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The article presents an integrated mathematical model for managing the operational safety of ships, which comprehen-
sively takes into account both the technical aspects of the degradation of safety barriers and the behavioral factors of the
crew. The authors substantiate the need to move from a purely technocratic approach to risk assessment to a multifacto-
rial analysis that reflects the real dynamics of impacts in a complex marine environment. In particular, attention is fo-
cused on how the psychophysiological state of crew members (fatigue, emotional burnout, inattention) can accelerate the
degradation of technical systems and lead to premature achievement of critical values of the integrated risk index (SIRI).
The model is based on a modular approach with the ability to adapt to the type of vessel, the nature of the cargo, the level
of automation and external conditions. The developed system allows not only to record the current level of risk, but also
to predict future threats, taking into account changes in crew behavior and technical condition. For this purpose, it is
proposed to use machine learning tools, in particular, models based on recurrent neural networks (such as LSTM), which
are trained on sequences of ship state parameters. Particular attention is paid to the development of scenarios for the
system's response to critical situations, and the possibility of integrating the model into digital navigation and diagnostic
systems is substantiated. Numerical experiments and scenario analysis confirm the high efficiency of the model in pre-
dicting the development of emergencies, reducing response time and reducing the likelihood of catastrophic conse-
quences. The proposed model is a step towards the creation of fully functional intelligent decision support systems (DSS)
for a new generation of shipping, where risk management is carried out in real time, taking into account both technical
and human factors.

Keywords: operational safety, maritime transport, maritime carriage, integrated risk index (SIRI), crew behavioral reli-
ability, system degradation, condition monitoring, navigation safety, machine learning, neural networks, accident pre-
diction, risk management, adaptive systems, situational awareness, preventive control, critical condition, scenario anal-
ysis, navigation factors.

Relevance of the study

Despite the high level of technical automation of
modern sea vessels, the human factor remains decisive in
ensuring operational safety. According to leading maritime
organizations, more than 75% of fleet incidents and acci-
dents are caused by crew errors that arise from cognitive
overload, fatigue, inexperience, stress or procedural dis-
ruption. Traditional methods of risk analysis in the mari-
time sphere are focused mainly on technical and infrastruc-
tural aspects, while the influence of the psychophysiologi-
cal state of a person on the functioning of security barriers
remains poorly formalized. In the context of the growing
autonomization and digitalization of marine systems, the
development of hybrid models combining technical moni-
toring with behavioral analysis is relevant. This approach
will make it possible to detect the risky state of the crew in
a timely manner, adapt the parameters of the security sys-
tem, implement preventive measures and minimize the
probability of emergencies.

Analysis of the latest achievements
on the identified problem

Modern research in the field of operational safety of
maritime transport demonstrates the growing integration of
computer technologies, machine learning methods and the
involvement of probabilistic analysis in risk assessment
systems. In particular, considerable attention is paid to the
application of deep learning algorithms for predicting the
behaviour of ships in a real environment [1], assessing the
consequences of accidents [2] and constructing traffic tra-
jectory models [3]. Studies [4, 5] emphasize the role of
safety barriers and propose methods for their quantification
within the operational risk of shipping. Other works [6-8]
study the effects of operational constraints, long-term loads
and environmental changes on the resilience and vulnera-
bility of ships. In [9-11], integrated approaches are pro-
posed to optimize ship transition routes, manage time de-
lays in ports and adapt port infrastructure to autonomous
vessels. The extension of methods for forecasting the oper-
ational status of ship's equipment [12], energy efficiency
[13-15] and system management [16] provides the basis for
building multi-level intelligent models. Of particular note
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are approaches integrating elements of artificial intelli-
gence, Bayesian networks and neural network control to
analyze behavioral scenarios and assess the impact of the
human factor on ships in accident conditions [17, 18].
Within the framework of the study of operational safety of
ships, integrated approaches to risk assessment and analy-
sis of system degradation play a key role. Scientific work
[19] demonstrates the importance of multiphysics model-
ling for complex technical systems, which is relevant for
the marine industry, in [20] presents wavelet analysis as a
tool for detecting resonant threats in mooring conditions.
The work [21] uses deep neural networks to increase the
operational efficiency of ships in ports, which reflects cur-
rent digitalization trends. Scientific publications [22-25]
focus on stressors, adaptive safety management, modern
course-telling systems and ship information security, form-
ing a conceptual framework for the creation of models that
take into account barrier degradation, the SIRI risk index
and adaptive response.

