
Herald NAMSCA  3, 2018                                                          Ludmila B. Chernyakhovskaya, Dmitry A. Simakov 

 

1046 

 

PEG-ON-HOLE: PATTERNS OF MOTION 

TO ENSURE ALIGNMENT OF PEG WITH  

VERTICALLY FIXED HOLE DURING AUTOMATED ASSEMBLY 

 

Ludmila B. Chernyakhovskaya  

Candidate of Physico-mathematical Sciences 

Samara State Technical University 

tms@samgtu.ru 

Dmitry A. Simakov 

Doctor of Natural Science, Independent Researcher 

dmsimak@gmail.com 

 
Abstract. Automation of assembling cylindrical parts is a currently central problem of the technology of machine-

building. To address it, assembly devices shall be improved, and software programs for controlling alignment process shall be 

created. The ways of improving cylindrical parts assembly operations depend on whether movement of an actuator is in com-

pliance with the objectively defined laws of motion that specify the process of alignment. The paper is aimed at studying peg-

on-hole motion supported at the edge of vertically fixed hole, and creating thereupon a mathematical model for the process of 

aligning cylindrical parts. The task set was tackled using methods of theoretical mechanics. They enabled to identify common 

patterns of peg motion with three degrees of freedom and involving planar motion that facilitates the process of aligning parts 

when nutation angle changes, rotational motion around hole axis characterized with precession angle, and rotational motion 

about its axis defined by self-rotation angle. The analysis conducted enabled to find directions of velocities, normal reactions, 

and friction forces at the contact points. A system of differential equations in generalized coordinates, which we call Dynamic 

Differential Equations, is created. It is a mathematical model describing the process of aligning cylindrical parts in general 

terms, and allowing to analyze all possible alternatives of vertical assembly. A particular case of this motion is analyzed when 
peg has two degrees of freedom performing planar motion and rotating about its axis. It is found that here the forces acting on 

the peg at the contact points shall be considerably reduced that improves the conditions for alignment of parts and quality of 

assembly as well. The equations of one freedom degree motion of a peg served as a basis for developing a method of experi-

mental determination of friction coefficient for assembling certain parts which improves accuracy of finding interaction forc-

es. The results obtained are of practical importance when evaluating and developing methods for assembling, designing as-

sembly devices, imply the ways to improve assembly operations, develop software programs and train Artificial Intelligence 

for controlling assembly process. 

Key words: cylindrical parts, three contact points, compound motion, three degrees of freedom, dynamic re-

sponses, differential equations. 

 

Introduction 
Assembly of cylindrical connections like Peg-in-Hole in machine-building industry may amount to about 20%, and 

in instrument-making industry – up to 40% of all assembly operations. Therefore, automation of the process is a relevant task, 

for which robotic systems have increasingly been in use to cope with. Design and development of assembly devices classical-

ly involves an advanced computer modelling of automatic assembly of cylindrical parts. In addition, the rapidly developed Ar-

tificial Intelligence (AI) methods can be trained to perform the same tasks in a more intelligent way. The need in assembly de-

vices for Peg-in-Hole configuration increases the importance of knowledge of the analytical model for the patterns of mechan-

ical motion. In classical programming this knowledge increases the calculation speed and the quality of the result. For AI, this 

knowledge eases the task of the training, and increases its precision. Therefore, a detailed study of alignment process using 

methods of theoretical mechanics is still of a great importance and will take its new niche in the digital era. 

Most known methods and devices intended to automatically assemble cylindrical parts with a minimum clear-

ance imply alignment schemes with a vertically fixed hole and a movable peg. Alignment of parts starts with the initial 

contact of the parts at two or three points. The position of the peg in both cases is characterized with the three Euler an-
gles, the generalized coordinates. It means, the peg is able to make three motions independently from one another: (i) 

axial rotation characterized with self-rotation angle φ; (ii) rotation around peg axis, defined by precession angle ψ, and 

(iii) planar motion characterized by nutation angle γ between axes of the parts. Both rotating motions have no effect on 

movement of the peg inside the hole. The process of alignment takes place as a planar motion with reduction of angle γ. 

