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У статті представлено дослідження застосування генетичних алгоритмів як інструменту автоматизованого 

проєктування ударостійких поверхонь. Актуальність роботи зумовлена потребою інженерних галузей у мате-

ріалах і структурах, здатних витримувати інтенсивні механічні навантаження за умов обмежень щодо маси 

та вартості. У традиційних системах моделювання, що базуються на методі скінченних елементів або моле-

кулярній динаміці, точність супроводжується високими обчислювальними витратами, що обмежує можливо-

сті швидкої оптимізації. У цій роботі показано, що еволюційні алгоритми можуть бути ефективним альтер-

нативним або додатковим інструментом для дослідження великих просторових областей параметрів та зна-

ходження оптимальних структур поверхонь. Для дослідження було розроблено комп'ютерний додаток на основі 

рушія Unity. У роботі використано два різні підходи: одноцільовий генетичний алгоритм (SGA), що орієнтований 

на максимізацію інтегрального коефіцієнта придатності, та багатоцільовий алгоритм недомінованого генети-

чного сортування NSGA-II, здатний формувати фронт Парето для задач із суперечливими критеріями: мініма-

льною масою та мінімальною вартістю поверхні. Проведені симуляції включали моделювання зіткнення швидкі-

сного об’єкта з поверхнями, виготовленими з різних матеріалів – сталі, алюмінію, вуглецевого волокна, пластику 

та дерева. Алгоритм SGA визначив найкращим матеріалом вуглецеве волокно, що забезпечило максимальний 

показник придатності завдяки поєднанню малої щільності та високої стійкості. Показано, що дерев’яні та 

пластикові поверхні, навіть за максимальної товщини, не здатні витримати удар, проте еволюційний алгоритм 

усе одно забезпечив відбір найкращих можливих рішень у межах обмежень. Алгоритм NSGA-II продемонстрував 

здатність формувати набір компромісних рішень та дозволив визначити альтернативні оптимальні варіанти 

залежно від пріоритетів – мінімальної вартості, мінімальної маси або збалансованої конфігурації. Порівняння 

обчислювальної ефективності показало, що швидкість NSGA-II значно падає при збільшенні кількості зразків, 

що є важливим фактором під час вибору алгоритму для практичного застосування. Результати роботи підт-

верджують, що генетичні алгоритми є потужним методом пошуку оптимальних конфігурацій ударостійких 

поверхонь у задачах фізичного моделювання. Отримані висновки можуть бути використані для подальшого вдо-

сконалення систем автоматичного проєктування, інтеграції багатоцільової оптимізації та розширення до 

складніших реалістичних моделей удару. 

Ключові слова: автоматичне проєктування, еволюційний алгоритм, фізичне моделювання, штучний інтелект. 

 

Постановка проблеми 

Проєктування та оптимізація ударостійких повер-

хонь становлять важливу сферу досліджень у багатьох 

інженерних дисциплінах, включаючи авіакосмічну, ав-

томобільну, оборонну, цивільну інфраструктуру та бі-

омедичні застосування. Здатність поверхні витриму-

вати та розсіювати ударну енергію без катастрофіч-

ного руйнування є ключовою умовою забезпечення 

безпеки, довговічності та продуктивності. Такі тради-

ційні підходи до моделювання ударостійких повер-

хонь, як метод скінченних елементів, молекулярна ди-

наміка та континуальна механіка пошкоджень, широко 

застосовуються для прогнозування механізмів дефор-

мації, розподілу напружень та поведінки руйнування 

за умов динамічного навантаження [1]. Хоча ці фізи-

чно обґрунтовані моделі забезпечують цінні теорети-

чні та практичні висновки, їх застосування часто обме-

жується значною обчислювальною складністю. 

В останні роки штучний інтелект (ШІ) постає пе-

рспективною парадигмою для вдосконалення моделю-

вання ударостійких поверхонь. Зокрема, алгоритми 

машинного навчання дають змогу виявляти нелінійні 

взаємозв’язки та приховані закономірності у великих 

наборах даних, що охоплюють властивості матеріалів, 

структурні конфігурації та результати експериментів. 

