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APPLICATION OF ARTIFICIAL NEURAL NETWORK FOR
DETERMINATION OF THE ADDITIVES AMOUNT IN THE AUTOMATED
PROCESS CONTROL SYSTEM OF STEELMAKING IN BASIC OXYGEN
FURNACE

This paper describes an algorithm of determining the amount of deoxidizing and alloying
materials that are loaded into the basic oxygen furnace (BOF) and steel ladle on the base
of information about burdening of melting and chemical composition of the steel using
artificial neural network (ANN). The analysis of resent researches and publications re-
garding mathematical modeling of BOF melting and application of ANN as such models
was made. This analysis show that selected topic has novelty and relevance. The sche-
matic of interaction of different kinds of mathematical models in the system of automated
control of BOF melting is offered. The research of applicability of artificial neural net-
works for determination of quantity of deoxidizing and alloying components is performed.
The place of the obtained artificial neural network in the overall system of automated
control of basic oxygen melting is described. The description of the multistep selection
process of the ANN architecture is given. The correlation coefficients and mean square
deviations for all parameters are found. The results of performed analysis are considered
satisfactory. The recommendations for replacement of alloying and deoxidizing compo-
nents in the absence of any of them in stock are given.
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Cokon CIL, Cumxun A.U. IIpumenenue ucKkyccmeeHHou HellPOHHOI cemu 0711 onpe-
OelleHus KOIUYeCcmea npucadoK 6 cucmeme AgmoMamu3upo8antoz0 ynpaeienus 6bl-
NaeKOl CMAiu 6 KUci10poOHOM KOHeepmepe. B cmamve npusooumces aneopumm onpe-
OeneHuUst KOTUYeCmEa PACKUCTSIOWUX U Te2UPYiouux Mamepuanios, 3a2pyicaemvix 6 Ku-
CIOPOOHO-KOHGEPMEPHYIO Nedb U CATbKOGUL, HA OCHOBAHUU UHDOPMAYUU O WUXIMOGKE
NIAGKU U XUMUYECKOM COCAGe CMAIU ¢ UCNOIb308AHUEM UCKYCCIMBEHHOU HEelpOHHOU
cemu (MHC).

Knwouesvie cnosa: mooenuposanue, UCKyCCmeEeHHAsl HeUPOHHAsL Cemb, CIMANEeNIAGUIbHAS
NPOMBIULIEHHOCb.

Cokon CIL., Cimkin O.1. Buxopucmanna wtmyuHoi HellpoHHOT Mepedci 01 6U3HaAUEeH-
HA KiIbKOCMI BPUCAOOK 6 cucmemi agmomMamu306ano20 ynpasiinna 6UNi1aeKow cma-
J1i 8 KUCHeBOMYy KOH@epmepi. Y cmammi Ha80OUMbCs ANOPUMM GU3HAYEHHS KLTbKOCHI
PO3KUCTIOIOUUX MA N1e2VIoUUX Mamepiaiis, wo 3a2pyircaromscsi 00 KUCHE80-KOHEEPMEPHOI
neui ma cmanbKo8uld, Ha OCHOBI IHopMayii npo WUXmoeKy NiaeKu ma XiMiYHull CKaiao
cmani 3a 00NOM0O2010 WmyuHoi Hetiponnoi mepexci (LLIHM).

Knwuoei cnosa: mooeno8anns, wmyyHa HeUpOHHA Mepexcd, CAienideuibHa npomMuc-
Jl08icmb.

Description of the problem. The most widespread process of steelmaking at the modern steel
plants is BOF process with the top blowing of the bath with oxygen. Due to the sufficient complexity
of technological process of melting of quality steel with the given chemical composition and tempera-
ture it is impossible to do without application of an automated control system of melting. Due to the
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lack of the continuous monitoring of parameters of a melt in the BOF and liquid steel in a ladle the
software of the system must include a complex of mathematical models which purpose is calculation
of values of technological parameters for a melting process. Nowadays a large amount of models for
an assessment of a process of BOF melting is developed, and the majority of them are related to the
blowing period. However the stage of deoxidizing and alloying of the steel while releasing from the
BOF has essential impact on steel quality too. Usually the quantity of deoxidizing and alloying com-
ponents is defined from the balance equations or by empirical way that does not always provide
enough accuracy. Authors considered the possibility of using of ANN for determination of quantity of
deoxidizing and alloying components.