Scientific approaches to human factor assessment in-
clude CREAM (Cognitive Reliability and Error Analysis
Method), STAMP (System-Theoretic Accident Model and
Processes), SHELL (Software, Hardware, Environment,
Liveware), HFACS (Human Factors Analysis and Classi-
fication System), which allow identification of potential er-
rors in personnel behavior. Still, they are rarely integrated
into dynamic models of operational risk assessment. The
latest research in the field of maritime safety focuses on
building digital profiles of operator behavior, assessing
load through physiological sensors, and predicting crew
actions through machine learning. However, there is a need
for a holistic model that combines technical, organizational
and behavioral factors into a single risk index, adapting the
response logic depending on the condition of the crew.

The purpose and tasks of the research

The purpose of this study is to create an integrated
model for taking into account the behavioral factors of the
crew in the operational safety system of a sea vessel, which
allows to adaptively assess the level of risk in conditions
of variable technical condition and psychophysiological
burden on personnel. To achieve this goal, it is envisaged:
analysis of existing approaches to safety assessment taking
into account the behavioral aspects of the crew; develop-
ment of a structural diagram of the relationship between
technical risks and behavioral indicators; formalization of
a mathematical model of the influence of the human factor
on risk, taking into account psychophysiological character-
istics; implementation of the method of adaptive monitor-
ing of the crew's condition according to biometric and cog-
nitive parameters; modeling of typical scenarios of behav-
ioral deviations with subsequent calculation of integral
risk; as well as substantiation of ways of implementing the
developed model in digital platforms of operational man-
agement of ship processes.

Purpose and task statement

Problem statement

Modern approaches to assessing the operational
safety of sea vessels are based mainly on the technical pa-
rameters of systems and infrastructure, leaving out the key
aspect — the behavioral component of the crew's activity.
Human error caused by stress, fatigue, low situational
awareness or violation of regulations remains the leading
cause of maritime accidents. The available models either
do not take into account behavioral factors at all, or evalu-
ate them in isolation from the general structure of risk,
which makes it impossible to form a coherent picture of
safety. The lack of a dynamic indicator capable of integrat-
ing the psychophysiological state of the crew in real time
into the decision-making system leads to a loss of response
time and a decrease in the effectiveness of protective
measures. Thus, there is a need to create an integrated
model that combines technical risks with the behavioral
characteristics of the crew, forming a new quality of adap-
tive ship safety management.

The purpose of this study is to create an integrated
model for taking into account the behavioral factors of the
crew in the operational safety system of a sea vessel, which
allows to adaptively assess the level of risk in conditions
of variable technical condition and psychophysiological
burden on personnel. To achieve this goal, it is envisaged:
analysis of existing approaches to safety assessment taking
into account the behavioral aspects of the crew; develop-
ment of a structural diagram of the relationship between
technical risks and behavioral indicators; formalization of
a mathematical model of the influence of the human factor
on risk, taking into account psychophysiological character-
istics; implementation of the method of adaptive monitor-
ing of the crew's condition according to biometric and cog-
nitive parameters; modeling of typical scenarios of behav-
ioral deviations with subsequent calculation of integral
risk; as well as substantiation of ways of implementing the
developed model in digital platforms of operational man-
agement of ship processes.

Materials and methods

The methodology for creating a model for the integra-
tion of crew behavioral factors into the operational safety
system is based on several key principles. First of all, a be-
havioral block (Behavioral Module, BM) is formed, which
describes the cognitive, physiological and psycho-emo-
tional indicators of crew members (stress, fatigue, atten-
tion, load) through a set of formalized indicators. These in-
dicators are presented as normalized coefficients in the
range [0,1] and vary dynamically with time, events and ex-
ternal conditions. Next, the functions of the influence of
behavioral factors on the overall risk of the ship are devel-
oped, in particular through the modification of the function
of degradation of safety barriers: the behavioral state of the
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crew acts as a multiplier that accelerates or slows down the
loss of barrier efficiency in critical subsystems.