На відміну від традиційних методів, моделі, керовані 

ШІ, здатні швидко прогнозувати реакцію поверхні на 

удар у широкому діапазоні умов, водночас зменшуючи 

потребу в обчислювально затратних симуляціях і по-

вторних фізичних випробуваннях [2]. Крім того, ме-

тоди ШІ сприяють багатокритеріальній оптимізації, за-

безпечуючи систематичне дослідження простору проє-

ктних рішень для досягнення бажаних компромісів 

між міцністю, вагою, вартістю та технологічністю [3]. 

Актуальність обраної теми зумовлена зростаю-

чою потребою у матеріалах і структурах, здатних ви-

тримувати екстремальні механічні навантаження, за-

лишаючись при цьому легкими, економічно ефектив-

ними та сталими. Сфера застосувань охоплює ключові 

галузі, такі як аерокосмічна промисловість, оборона, 

транспорт, цивільне будівництво та засоби індивідуа-

льного захисту, де відмова матеріалів під час удару 
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може мати серйозні наслідки для безпеки, економіки та 

суспільства. 

 

Аналіз останніх досліджень та публікацій 

При аналізі методів автоматизації моделювання 

ударостійких поверхонь за допомогою еволюційних 

алгоритмів можна виділити два можливі підходи: 

Перший підхід – використання багатоцільових 

еволюційних алгоритмів. Ці алгоритми є особливо 

ефективними тоді, коли потрібно максимізувати уда-

ростійкість, одночасно мінімізуючи такі параметри, як 

вага, вартість чи товщина. Серед них NSGA-II (Non-

Dominated Sorting Genetic Algorithm II) є одним із най-

поширеніших методів, відомим своєю стабільністю та 

здатністю формувати фронти Парето для аналізу ком-

промісів [4]. Більш сучасний варіант, NSGA-III, краще 

підходить для задач багатоцільової оптимізації з більш 

ніж трьома-чотирма критеріями [5, 6]. Інший варіант, 

MOEA/D (Multi-Objective Evolutionary Algorithm based 

on Decomposition), розкладає багатокритеріальну за-

дачу на підзадачі, що робить його особливо придатним 

для великих і складних просторів проєктування [7, 8]. 

Коли ж кілька критеріїв зводяться до однієї зва-

женої функції – наприклад, зваженої суми ударостій-

кості, ваги та вартості – ефективно застосовуються тра-

диційні еволюційні алгоритми. Генетичні алгоритми 

(GA) є стандартним вибором для оптимізації шарува-

тих матеріалів, оскільки вони можуть працювати як з 

дискретними змінними (тип матеріалу), так і з непере-

рвними (товщина). Диференціальна еволюція (DE), на-

впаки, є більш ефективною для неперервних змінних і 

добре підходить для оптимізації товщини шарів у ши-

роких діапазонах. Еволюційні стратегії, зокрема CMA-

ES, також показують високу ефективність у неперерв-

них просторах проєктування, особливо коли кількість 

шарів є фіксованою, а основним параметром для опти-

мізації виступає розподіл товщини. 

В цій роботі було використано два генетичних ал-

горитми: SGA та NSGA-II. 

Одноцільовий генетичний алгоритм (SGA) – це 

метод оптимізації, натхненний процесом природного 

відбору та генетики, розроблений для пошуку оптима-

льного або майже оптимального рішення задачі, визна-

ченої однією цільовою функцією. SGA працює шляхом 

підтримки популяції кандидатів на рішення, кожне з 

яких представлено як хромосома, що кодує можливі 

значення змінних рішення. Шляхом ітеративного за-

стосування операторів відбору, кросовера та мутації 

алгоритм еволюціонує популяцію до кращих рішень 

відносно цільової функції. 

Процес починається з ініціалізації популяції, яка 

зазвичай генерується випадковим чином у межах мож-

ливого простору пошуку. Кожна особина в цій популя-

ції оцінюється за допомогою цільової функції, яка кі-

лькісно визначає її придатність або якість як рішення 

проблеми. Потім механізм відбору ймовірносно надає 

перевагу особинам з вищими значеннями придатності, 

дозволяючи їм дати більше потомства наступному по-

колінню. Поширені методи відбору включають відбір 

за допомогою рулетки, турнірний відбір та відбір на 

основі рангів, кожен з яких по-різному балансує дослі-

дження та експлуатацію. 