However, it does not mean that rotating motions of the peg do not have any effect on the alignment process as such.  

The analytical problems of vertical scheme for assembling cylindrical parts have been addressed in many re-

search papers. The common patterns of planar motion were defined to ensure alignment of the parts, and the reasons for 

their damage or seizure were found. A rather complete analysis of the alignment process with two-point contact be-

tween the parts has been carried out. The required geometrical and kinematic characteristics, and force interactions be-

tween a peg and a hole at the contact points were defined for this process in [1] and [2] depending on angle γ between 

the axes. Alternatives for relative orientation of the parts during automatic assembly were considered in [3-6], and crite-
ria for recognizing them were specified. Many studies are devoted to analysis of the peg movement supported at the 

three points of the hole aperture edge, a so-called three-point contact. Directions of all interaction forces in this case 

were defined, and trajectories of all peg points and velocities of the contact were determined in [7-10]; differential equa-

tions of the peg motion characterizing alignment process were made [11]. The reasons of the parts’ seizure were consid-
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ered in detail, including action of gravity on the movable part producing considerable forces of interaction between a 
peg and a hole at the contact points. A potential reduction of this effect was analyzed through changing the position of 

the center of gravity of the movable part [12], [13]. 

To improve efficiency of automated assembly of cylindrical parts, robotic systems have increasingly been in use to con-

trol the process with software programs developed based on real experiment with the elements of AI training [14], [15], 

[17], [18], or based on mathematical modelling of the alignment process [19], [20].  

However, for the vertical assembly a problem of reducing interaction forces between the parts at the points of contact is 

still of relevance. These forces substantially increase when the angle between the axes decreases and approaches the 

value, when the three-point contact between a peg and a hole is replaced by the two-point contact. 

There is another kind of devices recently been developed technologically and are in use for the assembly. In these de-

vices, besides aligning motion characterized by the angle γ between the parts’ axes, additional two rotating motions are 

transmitted to the peg. They are the motion about its own axis or about the axis of the hole. Practice indicates that it can 
reduce the forces of interaction between parts and helps to avoid seizure. For further improvement of such devices, to 

create a necessary control by computer programs, including training of AI, a theoretical justification of the assembly 

process is required. It should be based upon mechanical laws of the peg movement in the most general terms. There are 

only several publications where geometrical characteristics of compound motion are identified. 

Works [21] and [22] present a mathematical model of the alignment of the parts with help of a device transmitting the 

vibration to a hole. Calculations presented in these papers define the position of the peg mass center relative to a vibrat-

ing hole. However, this model is insufficient to determine position of a peg as a solid body. 

An assembly process involving the transmission of the rotating motion to the peg was studied in works [23], [24], [25]. 

Here the properties of a gyroscope, a body that has the only stationary point, are attributed to a peg. This attribution 

simplifies the calculations but it does not specify the dynamics of movement quite adequately. 

Work [26] contains an analysis of aligning cylindrical parts, when both planar, and rotating motion about the hole axis 

are transmitted to a peg with the three-point contact between it and the aperture edge of vertically fixed hole. Dynamic 
Differential equations were written that enable to identify the basic patterns of this motion, and evaluate the effect, 

which rotating motion has on the alignment process. 

While extending the study made in paper [26], this work is devoted to analyzing peg motion in the most general case, 

when the forces, acting on it, transfer all three types of movements allowed by connections: planar, rotation about hole 

axis, and rotation about its axis. 

The work is aimed at addressing two major problems of the process for automated assembly of cylindrical parts: 

1) determining the patterns of the peg movement ensuring the alignment of the parts when all three generalized coordi-

nates (fig. 1) change: nutation angle )(t  , precession angle ψ =ψ(t) and self-rotation angle )(t  ; 

2) determining the forces acting on the peg at the points of contact and preventing alignment of the parts. It allows to 

assess their effect on the process of the alignment, and to do it depending on motion patterns. 