Analysis of the last researches and publications. The problem of application of statistic mod-
els on the basis of artificial neural networks in control system of BOF melting was partially considered
in [1]. The authors developed the complex model consisting of a dynamic model intended for determi-
nation of temperature at the end of a blowing based on a heat balance of melting, and ANN serving for
setup of coefficients of a dynamic model. In [2] the same authors offered the algorithm of training of
ANN that allows to slightly increase the accuracy of results.

In [3], [4] the authors described the process of selection and training of ANN for a prediction of
temperature of steel at release from the BOF based on information about chemical composition of the
initial components and a required chemical composition of finished steel. The obtained results
matched the experimental data with enough high precision.

In article [5] the authors described the original idea of application of ANN for prediction of end
time of blowing using the analysis of images of the converter obtained by photographic camera.

In [6] the authors put forward the idea of determination of amount of components loaded in
steel on the furnace ladle aggregate. The authors of article also suggest using an artificial neural net-
work for determination of mass of components. The correlation and regression analysis of initial data
is carried out, the justification for a choice of architecture of ANN which is most suitable for an objec-
tive is given and the analysis of the received results is realized in the article. The obtained accuracy of
determination of amount of components is satisfactory that allows using the obtained artificial neural
network in system of automation of the furnace ladle aggregate.

Among the most known and widely used static models it is possible to mention the models de-
veloped by CRIFM together with CDB [7], B.C. Bogushevsky (VNPP "KIA") [8], A.M. Bigeev
(Magnitogorsk state metallurgical institute) [9]. The balance method is supposed to be a basis of all
these models in which the equations of the chemical reactions taking place in the BOF are worked out.
Quantities of the initial components are defined proceeding the material and heat balance of these re-
actions. Thus these models allow defining a melting burdening knowing a chemical composition and
temperature of the initial components both a required chemical composition and temperature of ready
steel. However there is not always an opportunity to define precisely a chemical composition of the
initial materials because its analysis is not made for all components. So it is usually impossible to de-
fine an exact chemical composition of the scrap covered in the converter, for example. Errors in opera-
tion of static model of calculation of a burdening lead to the need of further blowing that increases du-
ration of melting and reduces BOF productivity. For reduction of influence of unaccounted factors to
the accuracy of results a number of the correction coefficients determined by an empirical way on the
basis of experience of the previous melts are used in mathematical models. Thus the last melts are
considered rather than earlier ones. It allows increasing the accuracy of models but doesn't exclude
completely a randomness factor.

The balance equations, allowing calculating quantity of the deoxidizing and alloying materials
added during draining of metal from the BOF are given in [8] also. First masses of deoxidizing and
alloying materials are defined on the base of the material balance of chemical components by equa-
tions offered by authors. Then the corrections considering experience of the previous melts are entered
into them. The developed model allows obtaining saving on account of more exact determination of
necessary amount of expensive ferroalloys (to 25 kg for melting) according to the authors.

The objective of the article is describing an algorithm of determining the amount of deoxidiz-
ing and alloying materials using artificial neural network (ANN); pointing the place of the obtained
ANN in the overall system of automated control of BOF melting; giving the recommendations for re-
placement of alloying and deoxidizing components in the absence of any of them in stock are given.

Basic material. Application of models in process control system of BOF melting and a prob-
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lem definition. As it was justified above, the software of the modern process control system of melting
of steel in the BOF must include implementation of several mathematical models required for calcula-
tion of different parameters based on which the subsystem of melting control works. The diagram of
interaction of these models is shown in figure 1.
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Fig. 1 — The diagram of interaction of mathematical models
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Initial data for static model of a burdening of melting are: required chemical composition and
temperature of finished steel determined by the given steel grade; chemical composition and tempera-
ture of cast iron; chemical composition and properties of the available steel scrap. This model calcu-
lates the summary flow of oxygen required for a blowing and masses of cast iron, scrap, lime and coo-
lers (for example, iron ore, pellets) for a current melting.