Кросовер, або рекомбінація, застосовується до 

пар вибраних особин для отримання потомства, яке по-

єднує ознаки обох батьків. Цей оператор призначений 

для використання існуючих хороших рішень шляхом 

змішування їхнього генетичного матеріалу, створю-

ючи таким чином нові рішення-кандидати, які можуть 

успадкувати корисні характеристики. Мутація, з ін-

шого боку, вносить випадкові зміни в окремі хромо-

соми з низькою ймовірністю, забезпечуючи генетичну 

різноманітність і допомагаючи алгоритму уникнути 

локального оптимуму. Обидва оператори мають вирі-

шальне значення для підтримки балансу між інтенси-

фікацією (пошук навколо перспективних областей) та 

диверсифікацією (дослідження нових областей прос-

тору пошуку). 

Після генерації потомства вони формують нову 

популяцію для наступного покоління, і процес повто-

рюється, доки не буде задоволено критерій завер-

шення. Звичайні умови завершення включають досяг-

нення заздалегідь визначеної кількості поколінь, дося-

гнення задовільного об'єктивного значення або спосте-

реження застою в покращенні популяції з часом. Кін-

цевий результат SGA зазвичай є найкращим рішенням, 

яке зустрічається під час еволюційного процесу. 

Алгоритм генетичного сортування за недомінова-

ністю II (NSGA-II) є одним із найбільш поширених ба-

гатокритеріальних еволюційних алгоритмів. Він став 

одним із найвпливовіших підходів для розв’язання за-

дач оптимізації, у яких необхідно враховувати кілька 

суперечливих критеріїв одночасно. Алгоритм особ-

ливо придатний для інженерних задач проєктування, 

таких як оптимізація ударостійких поверхонь, де при-

родно виникають компроміси між такими характерис-

тиками, як поглинання енергії, вага та вартість. 

Багатокритеріальні задачі оптимізації не мають 

єдиного оптимального розв’язку, натомість формують 

множину так званих Парето-оптимальних рішень. 

Розв’язок вважається Парето-оптимальним, якщо не 

існує іншого рішення, яке покращує один критерій без 

погіршення іншого. NSGA-II ефективно наближує цю 

фронту Парето, еволюціонуючи популяцію кандидат-

них рішень упродовж багатьох поколінь [9]. 

Ключові особливості NSGA-II: 

- Сортування за недомінованістю. Алгоритм роз-

поділяє популяцію на різні фронти на основі відно-

шення домінування. Перший фронт складається з не-

домінованих рішень, другий – з тих, які домінуються 

лише рішеннями з першого фронту, і так далі. Це сор-

тування гарантує, що рішення з кращим рангом мають 

вищий пріоритет під час відбору [10]. 

- Призначення відстані скупченості. Щоб збере-

гти різноманітність уздовж фронти Парето, NSGA-II 

вводить поняття відстані скупченості. Це міра 
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близькості рішення до його сусідів у просторі цілей. Рі-

шення у менш скупчених регіонах мають перевагу, що 

сприяє рівномірному розподілу рішень уздовж фронти. 

- Швидкий елітарний відбір. NSGA-II використо-

вує елітарний підхід, поєднуючи батьківську та дочі-

рню популяції перед відбором. Із цього об’єднаного 

набору індивіди сортуються за рангом недоміновано-

сті та відстанню скупченості, що гарантує збереження 

високоякісних рішень у процесі еволюції [11, 12]. 

Послідовність роботи NSGA-II відповідає типо-

вому еволюційному алгоритму з певними вдоскона-

леннями для багатокритеріальної оптимізації: 

- Ініціалізація. Генерується початкова популяція 

рішень, зазвичай випадковим чином. Кожен індивід 

кодує можливу конфігурацію змінних проєктування 

(наприклад, товщину шарів та вибір матеріалів). 

- Оцінювання. Кожен кандидат оцінюється відпо-

відно до визначених цілей. Для ударостійких повер-

хонь це можуть бути результати симуляцій для погли-

нання енергії, ваги та вартості. 

- Відбір. Індивіди відбираються для відтворення 

на основі їхнього рангу недомінованості та відстані 

скупченості, з перевагою для тих, які ближчі до фронти 

Парето й розташовані в менш насичених областях. 

