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Для сучасного машинобудування важливим є питання міцності та вібростійкості різних частин системи: вер-

стат, пристосування, інструмент, заготовка. Зокрема, враховуючи різновидність інструментів, які застосову-

ються при точінні, актуальним є узгодження параметрів різця та режиму різання, що забезпечать відсутність 

автоколивань. До тих пір, поки рух різця токарного верстату розглядався як рух тіла з одним ступенем вільно-

сті, не було пояснень автоколиванням цього різця. В даній роботі виникнення цих коливань пояснюється теорією 

Тлустого – Кудинова. Різець замінюється динамічною моделлю, що має два ступеня вільності, пружні власти-

вості якої еквівалентні властивостям двох взаємно перпендикулярних пружин, розташованих по головних осях 

жорсткості. Сила різання вважається лінійно залежною від товщини стружки, що знімається, коефіцієнт 

пропорційності – коефіцієнт питомого опору різанню. За допомогою рівнянь Лагранжу другого роду складені 

диференціальні рівняння руху різця, за узагальнені координати вибрані координати центру ваги різця вздовж 

головних осей жорсткості. При знаходженні розв’язку диференціальних рівнянь руху отримано характеристи-

чне квадратне рівняння. По знаку дискримінанта цього рівняння з’ясована можливість виникнення автоколивань 

різця. Наведена блок-схема алгоритму розрахунків для визначення стійкого процесу різання при точінні. Розгля-

нуто приклад чорнового поздовжнього точіння заготовки проходними розточними різцями з пластинами. Об-

роблювальний матеріал – конструкційна сталь. Подача і глибина різання змінювались. Викладена в роботі ме-

тодика підбору сукупності параметрів технологічного процесу, при яких автоколивання інструменту відсутні, 

може бути корисною для студентів ЗВО, аспірантів і інженерів, що займаються конструюванням і експлуата-

цією токарних верстатів.  

Ключові слова: вібростійкість різця, головні осі жорсткості, теорія координатних в’язей, алгоритм. 

 

Постановка проблеми 

Серед питань міцності та вібростійкості системи: 

токарний верстат – пристрій – інструмент – заготовка, 

особливе місце займає питання виникнення автоколи-

вань різця згідно теорії координатних в’язей Тлустого 

– Кудинова. 

 

Аналіз останніх досліджень та публікацій 

Теоретичне обґрунтування виникнення коливань 

різця металорізального верстату, які спираються на за-

лежності сили різання від пружних переміщень різця 

відносно заготовки, викладені в роботах [1-3]. В робо-

тах [4-6] містяться методики визначення власних час-

тот коливань різця в залежності від його геометричних 

параметрів; в роботі [4] розроблена трьохмірна мате-

матична модель, яка враховує складність геометричної 

форми різця. Автори статей [7-9] запропонували конс-

трукції вібростійкої інструментальної системи для об-

робки отворів великих діаметрів на токарних верста-

тах. Результати експериментального дослідження ав-

токоливань при точінні з метою визначення впливу 

зносу різця на параметри його пружного переміщення 

представлені в роботах [10-16]. Аналіз публікацій сві-

дчить, зокрема про відсутність практичних рекоменда-

цій щодо забезпечення стійкого режиму різання без ав-

токоливань інструменту. 

 

Мета статті 

Скориставшись теорією Тлустого – Кудинова за-

пропонувати і реалізувати на практиці алгоритм дій 

щодо підбору сукупності конструктивних параметрів 

різця і режимних параметрів процесу точіння, при яких 

автоколивання інструменту не виникають. 

 

Виклад основного матеріалу 

З точки зору пружних властивостей різця його 

кріплення замінюється двома взаємно перпендикуляр-

ними пружинами (Рис. 1), які розташовані по головних 

осях жорсткості.  

 

 
 

Рис. 1 – Розрахункова схема 
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Як відомо, якщо позначити головні осі жорсткості 

1Ox  та 2Ox , то пружна сила, що діє вздовж осі 2Ox , не 

створює пружних переміщень по осі 1Ox  і навпаки. 

Пружні сили вздовж цих осей дорівнюють:  

 

 1 1 1x xP c x=   і 2 2 2x xP c x=  .  (1) 

 

Згідно теорії Тлустого-Кудинова, коливання різця 

розглядаються як коливання механічної системи з 

двома ступенями вільності. 