At the same time with burdening model the initial information arrives to model of interim quan-
tity of deoxidizing and alloying materials. It is known that most of them are added on a stream during
the pouring of steel from the converter in a ladle and only pure metals (for example, nickel, molybde-
num, etc.) are loaded directly into the converter together with steel scrap.

The blowing begins after required quantity of solid and liquid components are loaded into the
oxygen converter. Then information dynamic model of a process of a blowing begins operation. It cal-
culates the current temperature of steel, the chemical composition of steel and slag on the base of cur-
rent flow rate of the oxygen moving through a lance, the current position of an oxygen lance relative
to the level of quiet metal in the BOF, the current chemical composition and the flow rate of flue gases
and so on. This information is required for operation of a subsystem of melting control and for deter-
mination of the end time of a blowing in case of achievement of the given temperature and a chemical
composition of steel.

After the termination of blowing the turning of the converter is executed and selection of probe
of liquid steel and temperature measurement is made. If results of measurement of temperature and
chemical composition of steel after blowing meet the requirements the blowing is considered as fin-
ished and steel pours from the converter in a ladle. If not, further blowing is made.

The static model of a further blowing which is similar to static model of a burdening is used for
determination of duration of a further blowing, amount of necessary oxygen and mass of added mate-
rials. But this model operates with information about chemical composition of steel after blowing but
not composition of cast iron and scrap. The turning of the converter and measurement of temperature
and chemical composition of steel is made again after further blowing. If they are kept within the spe-
cified limits steel is poured. In other case one more further blowing is made.

After all further blow downs, correction of masses of deoxidizing and alloying materials that are
loaded into steel during its pouring in a ladle is made. It is based on the known temperature and chem-
ical composition of the steel and the given chemical composition determined by a steel grade by
means of adjusting static model of a deoxidizing and an alloying of a steel. The same model can con-
sider absence of some materials in a warechouse and their replacement with others that have the same
influence on a finite chemical composition of steel.

As it was told above all mathematical models have the correction coefficients allowing consid-
ering the undefined factors which are permanently leading to appearance of an error.

During their functioning all above-mentioned mathematical models communicate with the cur-
rent database in which information about the current melting gathers from all possible sources: from
sensors and the transformers situated on object, from the top level of process control system; from
control systems (mixer section, scrap section, section of furnace ladle, pouring section) or the auto-
mated monitoring system of the BOF department parameters. Mathematical models receive informa-
tion required for their working from a database, and the values calculated by them also are sent to a
database. Information about last melting moves from the current database to the archive after termina-
tion of melting. Information about previous melts is required for operation of some models (especially
for static models of a burdening). They receive it from an archive database.

The subsystem of melting control controls a blowing process based on all information arriving
from sensors, mathematical models, other subsystems of process control system, results of previous
blow downs Its task is calculating and setting of all parameters of melting in each moment to receive
the greatest productivity of the BOF.

The authors of this article offer to replace two static models of calculation of deoxidizing and
alloying materials (they are highlighted with gray color in fig. 1) with one statistical model based of
ANN in addition with the module of calculation of amount of materials depending on their existence
in a warehouse. The advantage of such approach is that instead of two different mathematical models
only one is used. And it is developed on a different principle, than calculating of the material balance
of melting. There are only some linear equations in ANN that replace the difficult balance equations.
This allows considerably simplifying the software of process control system of melting of steel in the
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BOF. The following material is devoted to the question of applicability of the offered approach.

Research of applicability of artificial neural networks for determination of quantity of deoxi-
dizing and alloying components. The authors of this article carried out the researches using real pa-
rameter of more than 2000 melts carried out on one of steelmaking plants of Ukraine from January till
July, 2012.