- Варіація. До вибраних рішень застосовуються 

генетичні оператори, такі як кросовер і мутація, для 

створення нащадків. 

- Комбінація та сортування. Батьківська й дочірня 

популяції об’єднуються в єдиний пул. Застосовуються 

сортування за недомінованістю та обчислення відстані 

скупченості для формування нового покоління [13]. 

- Ітерація. Процес повторюється доти, доки не 

буде досягнуто критерію зупинки, зазвичай максима-

льної кількості поколінь або збіжності фронту Парето. 

 

Мета статті 

Метою статті є аналіз та вдосконалення сучасних 

алгоритмів моделювання ударостійких поверхонь з ви-

користанням еволюційних алгоритмів. Досягнення по-

ставленої мети передбачає вирішення комплексу взає-

мопов'язаних завдань. Зокрема, необхідно здійснити 

аналіз існуючих методів та алгоритмів моделювання 

ударостійких поверхонь, дослідити теоретичні основи 

еволюційних алгоритмів, розробити алгоритм моделю-

вання ударостійких поверхонь з використанням ево-

люційних алгоритмів, провести експериментальну пе-

ревірку алгоритму на результатах фізичних симуляцій, 

а також оцінити ефективність запропонованого під-

ходу та порівняти його з існуючими методами. 

 

Матеріали та методи 

Об’єкт дослідження – процес моделювання уда-

ростійких поверхонь. 

Предметом дослідження є алгоритми моделю-

вання ударостійких поверхонь за допомогою еволю-

ційних алгоритмів. 

 

Виклад основного матеріалу 

Для реалізації експерименту, за допомогою кро-

сплатформового ігрового рушія Unity, було розроб-

лено додаток, який включає наступні компоненти: 

1. Головне меню (рис. 1) – дозволяє зайти в меню 

налаштувань та запустити обидва еволюційні алгори-

тми; 

2. Графічний інтерфейс користувача (рис. 2) – за-

безпечує відображення інформації про кожний зразок 

симуляції, дозволяє керувати швидкістю візуалізації 

симуляції, дозволяє обрати яке з поколінь симуляцій 

візуалізувати, інформує про прогрес симуляції, дає ко-

ристувачу поради щодо кнопок, якими можна контро-

лювати візуалізацію симуляцій; 

 

 
 

Рис. 1 – Головне меню 

 

 
 

Рис. 2 – Графічний інтерфейс користувача 

 

3. Візуалізатор симуляцій – дозволяє користува-

чам побачити абстрактну репрезентацію процесу зітк-

нення швидкісного об’єкту та ударостійкої поверхні 

для кожної окремої симуляції кожного покоління; 

4. Менеджер еволюції – виконує розрахунки не-

обхідні для симуляції кожного зіткнення та самого 

процесу еволюції, визначає характеристики матеріалів 

ударостійких поверхонь, зберігає інформацію про ко-

жне покоління етап еволюції для подальшої візуаліза-

ції за допомогою візуалізатора симуляцій. 

Робота симулятором виконується поетапно: 

1) запустити додаток; 

2) обрати бажаний алгоритм; 

3) почекати поки симуляція завершиться; 
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4) переглянути результати симуляції у візуаліза-

торі або графіку; 

5) за допомогою клавіш «N» та «P» обрати симу-

ляцію для відображення або запустити автоматичний 

перегляд усіх симуляцій покоління по черзі за допомо-

гою клавіши «Space»; 

6. У графічному інтерфейсі користувача, у конт-

рольній панелі справа знизу, обрати бажану швидкість 

візуалізації; 

7. У контрольній панелі обрати бажане поко-

ління для аналізу процесу еволюції. Це можна зробити, 

написавши номер покоління у полі вводу або натиска-

ючи на стрілки для переходу на наступне або попере-

днє покоління; 

8. Для завершення роботи потрібно закрити ві-

кно програми. 

Використовувались наступне технічне забезпе-

чення: 

− обчислювальні засоби – комп’ютер з операцій-

ною системою Windows 10 або Windows 11, з процесо-

ром 64-бітної архітектури та підтримкою інструкцій 

SSE2, графічний процесор, що підтримує графічний 

API DX11 та 8 ГБ оперативної пам’яті; 

− засоби введення інформації – клавіатура та 

миша; 

− засоби відображення інформації – монітор. 