To ensure the flexibility of the model, weighting fac-
tors of criticality of behavioral influences are introduced
for different types of operations (navigation, cargo opera-
tions, emergency situations, etc.). These coefficients are
adaptive in nature and vary depending on the type of ves-
sel, its mode of operation and historical patterns of crew
interaction with systems. The overall risk is determined
through a modified integral safety index that takes into ac-
count the interaction of technical and behavioral risks in a

single system. This approach makes it possible to formalize
the subjective influence of the crew on the condition of the
vessel and provides a basis for algorithmic forecasting and
timely management of threats.

Figure 1 shows a block diagram of the integrated
model for incorporating crew behavioral factors into the
ship's operational safety system. Technical state and be-
havioral indicators are processed through influence func-
tions and adaptive weighting, resulting in a dynamic, uni-
fied safety index and improved threat management capa-
bilities.

Technical
State Indicators

* Equipment status,
system health,
maintenance
records

* Physiological
indicators (fatigue,
stress, workload)

* Psycho-emotional

v

Integrated
Influence Functions Modified
* Functions combining » Safety Barrier
technical and behavioral Model
indicators * Barrier degradation
* Dynamic adaptation of rate adjusted by
safety barrier degradation behavioral
functions multipliers

* Adaptive weighting for
operation type and context
(navigation, cargo,

* Unified risk index
(Integral safety
Index, ISI)

indicators (emotion
state, crew cohesion

emergency )

* Forecast of

(All indicators are
normalized, dynamic
coefficients: Bum1 Buy,..
Bwm1 € [0:1] )

Monitoring of behavioral weights and thresholds
based on historical performance

Monitoring of events
and system responses

emerging threats
and risk trends

A

Fig. 1 — Framework for integration of crew behavioral factors into the ship operational safety system

Summary of the main material

Formalization of behavioral impact in a risk-based
ship security system

The formalization of the integrated impact of crew
behavioral factors on operational risk involves the devel-
opment of a mathematical apparatus that allows to quanti-
tatively link the crew's state with the functioning of tech-
nical and information barriers. For this purpose, a behav-
ioral influence factor is introduced B:(t), which adjusts the
security barrier degradation function as follows:

Eq (1) =Eg (1)-B/(1), @

where E;i (t) - modified barrier effectiveness under

behavioral influences, and Bi(t) € [0.5, 1.2] - coefficient of
influence on barrier degradation, which can reduce or in-
crease the effectiveness depending on the crew condition.

The Bi(t) itself is calculated based on the generalized index
of crew behavioral reliability:

B () =1-a,  f.(1), @)

where fk(t) - normalized indicators of behavioral fac-
tors (fatigue, stress, non-compliance with procedures), and
ar -weighting factors determined on the basis of expert
opinion or training data.

The final risk index (SIRI) of the system takes the
form:

SIRI(t) :iwj R,®)-B(1), 3)

which allows for adaptive risk assessment based on
the human factor. Such a model not only improves the ac-
curacy of predicting critical situations, but also creates a
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basis for integrating crew psychophysiological monitoring
into the ship's digital security system.

Mathematical model of the Behavioral Risk Index
(BRI)

In order to integrate the human factor into the system
of adaptive management of the operational safety of a ship,
a behavioral risk index (BRI) has been developed that al-
lows quantifying the actions of the crew, their psychophys-
iological state, workload, fatigue, and adequacy of re-
sponse to risk situations. The main idea is to build a dy-
namic risk function, in which the behavioral component is
included as a separate module that affects the overall effec-
tiveness of safety barriers. The model takes into account
the time degradation of the impact, the cumulative effect of
errors, the impact of stress, and the adaptive change of
weighting coefficients depending on the complexity of op-
erations and environmental conditions.

Basic formula for the behavioral risk index BRI(¢) y
MOMEHT 4acy t:

BRI =Y 41,0, @

where: fi - weighting factor for the i-th behavioral
factor, fi(t) - function of the dynamics of the impact of the
i-th factor (e.qg., fatigue, stress, erroneous actions).