The input parameters obtained from databases of blowing which was first decided to use for
ANN creation are: the parameter values known before the beginning of a blowing (cast iron mass,
scrap mass, lime mass, cast iron temperature, chemical composition of cast iron (Mn, Si, S, P) the total
volume of oxygen for melting, the maintenance of O, in oxygen, the oxygen temperature, sequence
number of melting in converter campaign), and the parameter values received after the termination of
a blowing: temperature and chemical composition of finished steel (C, Si, Mn, S, P, B, N, Al, Ca, Ti,
V, Cr, Ni, Cu, As, Nb, Mo). Output model parameters are masses of deoxidizing and alloying compo-
nents.

Before development of a model on the basis of ANN correlation analysis was carried out in
which correlation coefficients between input and output parameters were defined. The part of output
values are not practically related to any of input parameters. It turned out that there are those compo-
nents which are used quite seldom (less than in 1% of melts). Before developing the ANN it was de-
cided to exclude those melts in which these components were used, and the components themselves
from reviewing. As a result the data of 1900 melts was used for development and training of ANN.
The total quantity of output values thus decreased from 40 to 22.

Besides, as the result of correlation analysis it was noted that for part of input parameters there
was no relation to other input and to all output parameters. It was decided to exclude them for simpli-
fication of structure of a network and for avoid of creation of destabilizing factors during training
ANN.

As a result the following parameters were left after correlation analysis as input values:

- cast iron mass,

- lime mass,

- cast iron temperature,

- chemical composition of cast iron (Mn, Si, P),

- pure O2 content in technical oxygen,

- oxygen temperature,

- number of melt in converter campaign,

- chemical composition of steel (C, Si, Mn, P, B, Al, Ti, V, Cr, Ni, Cu, Nb, Mo).

For creation and training of model on the basis of ANN program Statistica v.8 was used. As the
exact nature of dependence between input and output parameters is unknown preliminary search of the
most suitable architecture of an ANN was carried out first. Multi-layer perception (MLP) and net-
works of radial basis functions (RBF) types of ANN took part in reviewing. The quantity of neurons of
the hidden layer changed from 70 to 100 and functions of activation of neurons of the hidden and out-
put layer for MLP were selected from the list provided in table 1:

Table 1
Types of activation functions of neurons
Name of the . . . .
function Identity Logistic Exponential Hyperbolic tangent
. 1 X _ —X
Function look y=x y= — y=e" = e -e
l-e e +e "

The single available activation function of neurons of the hidden layer for RBF is the normal

(x=u)
2

distributions function y = exp and the identity function is available for neurons of

1
\N2no 2
the output layer.

While creating of ANN 70% of melting passports were used for training, 15% were used for test
and 15% were used for validation. All parameters of ANN were selected from the above mentioned
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list in a random way. 50 ANN were trained in total. General parameters of the best ten of which are
summarized in table 2.

Table 2
Parameters of the ANN after preliminary search
In- Network Training Testper- Validation Train- Test Valida- Hidden Output

dex name perform- formance perform- ing error tion activation activa-

ance ance error error tion
1. MLP2222'52' 0.77139 072165  0.65486 0.123070.150520.15487 Logistic ~ Tanh
2. MLP2222'88' 0.77100 070938  0.66083 0.127170.159120.16140 Exft’gl‘en' il
3. MLP2222'91' 077046  0.70402  0.65426 0.125180.156510.15567 Logistic  Tanh
4, MLP2222'75' 0.76397  0.71014  0.64726 0.129580.152770.16747 Tanh  Identity
5 MUP2290" 075402 071743 0.65274 0.132850.156970.15743  Tanh  Tanh
6. MLP2222'81' 0.75219  0.70337  0.66188 0.133070.159090.15605 Logistic Identity
7. MEP 22367 072803 0.68709  0.65496 0.141430.162080.15809 FXPOC" Tanh
8. MIP 22307 071627 068782 0.64924 0.145160.162570.15808 Logistic  Sine
0. MLP 2233 069757 0.62998  0.59638 0.117380.155320.16261 Logistic Logistic
10 P27 002400 -0.0144  -0.0222 25977.829173.323449.8 Gaussian Ifi‘t’;"

Index is the sequence number of an ANN in the table 2.