Для проведення експериментів було підготовлено 

5 матеріалів для генерації ударостійких поверхонь 

(табл. 1). Усі зазначені характеристики виміряються у 

абстрактних відносних одиницях, які можуть давати 

очікувані результати лише в контексті даного 

комп’ютерного додатку, розробленого з використан-

ням рушія Unity 

 
Таблиця 1  

Характеристики використаних матеріалів 

 
Щіль-

ність 
Стійкість 

Ціна за оди-

ницю ваги 

Алюміній 2700 5 2 

Вуглецеве 

волокно 
1600 10 6 

Пластик 950 2 1 

Сталь 7850 8 3.5 

Дерево 600 1 0.5 

 

Додаткові характеристики симуляції: маса швид-

кісного об’єкту – 50, гравітація – 9,81, висота падіння 

– 5, кількість поколінь еволюції – 200, кількість зразків 

у кожному поколінні – 100, мінімальна товщина пове-

рхні – 0.001, максимальна товщина поверхні – 0,1 м. 

Коефіцієнт придатності зразка, що вистояв зітк-

нення, розраховується за формулою 1: 

 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
1

1+𝑤𝑒𝑖𝑔ℎ𝑡∗0.5+𝑐𝑜𝑠𝑡∗0.5
 (1) 

 

де fitness – коефіцієнт придатності; 

weight – вага поверхні; 

cost – вартість поверхні. 

Коефіцієнт придатності зразка, що не вистояв зіт-

кнення зі швидкісним об’єктом та зламався, розрахо-

вується за формулою 2: 

 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  
0.05∗(

𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑖𝑚𝑝𝑎𝑐𝑡𝑆𝑡𝑟𝑒𝑛𝑔ℎ𝑡
)

1+𝑤𝑒𝑖𝑔ℎ𝑡+𝑐𝑜𝑠𝑡
 (2) 

 

де fitness – коефіцієнт придатності; 

weight – вага поверхні; 

cost – вартість поверхні; 

resistance – стійкість поверхні до зіткнень; 

impactStrength – сила зіткнення. 

В результаті еволюції було отримано зразок 

(рис. 3) з найкращою придатністю з наступними хара-

ктеристиками: 

− матеріал: вуглецеве волокно; 

− товщина поверхні: 0,0245 м; 

− придатність: 0,0072. 

 

 
 

Рис. 3 – Вуглецеве волокно, найпридатніший зразок 

 

Результат цієї симуляції показує, що незважаючи 

на високу вартість, вуглецеве волокно вигідно викори-

стовувати тому, що його висока стійкість зменшує не-

обхідну товщину поверхні, що, у свою чергу, зменшує 

масу поверхні. Менша маса означає, що треба закупити 

менше матеріалу, тому витрачається менше грошей. 

Другий по придатності матеріал це алюміній. 

Найпридатніший зразок (рис. 4), що використовує 

алюміній має товщину поверхні: 0,0491 м та придат-

ність 0,0050. 

Вартість алюмінію нижча за вартість вуглецевого 

волокна у 3 рази, але й стійкість нижча у 2 рази. Вуг-

лецеве волокно також перевершує алюміній в щільно-

сті. Це приводить до того, що на кожну одиницю тов-

щини поверхні приходиться більше маси матеріалу. 

Показник придатності відображає цю негативну зале-

жність у вигляді меншої цифри ніж у поверхні з вугле-

цевого волокна. 

Третій по придатності матеріал поверхні це сталь. 

Найпридатніший зразок зі сталі (рис. 5) має товщину 

поверхні 0,0307 м та придатність: 0,0018. 
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Рис. 4 – Алюміній, найпридатніший зразок 

 

 
 

Рис. 5 – Сталь, найпридатніший зразок 

 

Ціна сталі вище за ціну алюмінію, але це не голо-

вна причина різкого зменшення максимальної придат-

ності. Щільність сталі більше за щільність алюмінію 

майже у 3 рази, що значно перевершує збільшення 

стійкості, яка є більшою всього в 1,6 рази. Більша стій-

кість дає змогу робити поверхні з меншою товщиною, 

але значно підвищена щільність скасовує цю перевагу, 

роблячи вагу та ціну поверхні вище. Функція придат-

ності описала ці компроміси, обчисливши значно ме-

ншу цифру. 