In the calculations of this paper, a peg and a hole are considered as solid bodies of a regular geometric shape with di-
mensions as follows: d – peg diameter, Н – its height, D – diameter of a hole. At the beginning of alignment, angle be-

tween axes γ > ,arccos
D

d
 that corresponds to contact of the parts at three points. One of the contact points K (Fig.1) 

is placed between the shaft generating line and the hole aperture edge in the plane passing through the parts’ axes, two 
other B1 and В2 are placed between the edges of both parts symmetrically to this plane.  

Methodology and methods 

Analysis of motion that enables alignment of a peg with a vertically fixed hole is based upon common patterns 

of mechanical movement of a solid body with the three degrees of freedom: nutation angle γ, precession angle ψ, and 

self-rotation angle φ. 

All necessary characteristics of such motion might be obtained using differential equations of the mass center move-

ment (1) and Lagrange differential equations (2). 
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The equations shall be compiled based on geometrical and kinematical patterns of the peg motion with the three de-

grees of freedom. 
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Left parts of the first three differential equations are the time derivatives from coordinates хС, уС, zC of the peg mass 
center that are the functions of generalized coordinates γ, ψ, φ. 

The peg position in the process of aligning is defined relative to the fixed system of coordinates О1xyz (Fig. 1), the be-

ginning of which coincides with center О1 of the hole aperture edge, axis О1z is directed along the hole axis, coordinate 

plane О1xz passes through the hole axis and the peg axis in the initial position of the parts, axis О1x is the line of inter-

section of this plane with the horizontal plane of the edge, it coincides with the hole diameter, axis О1y is perpendicular 

to plane О1xz. 

         

       

 

A moving coordinate system О2εηζ (Fig. 1) is asso-

ciated to the peg, with the beginning at the center of 

its aligned end, axis О2ζ is directed along the peg axis, coordinate plane О2ζη passes through axes of the parts and is a 
principal plane of their symmetry in the course of alignment, axis О2η coincides with the diameter of a peg located in 

the plane of symmetry, axis О2ε is perpendicular to plane О2ζη. In the peg moving, axis О2ε remains parallel to segment 

В1В2, axis О2η remains perpendicular to this segment. 

To define a position of the peg during its rotation about the axis of the sleeve, an auxiliary system of coordinates О1еhz 

is used, with the beginning at point О1. Axis О1h is a line of intersection of the parts’ plane of symmetry with the hori-

zontal plane of the hole and forms angle ψ with fixed axis О1х. Axis О1е is perpendicular to plane О1hz (Fig. 2). 

Coordinates of mass center relative to fixed system of coordinates О1хуz, defined in work [26], are as follows: 

;coscossin)5,0(cos 211  CC haHCOx   

;sinsinsin),0(sin 211  CC haHCOy                                               (3) 

.cos)5,0( 12 ааHzC    

where 

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dD
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
  is a distance between point О of intersection of the parts’ axes and center О1 of 

the hole edge circumference, and



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22

Dd
ООa


  - distance between point О and center О2    of the 

aligned peg end. 

Since the peg axis intersects the hole axis at point О, the obtained values of mass center С coordinates enable to specify 

the equation of the peg axis depending on the generalized coordinates  
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Fig. 1. Position of coordinate system 
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where ;0Оx  ;0Оy   1azO   - coordinates of point О of the hole axis and peg intersection. Thus, the equa-

tion of the peg axis relative to a fixed system of coordinates shall be transformed as follows:  

.
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                                          (4) 

The obtained values of the peg mass center coordinates (3) allow to transform the left parts of differential equations of 

the mass center movement (1) 
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The left parts of Lagrange equations shall be obtained through transforming kinetic peg energy, equal to the sum of 

kinetic energies of planar motion that is characterized by angle of nutation γ, peg rotation about its axis О2ζ and rota-

tion about hole axis О1 z, defined by angles of self-rotation φ and precession ψ, 

