *Journal of Ecological Engineering*, 23 (11), 179–187. <https://doi.org/10.12911/22998993/153458>
- Seidaliyeva, U., Alduraibi, M., Ilipbayeva, L., Smailov, N. (2020). Deep residual neural network-based classification of loaded and unloaded UAV images. *2020 Fourth IEEE International Conference on Robotic Computing (IRC)*. IEEE, 465–469. <https://doi.org/10.1109/irc.2020.00008>
- Smailov, N., Kashkimbayeva, N., Kubanova, N., Sabibolda, A., Mailybayev, Y. (2025). Review of AI-augmented multisensor architectures for detecting and neutralizing UAV threats. *International Journal of Innovative Research and Scientific Studies*, 8 (5), 1281–1294. <https://doi.org/10.53894/ijirssv8i5.9091>
- Jiang, S., Zhang, J., Wang, W., Wang, Y. (2023). Automatic Inspection of Bridge Bolts Using Unmanned Aerial Vision and Adaptive Scale Unification-Based Deep Learning. *Remote Sensing*, 15 (2), 328. <https://doi.org/10.3390/rs15020328>
- Feng, H., Chen, F., Heng, W. (2024). Reconstruction of the Motion of Traffic Accident Vehicle in the Vehicle – Mounted Video Based on Direct Linear Transform. *Journal of Advanced Transportation*, 2024 (1). <https://doi.org/10.1155/2024/5793435>
- Berghaus, M., Lamberty, S., Ehlers, J., Kalló, E., Oeser, M. (2024). Vehicle trajectory dataset from drone videos including off-ramp and congested traffic – Analysis of data quality, traffic flow, and accident risk. *Communications in Transportation Research*, 4, 100133. <https://doi.org/10.1016/j.commtr.2024.100133>
- Bakirci, M. (2025). Internet of Things-enabled unmanned aerial vehicles for real-time traffic mobility analysis in smart cities. *Computers and Electrical Engineering*, 123, 110313. <https://doi.org/10.1016/j.compeleceng.2025.110313>
- Zhu, Y., Wang, Y., An, Y., Yang, H., Pan, Y. (2024). Real-Time Vehicle Detection and Urban Traffic Behavior Analysis Based on Unmanned Aerial Vehicle Traffic Videos on Mobile Devices. <https://doi.org/10.2139/ssrn.4976574>
- Wang, Y., Zhang, J., Zhou, J. (2024). Urban traffic tiny object detection via attention and multi-scale feature driven in UAV-vision. *Scientific Reports*, 14 (1). <https://doi.org/10.1038/s41598-024-71074-2>
- Ma, W., Chu, Z., Chen, H., Li, M. (2024). Spatio-temporal convolutional graph neural network for traffic flow prediction in UAV-based urban traffic monitoring system. *Scientific Reports*, 14 (1). <https://doi.org/10.1038/s41598-024-78335-0>
- Liu, Z., Chen, C., Huang, Z., Chang, Y. C., Liu, L., Pei, Q. (2024). A Low-Cost and Lightweight Real-Time Object-Detection Method Based on UAV Remote Sensing in Transportation Systems. *Remote Sensing*, 16 (19), 3712. <https://doi.org/10.3390/rs16193712>

24. Arévalo-Verjel, A. N., Lerma, J. L., Carbonell-Rivera, J. P., Prieto, J. F., Fernández, J. (2025). Assessment of Photogrammetric Performance Test on Large Areas by Using a Rolling Shutter Camera Equipped in a Multi-Rotor UAV. *Applied Sciences*, 15 (9), 5035. <https://doi.org/10.3390/app15095035>

25. Singh, V., Sharma, S. K. (2023). Critical factors of multi-agent technology influencing manufacturing organizations: an AHP and DEMATEL-oriented analysis. *International Journal of Computer Integrated Manufacturing*, 37 (3), 243–265. <https://doi.org/10.1080/0951192x.2023.2209857>

26. Wang, F., Zou, Y., Chen, X., Zhang, C., Hou, L., del Rey Castillo, E., Lim, J. B. P. (2024). Rapid in-flight image quality check for UAV-enabled bridge inspection. *ISPRS Journal of Photogrammetry and Remote Sensing*, 212, 230–250. <https://doi.org/10.1016/j.isprsjprs.2024.05.008>

27. Caruso, A., Galluccio, L., Grasso, C., Ignaccolo, M., Inturri, G., Leonardi, P. et al. (2025). Advancing Urban Traffic Monitoring in Smart Cities: A Field Experiment with UAV-Based System for Transport Planning and Intelligent Traffic Management. *2025 Integrated Communications, Navigation and Surveillance Conference (ICNS)*. IEEE, 1–9. <https://doi.org/10.1109/icns5417.2025.10976747>

28. Sun, Z., Wang, J., Ma, X., Liu, J. (2024). Vehicle Trajectory Deviation Data Collection Method Based on Unmanned Aerial Vehicle Aerial Imagery. *CICTP 2024*, 2013–2022. <https://doi.org/10.1061/9780784485484.190>

29. Zhang, Y., Zhao, R., Mishra, D., Ng, D. W. K. (2024). A Comprehensive Review of Energy-Efficient Techniques for UAV-Assisted Industrial Wireless Networks. *Energies*, 17 (18), 4737. <https://doi.org/10.3390/en17184737>