Податливості вздовж головних осей жорсткості 

зв’язані з податливостями пружного кріплення вздовж 

довільних осей Oy  та Oz , yy , yz , zz , розрахову-

ються за допомогою формул:  
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2
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1
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4
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 

=  + − − +  
 

; (2) 

 

 ( )
2

2

2

1 1
4

2
yy zz yy zz yz

xс
    
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де, наприклад, yz  – прогин в напрямку осі Oy  

під дією одиничної сили, що діє в напрямку осі Oz . 

Положення головних осей жорсткості характери-

зується кутом o , який дорівнює  

 

 0

21

2

yz

yy zz

arctg



 


= 

−
.  (4) 

 

Величину цього кута можна визначити також за 

допомогою круга Мора. 

Для складання диференціальних рівнянь руху рі-

зця в процесі різання за узагальнені координати виби-

раємо координати точки С – центру ваги різця вздовж 

осей 1 2Ox x . 

За початок координат вибираємо вершину різця. 

Вісь Oy  спрямовуємо по нормалі до оброблюваної по-

верхні заготовки, вісь Oz  – перпендикулярно до Oy . 

Сила різання різP  створює кут   з віссю Oy . 

Кінетична енергія різця, маса якого m , дорівнює  

 

 
2 2
1 2

1
( )

2
T m x x=   + . (5) 

 

Враховуючи спосіб кріплення різця, маємо фор-

мулу для потенціальної енергії пружних деформацій  

 

 ( )2 2

1 1 2 2

1

2
х хП с х с х=   +  .  (6) 

 

 

Рівняння Лагранжу другого роду мають вигляд  

 

 
( )рез

i

i i i

d T T П
Q

dt x x x

   
− = − + 

   
, i=1, 2  (7) 

 

де ( )Q різ
i  – узагальнені сили різання, що відпові-

дають координатам 1x  та 2x . 

Для визначення узагальнених сил різання скорис-

таємось величиною можливої роботи, яку виконує 

сила різання, якщо в довільному положенні різця на-

дати йому можливі переміщення 1x  та 2x : 

 

 
0 1

0 2

( ) cos ( )

sin ( )

рез рез

рез

A P P x

P x

   

  

=  −  +

+  − 


  (8) 

 

Будемо вважати, що сила різання лінійно зале-

жить від миттєвого значення товщини стружки y , 

тобто  

 

 0резР Р r y= −  ,  (9) 

 

де 0P  – значення сили різання при усталеному ре-

жимі різання без коливань; 

r  – коефіцієнт питомого опору різанню, який до-

рівнює зміні сили різання при збільшенні товщини 

стружки на 1 мм.  

Будемо визначати сили 1xQ  та 2xQ , які відповіда-

ють змінній складовій сили різання ( r y−  ). Для цього 

виразимо координату y  центру ваги різця через коор-

динати 1cx x= , 1cy y= , скориставшись рисунком 2. 

 

 
 

Рис. 2 – Залежність між координатами точки С 

 

Маємо  

 1 0 2 0cos siny x x =  −  .  (10) 

 

 

 

 

z 

y 



ВІСНИК ПРИАЗОВСЬКОГО ДЕРЖАВНОГО ТЕХНІЧНОГО УНІВЕРСИТЕТУ 

2025р. Серія: Технічні науки Вип. 50 

 p-ISSN: 2225-6733; e-ISSN: 2519-271X  

 

 
131 ПРИКЛАДНА МЕХАНІКА 78 

 

 

Тоді 

 

 

1 0 2 0

0 1 1 0 2 0

0 2

( ) ( cos sin )

cos ( ) ( cos sin )

sin ( ) .