,
2222

2222  
 IIImV

T zCC                                                                           (6) 

where m is amass of a peg, CV is a velocity of its mass center,   is an angular velocity of planar motion,   - angular 

velocity of rotation motion of the peg about the hole axis,   angular velocity of self-rotation, I Cε  – inertia moment of 

the peg relative to axis Сε, passing through its mass center perpendicular to the parts’ plane of symmetry. zI  is inertia 

moment of the peg relative to hole axis О1z, Iζ – inertia moment of the peg relative to figure rotation axis О2ζ. 

Here, )3(
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22 HR
m

IС   - central moment of peg inertia relative to axis Сε, passing through the peg mass cen-

ter perpendicular to its plane of symmetry, 
2

2mR
I   - moment of the peg inertia relative to its axis О2ζ, 

222 cossin CСz mIII     - moment of the peg inertia relative to hole axis О1z, which is a var-

iable value that depends on the angle between axes γ. 

Mass center velocity is expressed through its projections to fixed axes of coordinates О1хуz  
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Then, kinetic energy (5) shall be as follows 
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After kinetic energy is properly transformed, the left parts of Lagrange equations shall have the following values (8) 
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The right parts of differential equations of mass center motion (1.1), (1.2), (1.3) shall be the sums of projections to 

fixed axes of coordinates of all forces that acts upon the peg, namely, assembling forces, peg gravity force and normal 

reactions and friction forces applied at the contact points. 

 
Assembling forces for aligning parts are known values that depend on a method of assembly and assembly device 

used. Normal reactions and friction forces characterizing interaction forces between the parts shall be defined. 

Directions of normal reactions shall be defined by location of contact points, and the value of each contact point de-

pends on common patterns of motion. Normal reaction KN is directed perpendicular to the peg generating line; its 

projections to the fixed coordinate axes are equal to 

;coscos KKx NN     ;sincos KKy NN     .sinKKz NN              (9) 

 

Lines of action of normal reactions 1BN , 2BN  in symmetric points of contact В1 and В2 pass through point О of peg 

and hole axes intersection [26], and their direction cosines shall be defined from geometrical ratios. They should have 

the following values after transformations: 
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Hence, projections of normal reactions shall be written as follows 

z 

ν 
К 

В 

eh

BN 1  

KzN
 

 

O 

О1 

ψ 

z

BN 1  

В1 

z

BN 2  

eh

BN 2  

 

KN
 

 

О 

h 

х 

ζ 

1BN
 

В2 

2BN
 

Fig. 3. Projections of normal reactions to hori-

zontal plane 

О2 

 

х 

h 

B2 

B1 

B 

K 

e 

у O1 

τ 
ψ 

x

BN 1  

 

eh

BN 2  

х

BN 2  

у

BN 1  

eh

BN 1  

у

BN 2  

KN
 

y

KN  

х

KN  

ψ 

 

Fig.4. Projections of normal reactions to 

axes О1х and О1у 

 

е 



Herald NAMSCA  3, 2018                                                          Ludmila B. Chernyakhovskaya, Dmitry A. Simakov 

 

1051 

 

          ;cos 111

N

BB

x

B NN            ;cos 222

N

BB

x

B NN            ;cos N

KK

x

K NN   

          ;cos 111

N

BB

y

B NN            ;cos 222

N

BB

y

B NN            ;cos N

KK

y

K NN                 (10) 

          ;cos 111

N

BB

z

B NN               ;cos 222

N

BB

z

B NN               .cos N

KK

z

K NN       

 

The direction of friction force is always opposite to the absolute velocity of the point of its application that involves de-

termining the values of velocities of contact points of parts В1, В2 and К. 

An absolute velocity of each point of the peg shall be equal to the sum of velocities of all components of the motions 

                                          ; VVVV   

where 
V - velocity of planar motion, 

V and 
V  - rotation velocities of points about hole and peg axes, respective-

ly. 