Then the model of behavioral capacity degradation
looks:

fi@)=e"-@1-5), (5)

where: i - impact degradation factor, §i(t) - cumula-
tive crew error function.
A model of behavioral degradation Siotai(t):

S (1) = & 51 (1) + &, S, (t) + a5 BRI(Y) (6)

where: St(t), SI(t) - technical and informational com-
ponents of risk, ar, a1, as - weighting factors (equal to 1 in
total).

The function of adaptation of scales:

1
g (t) = Tre "EOE) ()

where: k - coefficient of sensitivity to emotional
stress, E(t) - crew stress level at the moment t, Ey, - the
threshold level.

The Table 1 presents the formalized parameters used
in the BRI model, which integrates behavioral, technical,
and informational subsystems in assessing ship operational
safety.

Table 1
Parameters of the Behavioral Risk Influence (BRI) Model
Parameter Description Units
R(t) Total operational risk level at time dimensionless
BRI (t) Behavioral Risk Influence at time t dimensionless
IRI(t) Informational Subsystem Indicator at time t dimensionless
Bo Weight coefficient for behavioral influence dimensionless
)i Weight coefficient for technical subsystem dimensionless
Bi Weight coefficient for informational subsystem dimensionless
En(t) Efficiency of safety barriers affected by behavioral factors dimensionless
Dy(t) Degradation rate of safety barriers due to behavioral factors 1/h
Au(t) Adaptive correction coefficient for behavioral influence dimensionless
Cu(t) Cumulative behavioral stress factor dimensionless
t Time h

These parameters are integrated through dynamic risk
evaluation equations, where each factor contributes to the
composite risk level and influences barrier degradation dy-
namics. The model allows real-time adaptation of risk es-
timations by updating weight coefficients and behavioral
feedback variables. The cumulative behavioral factor Cs(t)
plays a critical role in determining the duration and magni-
tude of behavioral impact on system reliability.

Results and Discussion

Simulation of Operational Scenarios and Risk Evolu-
tion

To validate the effectiveness of the integrated behav-
ioral safety model, a series of simulations were conducted

on different types of vessels (bulk carrier, tanker, and con-
tainership) under varying operational and behavioral con-
ditions. The scenarios simulate gradual and critical degra-
dation of safety barriers, with differing crew behavior pat-
terns incorporated into the assessment through the Behav-
ioral Risk Index (BRI).

Each scenario demonstrates how technical failures,
environmental pressures, and behavioral degradation
jointly impact the overall safety level and time to critical
thresholds. The key indicators evaluated include: SIRI
(System Integrated Risk Index), M(t) — safety margin, Terit
— time to critical state and BRI(t) — behavioral risk contri-
bution.
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Figure 2 presents a comparative analysis for three
types of vessels operating under high loads and shows the
evolution of SIRI and M(t) over time with annotations of
critical points of risk escalation.

The graph on Fig.2 illustrates the change in the inte-
grated risk index (SIRI) over time for three types of ships:
a 35,000 dwt bulk carrier, a 50,000 dwt tanker, and a 5,000
TEU container ship. The modeling was performed taking
into account the gradual degradation of safety systems and
crew behavioral deviations that affect the effectiveness of
barriers (e.g., fatigue, communication errors, response de-
lays).

The main results as follows: the bulk carrier reaches
the critical level of SIRI = 0.85 the fastest - in 44 hours of
operation. The increased vulnerability to crew behavioral
factors and the limited manual intervention in automated
processes explains this dynamic. The tanker demonstrates
a slow accumulation of risk - the critical threshold is
reached after 56 hours. This is due to the high level of con-
trol and structured safety procedures typical of ships trans-
porting dangerous goods. Container ships are the most re-
silient - the critical risk threshold is crossed only after 70
hours, due to the predictable nature of the routes and the

1.0r
091
0.8
0.7

0.6

SIRI

051

0.4}

031

0.2

increased level of automation of navigation and technical
systems.

Crew behavioral factors have a significant impact on
the degradation rate: in scenarios with a changed crew con-
dition, the time to reach critical values was reduced by 15-
30% compared to baseline conditions. Thus, the graph al-
lows to identify critical time points for each type of ship
clearly - these moments are key to launching adaptive re-
sponse measures. The inclusion of behavioral factors in the
risk model allows for a more accurate prediction of hazard
development over time.