резA P r x x

x r x x

x

  

    

  
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
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Тобто узагальнені сили дорівнюють: 

 

 
( )1 0 0 1

0 0 2

cos cos

sin cos ( ) ;

xQ r x

r x

  

  

= −   −  +
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 (12) 

 

 
( )2 0 0 1

0 0 2

cos sin

sin sin ( ) .

xQ r x

r x

  

  

= −   −  +

+  − 
  (13) 

 

Враховуючи формули кінетичної і потенціальної 

енергій  

 

 

2 2
11 1 12 1 2 22 2

2 2
11 1 12 1 2 22 2

1
( 2 )

2

1
( 2 )

2

T a q a q q a q

П c q c q q c q

=   +    + 

=   +    + 

,  (14) 

 

маємо коефіцієнти інерції i ja  та жорсткості i jc : 

 

 11а m= , 12 0а = , 22а m= , (15) 
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22 2 0 0
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sin cos ( )

cos sin ( )
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x

x
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с r

с r

с с r

  

  

  

  
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= −   −

=   −

= −   −

  (16) 

 

Таким чином, диференціальні рівняння руху (7) 

матимуть вигляд: 

 

 
11 1 11 1 12 2

21 1 22 2 22 2

0

0

а x c x c x

c x a x c x

 +  +  =


 +  +  =
  (17) 

 

Розв’язок цих рівнянь шукаємо у вигляді  

 

 1 1

tx A e=  , 2 2

tx A e=  .  (18) 

 

Після підстановки (18) в (17) отримаємо систему 

алгебраїчних рівнянь відносно 1A  та 2A : 

 

 

2

11 11 1 12 2

2

21 12 22 22 2

( ) 0

( ) 0

с а А с А

с А с а А





 +   +  =


 + +   =

 (19) 

 

Система (19) має нульовий розв’язок, якщо її ви-

значник дорівнює нулеві, тобто маємо: 

 

 ( ) ( )2 2

11 11 22 22 12 21 0с а с а с с +   +  −  = . (20) 

 

З цього біквадратного характеристичного рів-

няння визначають величини  , які дозволяють дослі-

дити процес стійкості процесу різання. 

Позначивши 
2u = , замість рівняння (20) маємо 

квадратне рівняння 

 
2

11 22 11 22 22 11 11 22 12 21( ) ( ) 0a a u c a c a u c c c c  +  +   +  −  =

 (21) 

 

Дискримінант цього рівняння дорівнює 

 
2

11 22 22 11 11 22 11 22 12 21( ) 4 ( )D с а с а а а с с с с=  +  −     −   

(22) 

 

В залежності від знаку дискримінанту мають мі-

сце наступні випадки. 

1) Корені рівняння (21) дійсні від’ємні, якщо 

0D  . Тоді всі   – уявні, тобто розв’язок рівнянь (17) 

виражається через тригонометричні функції; маємо га-

рмонічний рух. 

2) У випадку, коли D < 0 , корені рівняння 

(21) – комплексні. Серед чотирьох коренів   знай-

дуться два з додатною дійсною частиною, а тому амп-

літуди руху будуть зростати. Це означає, що усталений 

режим різання буде нестійким, а тому при випадко-

вому малому відхиленні різця від положення рівноваги 

різець не повернеться у вихідне положення. 

В реальній системі при деякій амплітуді коли-

вання різця не будуть зростати і встановиться автоко-

ливальний процес. 

Можна переконатись в тому, що траєкторією вер-

шини різця, буде еліпс (Рис. 3). Оскільки складові сили 

різання вздовж осей 1Ox  і 2Ox  дорівнюють 

 

 1 1 0cos ( )x різc x P   =  −  ,  (23) 

 2 2 0sin ( )x різc x P   =  − ,  (24) 

 

маємо рівняння еліпсу: 

 

 

2 2

1 2

1 2

1

c c

різ різ

x x

x x

P P

   
   
   + =
   
   
   

. (25) 

  

Обґрунтування виникнення автоколивань різця, 

запропоноване Іржі Тлустим та В.О. Кудиновим [1, 4], 

міститься у наступному. 

Під час одного повного циклу обробки деталі сила 

різання виконує певну додатну роботу, яка підтримує 

автоколивання. Це відбувається тому, що при 
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коливаннях різця робота сили різання на частині трає-

кторії В-n-А (Рис. 3) є додатною і більшою, ніж робота 

тієї ж сили на частині траєкторії А-m-В, котра є від’єм-

ною. 

 

 
 

Рис. 3 – Еліпс взаємних переміщень різця  

і оброблювальної деталі 

 

Щоб встановити критерій наявності автоколивань 

інструменту, треба знайти корені рівняння (21) і вико-

нати умову від’ємного значення його дискримінанту. 