Hence, a direction of each velocity component at all points of parts’ contact shall be determined. 

Planar motion. When only one angle γ changes, the peg makes planar motion characterized by motion of its section 

АЕDN in the plane of symmetry. Velocities of the peg points located in the symmetry plane shall be defined [26] as ro-

tatory around instantaneous velocity center L, located at the point of intersection of perpendicular lines to velocities KV  

and AV  (Fig. 5). Velocities of symmetric points of contact В1 and В2 are equal to point В velocity, since they are located 

on one perpendicular line to the symmetry plane, passing through point В, hence, the values of the contact points’ ve-

locities shall be equal. 
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Projections of these velocities 
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КBB VVV ,, 21  to auxiliary axis О1h are equal (Fig.6)  
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These expressions include (Fig.5) ε1 – angle between segment ВL and axis of hole, ε2 – angle between segment ВL and 

Fig. 5. Projections of velocities of planar mo-

tion on axis О1у, О1z and О2η, О2ζ. 
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peg axis, ;cos 1
1

OB

a
   

;sin 1
1

OB

S
  ;sin 2

2
OB

S
  

;cos 2
2

OB

a
   ;2

2

2

2

2

1

2

1 SaSaOBB      .22 BOBBL   

Projections of velocities ,, 21


BB VV  


КV  to fixed axes О1х , О1у and О1z (Fig. 6) are equal 

         ;cos2cos 1121  aVVV hBxBxB           ;cossin  KLVKх   

         ;sin2sin 1121  aVVV hByByB               ;sinsin  KLVKy              (13)   

         .2 121  SVV zBzB                                      .cos KLVKz   

        

Rotation about hole axis occurs with angular velocity of 
dt

d
  . Velocities of contact points in this movement are 

located in the fixed plane О1ху, directed (Fig.7) at tangents to the hole aperture edge circumference and at all contact 
points are equal in magnitude 

.5,021  DVVV KBB 
 

Projections of these velocities to the fixed axes of coordinates О1х и О1у (Fig. 7) taking values of 
D

b

5,0
sin    and 

D

S

5,0
cos 1 into account shall be transformed to the following form: 

 

;)cossin( 11  bSV xB       ;)cossin( 12  bSV xB        ;sin5,0  DVKx   

;)sincos( 11  bSV yB        ;)sincos( 12  bSV yB        ;cos5.0  DVKy   

;01 
zBV                                        ;02 

zBV                                      .0
KzV            

                                                                                                                              (14) 

 

 

To define projections of velocities 


1BV  and 

2BV  onto moving axes of coordinates О2ε and  О2η, they are first divided 

into two components. One of these components is parallel to axis О1е, and the second one is parallel to axis О1h (Fig. 8)  

;111


hBеBB VVV                        .222


hBeBB VVV   

The values of these components define the projections of velocities to auxiliary axes О2е and О2h (Fig. 8) 

у 

KV  

Fig.7. Projections of velocities of contact 

points when rotating about hole axis on axes 

О1х and О1у  

О1 

В2 
В 

К 

  
ψ 

х 

В1 

τ  



1BV  

 

ψ 



2BV  


yBV 1  


yBV 2  


xBV 2  


KxV  


KyV  

ψ-τ 

90-ψ-τ 


xBV 1  

ψ+τ

+τ 

у 
hBV 2  


eBV 2  

е 

h 



KV  

Fig. 8. velocities of contact points when ro-

tating about hole axis on axes О1е and О1h.  

О1 

В2 

В 

К 

  

х 

В1 

τ  



1BV  

 

ψ 



2BV  


hBV 1  


eBV 1  
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;
5,0

5,0cos 1
1

11   S
D

BO
DVV BeB       ;

5,0
5,0cos 1

1
22   S

D

BO
DVV BеB   

;
5,0

5,0sin 1
11   b

D

BB
DVV BhB         .