Четвертий по придатності матеріал поверхні це 

дерево. Важливо зазначити, що при наявних лімітах то-

вщини (максимальна товщина – 0,1), усі поверхні з де-

рева та пластику провалюють симуляцію, ламаючись 

при зіткненні, але еволюційний алгоритм все ще нама-

гається максимізувати значення придатності. Найпри-

датніший зразок з дерева (рис. 6) має товщину повер-

хні 0,1000 м та придатність: 0,000224. 

Дерево має найменші показники ціни та щільно-

сті, але це також стосується показника стійкості. Роз-

рахована мінімальна стійкість для успішного витриму-

вання зіткнення при максимальній товщині поверхні – 

2,4535. Формула придатності для невдалих поверхонь 

нагороджує за те, наскільки близькою була поверхня 

до успішного витримування зіткнення, тому зразки з 

мінімальною товщиною (для мінімізації ціни) були ви-

роджені у ході еволюції. 

Останній по придатності матеріал поверхні це 

пластик. Найпридатніший зразок з пластику (рис. 7) 

має товщину поверхні 0,1000 м та придатність: 

0,000213. 

 

 

 
 

Рис. 6 – Дерево, найпридатніший зразок 

 

 

 
 

Рис. 7 – Пластик, найпридатніший зразок 

 

Маючи більші за дерево ціну та щільність, плас-

тик має трохи нижчу придатність. Нагороди за близь-

кість до успішного витримування зіткнення було недо-

статньо для перевершення дерева за значенням прида-

тності. 

Підсумки проведених експериментів демонстру-

ють здатність генетичних алгоритмів знаходити опти-

мальні комбінації матеріалів та товщини ударостійкої 

поверхні з оглядом на декілька критеріїв оцінки одно-

часно. В даних експериментах було використано спро-

щену абстрактну фізичну модель, але універсальність 

генетичних алгоритмів дає змогу використовувати цей 

підхід у більш складних симуляціях. Слід зазначити, 

що одноцільовий алгоритм штовхає еволюцію к од-

ному єдиному «найкращому» рішенню, яке базується 

на вагах, призначених кожному критерію оцінки у фу-

нкції придатності. У реальних випадках частіше не іс-

нує «універсального найкращого рішення», тож прихо-

диться шукати множину оптимальних рішень, фронт 

Парето, який можна аналізувати та знаходити потрібні 

компроміси. Наявний елітарний одноцільовий генети-

чний алгоритм не може цього робити. Для цієї задачі 

потрібно адаптувати концепцію вирішення проблеми 

моделювання ударостійких поверхонь за допомогою 
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еволюційних алгоритмів під використання багатоці-

льових алгоритмів, таких як NSGA-II, NSGA-III та 

MOEA/D. 

При використанні алгоритму NSGA-II генеру-

ється множина результатів (фронт Парето), аналізуючи 

які можна обрати бажане компромісне рішення. 

Результат роботи NSGA-II можна побачити на ри-

сунку 8. 

 

 
 

Рис. 8 – Результат роботи NSGA-II 

 

Було знайдено три рішення: два для граничних 

значень ціни та ваги та одне для однакових значень. У 

цьому випадку, залежно від потреб, можна обирати рі-

шення: чи потрібна дешева поверхня, чи потрібна 

легка поверхня, або щось середнє. 

Важливо зазначити, що алгоритм NSGA-II значно 

повільніший за SGA при великій кількості зразків. По-

рівняння швидкості роботи обох алгоритмів можна по-

бачити у таблиці 2. 