The modeling results can be used to set personalized
SIRI thresholds, develop scenarios for responding to sys-
tem degradation, and adapt crew instructions to real-time.
Thus, the model provides a dynamic risk monitoring tool
that increases the adaptability of ship operations to behav-
ioral and technical changes in a complex marine environ-
ment.

Figure 3 shows a visualization of the scenarios that
demonstrates the dynamics of the integrated risk index
(SIRI) depending on the levels of degradation of safety bar-
riers and crew behavioral factors.

Bulk Crit
Container Crit
Tanker Crit

Bulk Carrier

—— Tanker

- Container Ship

=== Critical Risk Threshold (SIRI = 0.85)
i L

0 20 40

60 80 100

Operational Time (hours)

Fig. 2 — The dynamics of the SIRI for three types of vessels
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Fig. 3 — Dynamics of accumulation of the integrated risk index (SIRI) under different scenarios of degradation and crew behav-

The graph shows the dynamics of changes in the in-
tegrated risk index (SIRI) over time under four different
scenarios: baseline, moderate and high degradation of
safety barriers, as well as a scenario taking into account
crew behavioral factors. The baseline scenario demon-
strates a gradual increase in risk that does not exceed the
critical limit within 100 hours, which indicates stable oper-
ation of systems and a sufficient margin of safety of the
vessel in the absence of additional external or internal
threats.

Moderate degradation of the barriers leads to an ac-
celeration of risk growth, with the critical level almost
reached at the end of the simulation. The scenario with high
degradation demonstrates crossing the critical threshold af-
ter 70 hours, which indicates a reduction in response time
in the event of technical failures. The most threatening sce-
nario was the one with crew behavioral deviations: here,
the risk index exceeds the critical level after 60 hours. This
emphasizes that even with relatively good technical barri-
ers, the human factor can significantly worsen the safety
situation.

Thus, the results of the graphical modeling show that
a combination of technical degradation and behavioral
risks poses the greatest danger. This approach allows us to
reasonably predict risks and implement adaptive control
and response measures in a timely manner, which is espe-
cially important for complex and dynamic maritime condi-
tions.

Conclusions

The article proposes a new integrated model for man-
aging the operational safety of ships, which, for the first
time, comprehensively takes into account not only the tech-
nical condition and degradation of safety systems but also
the behavioral factors of the crew. The model is based on a
probabilistic approach using the Safety Integrated Risk In-
dex (SIRI), safety margin, and predicted time to critical
condition. Machine learning tools (in particular, LSTM) are
involved, which makes it possible to predict threats in real
time.

The uniqueness of the proposed approach lies in mod-
eling the psychophysiological state of crew members as a
separate factor affecting the rate of degradation of technical
barriers. This consideration of the behavioral component
allows for detecting threatening situations much earlier,
which increases the efficiency of risk management, espe-
cially in conditions of high uncertainty and autonomous
navigation. By simulating various scenarios (power loss,
changes in crew status, combined risks, etc.), the model's
ability to early diagnose and adapt the actions of the crew
or automated control systems was confirmed.