5,0
5,0sin 2

22   b
D

BB
DVV BhB     (15) 

Components 


hBV 1  and 


hBV 2 , in its turn, shall be decomposed into two components, one of which is parallel to peg 

О2ζ  axis, the second is parallel to axis О2η 

;111








BBhB VVV        .222








BBhB VVV   

Thus, velocities 


1BV  and 


2BV  of points В1 and В2 of rotation peg motion around hole О1z axis shall be decomposed 

into three components  

;1111











BBBB VVVV             .2222











BBBB VVVV   

Projections of velocities 


1BV , 


2BV  and 


KV  to moving axes of coordinates О1ε, О1η and О1ζ shall be obtained 

through adding projections of their components (Fig. 8) 

 

;111 


SVV eBB                       ;122 


SVV eBB                         ;5,0 


DVK   

 ;coscos11 


bVV hBB           ;coscos22 


bVV hBB           ;0
КV  

 ;sinsin11 


bVV hBB          .sinsin22 


bVV hBB           .0
КV      (16) 

Rotation of peg about its axis occurs with angular velocity 
dt

d
  . 

 

 

Velocities 


KV , 


1BV , 


2BV  of contact points К, В1 and В2 while moving are located in the plane of aligned peg end 

О2εη, and are equal in magnitude: 

.5,021  dVVV BBK   

Projections of these velocities to peg О2ζ axis are equal to zero: 

.021  






 KBB VVV  

Projections to moving axes О2ε and О2η (Fig.9) are equal to 

;
5,0

5,0cos 2
2

11 


 S
d

S
dVV BВ         .

5,0
5.0sin11 


 b

d

b
dVV ВВ                                        

Fig. 9. Projections of self-rotation velocities to 

moving axes О2ε  and О2η 

Fig. 10 Projections of self-rotation veloci-

ties to axes О1e and О1h 


2ВV  

 

О2 

В2 

К 
ψ 

В1 

β  

η 

е,  

 


КV  


1BV  


1ВV  

ψ 

2BV  


2BV  


1BV  β  

β 


eВV 2  у 

х 

О1 

В2 

К 

ψ 

В1 

β  

h 

e 


КV  

ψ 

 

 
eBV 1  


hBV 2  
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;
5,0

5,0cos 2
2

12 


 S
d

S
dVV BВ          .

5,0
5.0sin12 


 b

d

b
dVV ВВ   

;5,0 


dVK                                                       .0
KV                                                 (17) 

Each of 

1BV  and 


2BV  shall be divided into two components, one of which is directed along axis О1h, the other is 

parallel to axis О1z (Fig.10) 

 ;111


 zBhBB VVV          .222


 zBhBB VVV   

Hence, velocity in each point may be presented as a sum of three components, two of which are located in horizontal 

plane О1ху (Fig.13), and the third one is located vertically, i.e. parallel to axis О1z  

;1111


zBhBеBB VVVV       ;2222


zBhBеBB VVVV   

Projections of rotation velocities of the points to auxiliary axis О1h are equal to 

;coscos11 


 bVV BhB        ;coscos22 


 bVV BhB        ;0
KhV     (18) 

Projections of velocities  



1BV ,  


2BV  and 


KV  to fixed axes of coordinates (Fig.10), after modifications shall be trans-

formed to the form (19) 

;)coscossin(sincos 2111   bSVVV eBhBxB       

        ;)sincoscos(cossin 2111   bSVVV eBhByB          (19.1) 

;sinsin11 


 bVV BzB   

 ;)coscossin(sincos 2222   bSVVV eBhBxB   

;)sincoscos(cossin 2222   bSVVV eBhByB     (19.2)         (19) 

          ;sinsin22 


 bVV BzB         

;sin5,0  dVKx           ;cos5,0  dVKy      .0
KzV                (19.3)      