Network name is the name of a neural network. Where MLP or RBF is the network type, the
first number is the quantity of neurons of an input layer (it is equal to quantity of input variables); the
second number is quantity of neurons of the hidden layer (it is selected in a random way from the giv-
en range from 70 to 100); the third number is quantity of neurons in an output layer (it is equal to
quantity of output variables).

Training performance, Test performance and Validation performance are network performances
for training, test and validation sets (70%, 15% and 15% from total number of melts, respectively).
Performance shows the average correlation coefficient of all output variables. Therefore the higher
performance corresponds to the better quality of an ANN.

Training error, Test error and Validation error are errors of ANN training for a training, test and
validation sets, respectively. In this case the error of training is defined as the sum of squares of differ-
ences between the real value of output parameter and the value calculated by ANN. When training an
artificial neural network all variables are normalized to the range [0; 1] therefore the values of errors
are not equal to real sum of squares of errors. The less error of training corresponds to the better qual-
ity of an ANN.

Hidden activation and Output activation are activation functions of neurons for the hidden and
output layers of neurons, respectively. Tanh is a hyperbolic tangent function, Logistic is logistic func-
tion, Identity is the linear function, Gaussian is a normal distribution function, and Exponential is ex-
ponential function (see table 1).

As one can see from table 2, neural networks of multi-layer perceptron type better cope with the
task of determination of additives quantity. The network of radial basis functions having the best in the
class performance is shown in line 10 for comparing. As it is possible to see, errors of this network
exceed the errors of networks of multi-layer perceptron type in many times. Those ANN which have
the greatest performance and the smallest error are highlighted by the gray color in table 2.

The secondary search was carried out after primary search. MLP networks type were left only
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with such parameters:

- activation functions of neurons of the hidden layer are Exponential, Tanh and Logistic,

- activation functions of neurons of the output layer are Tanh, Logistic and Identity,

- quantity of neurons of the hidden layer are in range from 50 to 100.

From results of secondary search it was also left 10 ANN with the best performance which are
provided in table 3.

Table 3
Parameters of the ANN after secondary search
In- Network Training Test per- Validation Train- Test Valida- Hidden Output

dex  name perform- formance perform- ing error tion activation activa-

ance ance error error tion
1.MLP2222'94' 078003  0.71669  0.65179 0.123540.153220.16216 Tanh  Identity
2 MEP2233 077872 070120 0.65520 0.122820.157930.15802 PO anh
3. MLPZZZZ'SO' 0.77426  0.71977  0.65058 0.124970.152900.15749 Tanh  Tanh
4 MEP2281- 096319 0.70648  0.65013 0.129900.156280.16125  Tanh  Tanh
5 ML 2268 076243 0.69657  0.65402 0.127400.158760.15630 Logistic  Tanh
6. MLP2222'92' 0.74364  0.71093  0.65221 0.136950.159500.15827 Logistic Identity
7. MLP2222'61' 0.70420  0.63791  0.60608 0.126420.166720.17377 Exlzgl‘en' Logistic
8. MLP 2293 069622 0.64851  0.62385 0.12399.0.150660.16298 Logistic Logistic
0. MEP 2285 064600  0.60249 058054 0.122800.148710.16480 Tanh  Logistic
10MLP2222'93' 0.64493  0.61589  0.60667 0.146110.166330.16518 Exlzgllen' Logistic

As one can see from tables 2 and 3 all ANN having the smallest error of training and the great-
est performance have different structure but in general their indices do not differ from each other. Fi-
nally it was succeeded to ensure in it after one more search which results aren't given here because of
their similarity with the results given in tables 2 and 3. Therefore the network at number 1 from table 2
was selected for further use as having the best indexes in general. Besides it has less quantity of neu-
rons in the hidden layer than another trained ANN that allows to reduce computation time and to re-
duce risk of retraining of a network in case of which the network is set up only for those values on
which it was trained giving out incorrect results for any other values. As it is possible to see the re-
training didn't occur though productivity and an error for test and validation sets are worse than for a
training set.