MATHEMATICAL MODELING

DOI: 10.15587/2706-5448.2025.344494

DEVELOPMENT OF A METHOD FOR STATE ESTIMATION AND OPTIMISATION OF MULTIFACTOR SEMI-MARKOV SYSTEMS

pages 103–108

Lev Raskin, Doctor of Technical Sciences, Professor, Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-9015-4016>

Larysa Sukhomlyn, PhD, Associate Professor, Department of Management, Kremenchuk Mykhailo Ostrohradskyi National University, Kremenchuk, Ukraine, ORCID: <https://orcid.org/0000-0001-9511-5932>

Viacheslav Karpenko, PhD, Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0002-8378-129X>

Dmytro Sokolov, PhD Student, Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine, e-mail: sokolovddd@gmail.com, ORCID: <https://orcid.org/0000-0002-4558-9598>

Vitalii Vlasenko, PhD Student, Department of Software Engineering and Management Intelligent Technologies, National Technical University "Kharkiv Polytechnic Institute", Kharkiv, Ukraine, ORCID: <https://orcid.org/0000-0001-5427-0223>

The object of this research is a method for solving problems of analysis and optimization of semi-Markov systems. The importance of this topic is determined by the following circumstances. First, traditional, standard theoretical and practical problems of stochastic system research are solved analytically only for Markov systems for which the laws of distribution of the duration of stay in each state before leaving are exponential. Clearly, this strict requirement is not met for real systems. Second, a general method of analytical study does not exist for many probabilistic systems. Third, only numerical methods for solving such problems are available and feasible. Moreover, in each case, a solution can only be obtained for the specific system under study, operating under specific conditions. Clearly, such a solution is uninformative and practically useless for optimization problems of multifactor systems. In this regard, the study aims to develop a universal method for solving analysis and optimization problems, suitable for any semi-Markov systems. The proposed method for solving the formulated problem solves it in two stages. In the first stage, a matrix of distribution densities is found by processing experimental data, representing the duration of the system's stay in

each state before transitioning to another state. It is crucial that the densities be in the Erlang distribution class of some order. These densities are found using the least-squares method, using histograms obtained by processing the experimental data. In the second stage, the resulting distribution densities are used to construct a system of differential equations for the probabilities of the system's stay in each possible state. This constructively utilizes the unique property of Erlang distributions: any Erlang flow is a sifted simplest Poisson flow. Sequentially completing these two stages yields a solution to the problem of studying any probabilistic (semi-Markov) systems. Thus, the method proposed in this paper for solving problems of analysis and optimization of semi-Markov systems is universal.

Keywords: semi-Markov systems, system analysis and optimization, Erlang distribution, probabilistic modeling.

References

1. Grabski, F. (2016). Concept of Semi -Markov Process. *Scientific Journal of Polish Naval Academy*, 206 (3), 25–36. <https://doi.org/10.5604/0860889x.1224743>
2. Liu, F. (2023). Semi-Markov processes in open quantum systems. II. Counting statistics with resetting. *Physical Review E*, 108 (6). <https://doi.org/10.1103/physreve.108.064101>
3. Ranjith, K. R., Gopakumar, B., Nair, S. S. (2024). A Semi-Markovian Analysis of an Inventory Model with Inventory-Level Dependent Arrival and Service Processes. *Information Technologies and Mathematical Modelling. Queueing Theory and Applications*. Cham: Springer, 118–133. https://doi.org/10.1007/978-3-031-65385-8_9
4. Kaalen, S., Nyberg, M., Bondesson, C. (2019). Tool-Supported Dependability Analysis of Semi-Markov Processes with Application to Autonomous Driving. *2019 4th International Conference on System Reliability and Safety (ICRS)*. Springer Nature, 126–135. <https://doi.org/10.1109/icrs48664.2019.8987701>
5. Grabski, F. (2015). *Semi-Markov processes: Applications in system reliability and maintenance*. Elsevier. <https://doi.org/10.1016/C2013-0-14260-2>
6. Janssen, J., Limnios, N. (Eds.) (1999). *Semi-Markov models and applications*. Springer, 404. <https://doi.org/10.1007/978-1-4613-3288-6>
7. Kalisz-Szwedzka, K. (2024). Optimization of Production Processes in the Furniture Industry Using Semi-Markov Models. *European Research Studies Journal*, XXVII (1), 772–787. <https://doi.org/10.35808/ersj/3727>
8. Wang, J., Miao, Y. (2021). Optimal preventive maintenance policy of the balanced system under the semi-Markov model. *Reliability Engineering & System Safety*, 213, 107690. <https://doi.org/10.1016/j.ress.2021.107690>
9. Verbeken, B., Guerry, M.-A. (2021). Discrete Time Hybrid Semi-Markov Models in Manpower Planning. *Mathematics*, 9 (14), 1681. <https://doi.org/10.3390/math9141681>
10. Wu, D., Yuan, C., Kumfer, W., Liu, H. (2017). A life-cycle optimization model using semi-markov process for highway bridge maintenance. *Applied Mathematical Modelling*, 43, 45–60. <https://doi.org/10.1016/j.apm.2016.10.038>