The practical value of the work lies in the possibility
of implementing the developed model in digital maritime
safety platforms for real-time monitoring, generating rec-
ommendations for altering the route, speed, or loading of
the vessel. The model's modularity, scalability, and adap-
tive structure render it suitable for a wide range of ships
and constitute a significant contribution to the development
of proactive maritime safety management.
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IHTEI'POBAHA MO/IEJIb BPAXYBAHHS ITOBEIHKOBUX ®AKTOPIB EKIIIAJKY B
CUCTEMI EKCILTYATAIIMHOI BE3NEKH CYTHA
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Y ecmammi npedcmasneno inmezposany mamemamuuny mMooens YAPAGIiHHA eKCNIyamayiliHow 6e3neKo MOPCbKUX Cy-
OeH, KA KOMNJIEKCHO 8PAX08Ye SIK MeXHIuHi acnekmu Oezpadayii bap'epie 6esneku, max i n08ediHK06i (hakmopu exi-
nascy. Ob6IpyHMOBaHo HeoOXiOHICMb nepexody 6i0 Cymo MeXHOKPAMUYHO20 Ni0OX00y 00 OYIHIOBAHHS PUBUKIE 00 MYJlb-
mupakmoprozo ananizy, wo 6i006palicae peanrvHy OUHAMIKY 6NIUGIE Y CKIAOHOMY Cepedosui nio Yac GUKOHAHHSL Mex-
HOMO2IYHUX onepayiti Ha 6opmy cyoHa. 30Kpema, y8aza 30CepeddiceHa Ha Momy, K NCUXOQizionoeiuHull CmaH 4ieHie
eKinasicy (6moma, emMoyiiHe GUSOPAHHS, HEYBANCHICHb) MOJICE NPUCKOPIOBAMU 0e2padayiio MexXHiYHUX cucmem i npus-
6800UMU 00 NEPedYACHO20 OOCACHEHHS KPUMUYHUX 3HAYEeHb iHmezpoeano2o indexcy pusuky (SIRI). Mooenv no6yoosano
Ha 0CHOBI MOOYIbHO20 NIOX00Y 3 MONCIUGICIIO adanmayii 00 muny CyoHd, Xapakmepy HA8IeayiliHo20 nepexooy, muny
sanmasicy, pieHs agmomamusayii ma 308HiwHIX ymos. Pospobrena cucmema 0038oa€ He nuwe Qikcysamu nomoyHu
pisenb pusuxy, ane i 30iUCHIO8AmuU NPOSHO3Y8AHNH MAUOYMHIX 3a2P03 3 YPAXYBAHHAM 3MIH Y NOBEOIHYI eKinaxicy ma
mexHiuHoMy cmani. /[ ybo2o 3anponoHo8aHo BUKOPUCIOBY8AMU IHCMPYMEHMU MAWUHHO20 HABYAHHS, 30KpeMda Mooeri
Ha ocHo6i pexypenmuux netipomepesic (muny LSTM), sxi nasuaromvbcs Ha NOCTIO0BHOCMAX NApamempie cmary CyoHd.
Oxpemy yeazy npuodieno po3pobyi cyenapiié peakyii cucmemu Ha KPUMUYHI Cumyayii, a maxkoic 00IpYHmMOBAHO MONC-
augicmuv inmezpayii mooeni y inmenexmyanvHi Hagieayiuno-oiacnocmuuni komniexcu. Ilpogedeni excnepumenmu ma
CYEHapHUIl aHaNi3 NIOMBEPONCYIOMb BUCOKY eqeKmuUsHICmb MOOei Y NPOSHO3Y8AHHI PO3GUMKY AGAPIUHUX CUMYAYill,
3MEHULCHHI YaCy peacy8anHs ma 3HUNCEHHI IMOBIPDHOCMI He2AMUGHUX HACAIOKI8. 3anponoHo8ana Mooeb € KPOKOM 00
CMBOPEHHsT NOBHOQPYHKYIOHANLHUX [HMENEKMYANbHUX cucmem niompumxu nputinamms piwenv (DSS) ona enposa-
0JICEeHHsL 8 NPAKMUKY CYOHONIABCMBA HOB020 NOKONIHHA, Oe YNPABNIHHA PUUKAMU 30ILCHIOEMbCSL 8 PeAIbHOMY YaCi 3
VPAXY8AHHAM K MEXHIYHUX, MAK I TIOCbKUX YUHHUKIS.

Knrouosi cnosa: excniyamayitina b6ezneka, MOpcbKuti mpancnopm, MOPCoKi nepese3eHHsl, inme2poanuli IHOeKC PUsuKy
(SIRI), nosedinkosa HaditiHicms eKinasicy, 0ecpadayis cucmem, MOHIMOPUHE CMAaHy, b6e3nexka CyOHOB00IHHS, MAWUHHE
HABYAHHS, HeUpoMepPed’Ci, NPOSHO3YBAHHSA ABAPIl, PUSUK-MEHeOHCMEHM, A0ANmMueHi cucmemu, CUMyayiiuna obisHaHicmb,
npeseHmMUSHUL KOHMpPOb, KPUMUYHUL CIAH, CYEHAPHUL AHANT3, HasieayiiHi ¢pakmopu.
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