Projections of absolute velocities of each point of contact to fixed axes of coordinates О1х, О1у and  О1z shall be de-

fined as sums of projections of the velocities components based on equations (13), (14) and (19), and shall be trans-

formed to form (20) 

 


xBxBxBxB VVVV 1111   cos2 1a  )cossin( 1 bS  ;)coscossin( 2  bS   


уBуBуBуB VVVV 1111   sin2 1a  )sincos( 1 bS  ;)sincoscos( 2  bS   

 
zBzBzBzB VVVV 1111 12S ;sin  b                                                     (20.1) 

 


xBxBxBxB VVVV 2222   cos2 1a  )cossin( 1 bS  ;)coscossin( 2  bS   

 
уBуBуBуB VVVV 2222

 sin2 1a  )sincos( 1 bS  ;)sincoscos( 2  bS          

(20) 

 
zBzBzBzB VVVV 2222 12S ;sin  b                                                          (20.2)  

  

    

KxKxKxKx VVVV   cossinKL  sin5,0 D ;sin5,0  d  

    
 

KyKyKyKy VVVV  sinsinKL  cos5.0 D ;cos5,0  d  

     
KzKzKzKz VVVV .cosKL                                                                         (20.3) 

Projections of absolute velocities of contact points to moving axes of coordinates О2ε и О2η shall be determined based 

on equations (12), (15) and (18)  
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 






 1111 BBBB VVVV ;21   SS   

;cos2 21111 








 bbaVVVV BBBB           (21.1) 

 

;212222 








 SSVVVV BBBB   

            ;cos2 22222 








 bbaVVVV BBBB          (21.2)                    (21) 

 

;5,05,0 








 dDVVVV KKKK   

            .0 






 KKKK VVVV                                              (21.3) 

Projections of absolute velocities of contact points to auxiliary axis О1h shall be determined based on equations (12), 

(15) and (18) 

;cos2 11111   bbaVVVV hBhBhBhB   

;cos2 12222   bbaVVVV hBhBhBhB   

.sin  KLVVVV KhKhKhKh                                                                 (22) 

 

The obtained values of projections of points В1, В2 and К velocities to axes of coordinates allow to identify directions of 

friction forces relative to the specified axes of coordinates using direction cosines that will be opposite in sign to direc-

tion cosines of the respective absolute velocities. 

Direction cosines of friction forces (23) relative to fixed axes of coordinates shall be defined by the following expres-

sions  

;cos
1

1

1

B

xBF

B
V

V
               ;cos

2

2

2

B

xBF

B
V

V
           ;cos

K

KxF

K
V

V
     (23.1) 

;cos
1

1

1

B

yBF

B
V

V
                ;cos

2

2

2

B

yBF

B
V

V
         ;cos

K

KyF

K
V

V
     (23.2)                   (23) 

;cos
1

1
1

B

zBF

B
V

V
                ;cos

2

2
2

B

zBF

B
V

V
          ;cos

K

KzF

K
V

V
      (21.3)                         

 where 
222

zyx VVVV   - modulus of velocity in the corresponding point. 

                        
Right parts of differential equations of mass center motion (1.1), (1.2), (1.3) are the sums of projections to fixed axes 

of coordinates of all forces that act upon the peg, namely, assembling forces, peg gravity force and normal reactions 

and friction forces applied at the contact points. Analysis showed directions of normal reactions with direction co-

sines determined using expressions (9) and (10), and direction of all friction forces with direction cosines relative to 

fixed axes determined using expressions (20). Thus, the right parts of differential equations of mass center motion 

shall be written as (24), where 
сб

xF ,
сб

yF ,
сб

zF  are projections of assembling forces to fixed axes of coordinates. 