Analysis of the selected ANN. Let's consider more detailed results of operation of the selected
network (table 4), estimating correlation coefficients and mean square deviations for all 22 output pa-
rameters. As the materials used in BOF shop for a deoxidizing and an alloying of the steel represent a
trade secret they will be called simply "Material 1", "Material 2", etc. in the further analysis. As one
can see from table 4 fourteen of twenty two output parameters have correlation coefficient higher than
0.7 both for test and for a training set (they are highlighted with gray color in the table 5) that points to
the strong functional dependence. Remaining eight parameters have correlation coefficient from 0.3 to
0.7 that points to average functional dependence. Correlation coefficients for a validation set are
slightly lower than for teaching and test sets in general. This can be explained by small quantity of the
meltis involved in a validation set and by the principle put in a basis of ANN.

For example dependences between the experimental data and the results obtained by ANN for
materials 7 and 9 are given in figures 2 and 3.
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Table 4
Analysis of the selected ANN
o Correlation coefficient Mean square deviation
utput Validati Validati
parameter Training set Test set a ls; ton Training set Test set a ls; ton
Material 1 0.76899 0.77974 0.57209 0.04448 0.04404 0.05343
Material 2 0.74875 0.68749 0.56797 0.15966 0.18607 0.17500
Material 3 0.78629 0.75613 0.58742 0.08064 0.07835 0.10963
Material 4 0.76417 0.77127 — 0.00308 0.00623 0.00317
Material 5 0.93808 0.85471 0.95292 0.15052 0.14303 0.17500
Material 6 0.69887 0.60587 0.50969 0.37053 0.35810 0.38568
Material 7 0.98474 0.98838 0.96793 0.04016 0.03422 0.06393
Material 8 0.88922 0.88100 0.91720 0.21944 0.24967 0.21936
Material 9 0.84578 0.78534 0.86580 0.72917 0.78507 0.65370
11\/(I)ater1a1 0.91181 0.85708 0.90523 0.91931 1.14433 0.97760
11\/{ater1a1 0.88430 0.86943 0.85795 0.33377 0.33916 0.29261
11\/£aterlal 0.34961 0.29878 0.22091 0.02188 0.00770 0.01103
11\/§aterlal 0.61470 0.50337 0.36792 0.36267 0.38460 0.45655
11\/Lllaterlal 0.71139 0.64810 0.56977 1.20984 1.32512 1.29019
ll\gaterlal 0.91726 0.83154 0.82987 0.02726 0.03719 0.03995
11\/?ter1a1 0.88491 0.91967 0.84880 4.96193 4.61206 5.78238
11\/;aterlal 0.37744 0.14388 0.24060 2.38177 2.64120 2.53834
11\/flgater1a1 0.74173 0.70976 0.69574 0.48303 0.52499 0.51263
ll\gaterlal 0.95469 0.91671 0.79243 0.16262 0.15863 0.19265
g/([)aterlal 0.59626 0.54415 0.63970 1.20031 1.29421 1.17129
g/iaterlal 0.97343 0.97368 0.98060 2.64705 2.38687 2.34316
g/;aterlal 0.62811 0.55012 0.51628 2.00322 2.15873 2.35054

As one can see from figure 2, results for a material 7 match the experimental data with high ac-
curacy. For a material 9 (fig. 3) results have more dispersion however it is possible to recognize them
satisfactory in general.

The obtained results can be explained as follows. First, the part of components is added quite
seldom and only for specific steel grades therefore ANN isn't possible to find the functional depend-
ence for determination of their quantity. Secondly, it was clarified by the authors that though some
materials are added quite frequently but almost unsystematic because of the poor organization of pro-
duction. In that case because of absence of correlation between quantity of this material and input pa-
rameters of ANN also can't find the dependence that allows defining mass of this material. Thirdly,
basic data for training of ANN could contain erratic parameter values because of signal processing
errors from sensors and failures of sensors that also could add the share of an error.