Як показали розрахунки, коливання виникають, коли 

між кутами 0  і   має місце залежність 0
2


 = . В 

цьому випадку рівняння має вигляд: 

 

 ( ) ( )
22 2

1 2 1 2cos 2 0x x x xr r c c c c +   − + − = . (26) 

 

Його корені дорівнюють: 

 

( ) ( )2 1 2 1
1 22 2

1 sin , 1 sin .
cos cos

x x x xc c c c
r r 

 

− −
=  − =  +  

 

Маємо висновок.
 
 

Автоколивання мають місце, якщо виконується 

нерівність  

 

 1r  < rK R < 2r  ,   (27) 

 

де rK  – коефіцієнт питомого опору різанню; 

R  – радіус закруглення кромки різця; 

1r < 2r . 

Треба змінювати вихідні дані для різця та режим 

різання. 

Аналізуючи формулу (27), можна зробити висно-

вок 2: оскільки корені рівняння (26) залежать від пара-

метрів різця (E, B, H, L) і показників режиму різання 

(s, t, T), а коефіцієнт питомого опору rK  та кут   – від 

режиму різання, є можливість дослідити наявність, чи 

відсутність автоколивань для конкретного різця, на-

приклад, змінюючи режим різання. 

Пропонується блок-схема алгоритму розрахунку 

стійкого процесу різання при точінні (Рис. 4). 

 

Початок

- параметри різця: B, H, L, R (мм);

- модуль пружності різця: Е1 (МПа); 

- оброблювальний матеріал: Е2 (МПа); 

- параметри режиму різання: 

t (мм), S (мм/об), Т (мм)

Вихідні дані:
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Рис. 4 – Блок-схема алгоритму розрахунку 

 

Коментарі для користування блок-схемою 

Блок 1. Вихідні дані: розміри різця B, H, L, R (мм); 

матеріал ріжучої частини, для якого знаходиться стій-

кість Т, хв (час між двома заточками інструменту); па-

раметри режиму різання (глибина t, подача S). 
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Блок 2. Інші дані, необхідні для розрахунку мак-

симальної (з метою збільшення продуктивності обро-

бки) швидкості різання V (м/хв) та складових сили рі-

зання zР  (Н) та yР (Н) для заданого режиму різання 

, ,t S V . 

Блок 3. Розрахунок: , ,z yV P P  за емпіричними за-

лежностями ; 
2( )rK H мм  – питомий опір різанню,   

– кут між силою різання та віссю Оy . Кут 0  для го-

ловних осей жорсткості приймається таким, що дорів-

нює половині кута  . 

Блок 4. Визначаються осьові моменти інерції пе-

рерізу різця ,xy xzI I  та коефіцієнти жорсткості вздовж 

головних осей 1 2,x xc c . 

Блок 5. Розв’язання квадратного рівняння відно-

сно коефіцієнту питомого опору різанню r. 

Блоки 6 і 7. Перевірка попадання добутку rK R , 

отриманого в блоці 3, в інтервал ( )1 2...r r , який знай-

дено з умови виникнення автоколивань. Якщо умови 

блоку 7 виконані, повертаються в блок 1, щоб змінити 

вихідні дані. Якщо умови блоку 7 не виконані, виво-

диться повідомлення блоку 8 «Коливань нема». 

 

 

 

Приклад 

Режим різання: зовнішнє чорнове повздовжнє то-

чіння прохідними різцями з пластинами з сплаву 

Т15К6. Оброблювальний матеріал: конструкційна 

сталь 750T МПа = , модуль пружності 

52,1 10E МПа=  . 

За відомими з курсу «Теорія різання» емпірич-

ними залежностями визначаються: 

1. Швидкість різання дорівнює 

,V

Vm x y

C
V K

T t s
= 

 
  

де 1; 0,15; 0,2.VK x m= = =   

 

2. Складові сили різання дорівнюють:  

10 ,p p pz z z

z z

x y n

z p pP C t s V K=       

де 300; 1,0; 0,75; 0,15; 0,957
z zP PC x y n K= = = = − = . 