 

Таблиця 2  

Порівняння швидкості алгоритмів SGA та NSGA-II 

 SGA NSGA-II 

50 зразків 1,46 сек 1,47 сек 

100 зразків 1,46 сек 3,05 сек 

150 зразків 1,46 сек 4,93 сек 

200 зразків 1,46 сек 7,25 сек 

300 зразків 1,46 сек 12,06 сек 

500 зразків 1,47 сек 25,68 сек 

 

Як можна побачити, кількість зразків майже не 

впливає на швидкість роботи алгоритму SGA, тоді як 

швидкість роботи NSGA-II прогресивно падає зі збіль-

шенням кількості зразків. При числі зразків 500, 

NSGA-II потребує приблизно в 17 разів більше часу 

ніж SGA, це дуже важливе врахування при виборі між 

двома алгоритмами. 

Підсумовуючи різницю між одноцільовим алго-

ритмом SGA та багатоцільовим алгоритмом NSGA-II, 

можна сказати, що SGA краще використовувати коли 

потрібно знайти лише одне компромісне рішення, опи-

сане функцією придатності. Це підходить для задач, де 

не існує потреби в порівнянні багатьох рішень та ба-

жані характеристики добре відомі. Якщо ж задача пот-

ребує більшої гнучкості у виборі – алгоритм NSGA-II 

може забезпечити користувача множиною можливих 

рішень, серед яких користувач може обирати потрібне 

компромісне рішення залежно від поставленої задачі 

та обмежень по ресурсам. 

Алгоритм NSGA-II не слід використовувати при 

великій кількості зразків, коли швидкість роботи алго-

ритму є важливим міркуванням. 

 

Висновки 

В результаті дослідження було встановлено, що 

еволюційні алгоритми здатні вирішувати широкий 

спектр задач, пов’язаних з фізичною симуляцією, одна 

з яких це автоматичне моделювання ударостійких по-

верхонь та оптимізація їх ціни та ваги шляхом пошуку 

оптимальних комбінацій матеріалів та товщини. 

В ході роботи було розроблено комп’ютерну про-

граму, яка симулює процес еволюції та абстрактну фі-

зичну модель зіткнення поверхні з швидкісним 

об’єктом, графічно представляє результати еволюцій-

ного процесу. 

Також було порівняно два типи еволюційних ал-

горитмів (одноцільовий та багатоцільовий) на прик-

ладі алгоритмів SGA та NSGA-II. При порівнянні було 

виявлено важливе обмеження швидкості роботи алго-

ритму NSGA-II при великій кількості зразків.  
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The article presents a study on the use of genetic algorithms as a tool for automated design of impact-resistant surfaces. 

The relevance of the work is driven by the need in engineering fields for materials and structures capable of withstanding 

intense mechanical loads under constraints on mass and cost. In traditional modelling systems based on the finite element 

method or molecular dynamics, accuracy is accompanied by high computational costs, which limits the possibilities for 

rapid optimization. This study demonstrates that evolutionary algorithms can serve as an effective alternative or comple-

mentary tool for exploring large parameter spaces and finding optimal surface structures. For the research, a computer 

application was developed using the Unity engine. Two different approaches were employed: a single-objective genetic 

algorithm (SGA), aimed at maximizing the integral fitness coefficient, and the multi-objective Non-Dominated Sorting 

Genetic Algorithm II (NSGA-II), capable of forming a Pareto front for problems with conflicting criteria: minimal mass 

and minimal surface cost. The simulations included modelling collisions of a high-velocity object with surfaces made 

from various materials – steel, aluminum, carbon fiber, plastic, and wood. The SGA algorithm identified carbon fiber as 

the best material, providing the highest fitness score due to its combination of low density and high resistance. It was 

shown that wooden and plastic surfaces, even at maximum thickness, cannot withstand the impact; however, the evolu-

tionary algorithm still ensured the selection of the best possible solutions within the given constraints. The NSGA-II 

algorithm demonstrated the ability to generate a set of compromise solutions and made it possible to identify alternative 

optimal options depending on priorities – minimal cost, minimal mass, or a balanced configuration. A comparison of 

computational efficiency showed that the performance of NSGA-II declines significantly as the number of samples in-

creases, which is an important factor when choosing an algorithm for practical applications. The results confirm that 

genetic algorithms are a powerful method for searching optimal configurations of impact-resistant surfaces in physical 

modelling tasks. The findings can be used for further improvement of automated design systems, integration of multi-

objective optimization, and extension to more complex and realistic impact models. 

Keywords: automatic design, evolutionary algorithm, physical modeling, artificial intelligence. 
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