The place of the developed model in process control system of steel melting in BOF. This
model can be applied before the beginning of blowing using results of operation of the static model of
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a burdening of melting and also a required chemical composition and steel temperature as input data.
In this case it calculates preliminary quantities of deoxidizing and alloying materials. The same model
can be applied after termination of blowing too. Real parameter values of ready steel are used as basic
data in such case. This allows obtaining the specified masses of added materials.
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Fig. 2 — Results of calculation of mass of material 7

Trained ANN can be saved as the file written in the C language that allows integrating it into
any shell program easily. The source code of the program is intended for operation in command line
therefore the interface of the program should be overworked for more comfortable operation with it.

The program should be added with the subprogram receiving information about existence of the
required materials in a warehouse for increasing of functionality. In case of the absence of any mate-
rial calculated by model on the basis of ANN it is possible to recalculate the masses of added materials
based on the material balance of chemical components considering materials that are available in a
warehouse.

For example, the neural network calculated that 1 ton of the material having the following chem-
ical composition is required for melting: 70% of manganese and 30% of iron. But only a material con-
taining 80% of manganese and 20% of iron and the steel scrap containing 95% of iron is available in a
warehouse.

Thus it is required of 1000x70/100 = 700 kg of manganese and 1000x30/100 = 300 kg of iron
for melting. Percentage of manganese in a material containing in a warehouse is 80% then it is re-
quired 700/80x100 = 875 kg of this material. 875x20/100 = 175 kg of iron contains in this mass of a
material. In order to material balance tally it is necessary to add the steel scrap. The mass of iron ob-
tained from steel scrap must be equal to 300 - 175 = 125 kg. Then there is required of 125/95x100 =
131.58 kg of steel scrap. So, instead of 1 ton of the ferroalloy calculated by ANN it is possible to take
875 kg of available ferroalloy and 131.58 kg of steel scrap.
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Fig. 3 — Results of calculation of mass of material 9

Only one variant of calculation is given here but there can be a great number of them consider-
ing of materials available in a warehouse. In that case calculation of materials should be carried out
considering economic factor with selecting variant with the smallest cost. This task is comes to search
of a minimum of the multiple-factor function including cost of materials, the frequency of their use,
residual of materials in a warehouse. As the result this task represents a subject for separate research.

Conclusions

The research directed on establishment of possibility of application of ANN for determination
of mass of deoxidizing and alloying components being used in BOF melting was carried out in this
work. Correlation analysis of initial data was carried out as a result of which the part of input and out-
put parameters that are not correlated with other parameters was discarded. Then preliminary search of
the best architecture of ANN for determination of mass of the remained output parameters was carried
out. As a result networks of radial basis function were excluded from reviewing and multi-layer per-
ceptrons are left. Then secondary search was carried out as a result of which activation functions of
neurons of the hidden and output layers were defined in case of which ANN has the greatest perform-
ance and the smallest error. Then it was defined that even in case of randomly selected architecture of
ANN their parameters differ from each other slightly. After that ANN having the best parameters and
the smallest quantity of neurons was selected in order to avoid retraining. Selected ANN has the fol-
lowing architecture:

- network type — multi-layer perceptron;

- quantity of neurons of an input layer — 22;

- quantity of neurons of the hidden layer — 52;

- quantity of neurons of an output layer — 22;

- activation function of neurons of the hidden layer — logistic;
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- activation function of neurons of an output layer — hyperbolic tangent.

The correlation coefficients and mean square deviations for all output parameters were found
for selected ANN. Based on the obtained values a conclusion was made that selected ANN is suitable
for determination of mass of the most part of added materials.

For better integration into process control system of steel melting in the BOF the selected ANN
was saved in the C-language format. As basic data for training of model are based on the equations of
the material balance, coefficients of a network don't need continuous adaptation. Updating of a net-
work is required only in case of appearance of new deoxidizing or alloying materials which initial
weren't in a database.

It is planned to add the module of calculation of quantity of materials considering existence of
them in a warehouse and economic indexes into the obtained model in the future. Besides it is planned
to equip model with the intuitive and clear graphic interface for convenience of operation with it.
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