10 ;
p p py y y

y y

x y n

y p pP C t s V K=     
 

де 243; 0,9; 0,6; 0,3; 0,924
y yP PC x y n K= = = = − = . 

 

Вибір довідкових даних здійснено по Довіднику 

технолога-машинобудівника. Розрахунки здійснені з 

використанням математичного редактора MathСad. 

Отримані результати представлені в Таблиці 2. 

 

Таблиця 1  

Вихідні дані 

Параметри різця, мм 
Подача, 

мм/об 

Глибина рі-

зання, мм 

Стійкість,  

хв 
Коеф. 

Показник ступеню для 

V 

R B H L S t T VC  у 

1,5 12 16 170 0,08-0,1 1-3 40 420 0,2 

 

Таблиця 2  

Результати розрахунків і висновки 

R B H L s t T VC  y 1r   rK R   2r  

Н
ая

в
н

іс
ть

 

ав
то

к
о

л
и

в
ан

ь 

1,5 12 16 170 0,08 1 40 420 0,2 264,21 3388,59 1763,01 Нема 

1,5 12 16 170 0,08 2 40 420 0,2 260,48 3441,85 1949,92 Нема 

1,5 12 16 170 0,08 3 40 420 0,2 258,52 3473,39 2067,56 Нема 

1,5 12 16 170 0,09 1 40 420 0,2 263,17 3301,91 1811,24 Нема 

1,5 12 16 170 0,09 2 40 420 0,2 259,57 3353,81 2002,82 Нема 

1,5 12 16 170 0,09 3 40 420 0,2 257,67 3384,54 2123,44 Нема 
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Висновки 

1) Причиною виникнення автоколивань різця 

(тіла з двома ступенями вільності), якщо сила різання 

лінійно залежить від товщини стружки, що знімається, 

є зміна цієї товщини. 

2) Автоколивання різця виникають тоді, коли до-

буток коефіцієнту питомого опору різанню на радіус 

закруглення різця знаходиться між коренями квадрат-

ного рівняння, яке відображає умову від’ємного зна-

чення дискримінанту характеристичного рівняння, що 

складається при знаходженні закону руху центру ваги 

різця. 

3) Застосування запропонованого алгоритму дій 

для розрахунку стійкого процесу точіння дозволяє пі-

дібрати сукупність параметрів різця та режиму рі-

зання, при яких автоколивання різця будуть відсутні.  
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ON THE ISSUE OF THE OCCURRENCE OF SELF-OSCILLATIONS  
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For modern mechanical engineering, the issue of strength and vibration resistance of various parts of the system is im-

portant: machine tool, device, tool, workpiece. In particular, taking into account the variety of tools used in turning, it is 

important to coordinate the parameters of the cutter and the cutting mode, which will ensure the absence of self-oscilla-

tions. As long as the movement of the cutter of the lathe was considered as the movement of a body with one degree of 

freedom, there were no explanations for the self-oscillation of this cutter. In this work, the occurrence of these fluctuations 

is explained by the theory of Tlustoy – Kudynov. The cutter is replaced by a dynamic model with two degrees of freedom, 

the elastic properties of which are equivalent to the properties of two mutually perpendicular springs located along the 

main stiffness axes. The cutting force is considered to be linearly dependent on the thickness of the chip being removed, 

the proportionality factor is the coefficient of specific resistance to cutting. Using Lagrange equations of the second kind, 

the differential equations of the movement of the incisor were compiled, and the coordinates of the center of gravity of 

the incisor along the main axes of rigidity were chosen as generalized coordinates. When finding the solution of the 

differential equations of motion, the characteristic quadratic equation is obtained. According to the sign of the discrimi-

nant of this equation, the possibility of self-oscillations of the cutter is revealed. A block diagram of the calculation 

algorithm for determining a stable cutting process during turning is given. An example of rough longitudinal turning of 

a workpiece with pass-through boring cutters with plates is considered. Processing material is structural steel. Feed and 

depth of cut were changed. The method of selecting a set of parameters of the technological process, in which there are 

no self-oscillations of the tool, de-scribed in the work, can be useful for students, graduate students and engineers engaged 

in the design and operation of lathes. 

Keywords: vibration resistance of the cutter, main axes of rigidity, theory of coordinate links, algorithm. 
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