 

  kxF  

);cos(cos)cos(cos)cos(cos 222111

F

B

N

BB

F

B

N

BB

F

K

N

KKx fNfNfNсбF     (24.1) 

 ryF  

  );cos(cos)cos(cos)cos(cos 222111

F

B

N

BB

F

B

N

BB

F

K

N

KK

сб

y fNfNfNF    (24.2) 

 ryF  сб

zFmg     

    ).cos(cos)cos(cos)cos(cos 222111

F

B

N

BB

F

B

N

BB

F

K

N

KK fNfNfN           (24.3) 
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The right parts of Lagrange equations are the sums of moments of all forces applied to peg relative to pertinent rotation 
axes.  

Generalized force Qγ, the right part of the first Lagrange 

equation, is equal to the sum of moments of forces acting up-

on peg relative to instantaneous axis of rotation Ll, which 

passes through instantaneous center of velocities L perpen-

dicular to the plane of parts symmetry О1hz. Normal reac-

tions intersect instantaneous axis of rotation; their moments 

relative to this axis are equal to zero. Thus, generalized force 

Qγ is composed of moments of assembling forces, gravity 

force and friction forces applied at the contact points  

 

).()()()()( 21 BLlBLlKLlLl

сб

Ll FmFmFmgmmFmQ 

 

The moment of assembling force is a known value that de-

pends on a method of assembly. 

To determine gravity force gm  moment and moments of 

friction forces KF , 1BF , 2BF  relative to instantaneous axis 

Ll, axes of coordinates О1h1 and Lz1, perpendicular to instan-

taneous axis of rotation, shall be associated with point L: axis 

Lh1, parallel to axis О1h,  and axis Lz1, parallel to hole axis 

О1z  (Fig. 11). 

Gravity force moment (Fig.9) relative to instantaneous axis is 

equal to 

)( gmmLl   

 ].sin)5,0([)()( 2111111  aHSmgSmgОСLОmgmgH CC   (25)  

                                                                                                                                   
Moment of each friction force relative to instantaneous axis shall be defined by formula 

,)( 1111 hzLl FzFhFm                                                              (26) 

where h1 and z1 are coordinates of points for applying these forces in the specified system of coordinates (Fig.10), 1zF  

1hF  are projections of friction forces to these axes.  

Coordinates of contact points В1, В1 and К (Fig. 13, Fig. 14) are equal to 

       ;2 1312111 SLBhhh BBB          ;cos11 KLKLh K   

       ;2 112111 aLLzz BB              ;sin1 KLz K                                      (27) 

Axis of coordinates Lz1 is parallel to axis О1z, hence, direction cosines of friction forces relative to axis Lz1 are equal to 

direction cosines of angles relative to axis О1z, the values of which are as follows (20)  

  ;cos
1

1
1

B

zBF

B
V

V
          ;cos

2

2
2

B

zBF

B
V

V
        .cos

K

KzF

K
V

V
                                

After substituting all components into formula (30) and further transformations, moments of friction forces KF , 1BF  

and 2BF  relative to instantaneous axis of rotation shall be equal to  

      ;)(
2

K

KKhKKzKKLl
V

KL
fNFzFhFm


  

      ;
22

)(
1

21

2

111111

B

BhBBzBBBLl
V

babaBL
fNFzFhFm

  
  

             .
22

[)(
2

21

2

222222

B

BhBBzBBBLl
V

babaBL
fNFzFhFm

  
  

Thus, generalized force of the first Lagrange equation is equal to 

Fig. 11. Coordinates of contact points rela-

tive to coordinate system Llh1z1 

A 
h1 

h

1

1 

ζ 

О2 

L1 

L 

K 

z 

B 
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γ 

B1 

γ 
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)( сб
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2





1

21
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2
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2

2

B

B
V
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fN

  
                              (28.1) 

Generalized force Qψ in the second Lagrange equation is equal to the sum of moments of all these forces relative to 

the hole axis. Gravity force is parallel to the hole axis, normal 

reactions intersect it, thus, their moments are equal to zero. 

Moment of assembling forces )( as

z Fm  depends on a method 

used for assembling.  
Moment of each friction force shall be defined by formula 

               ;)( xyz yFxFFm   

where х and у are coordinates of contact points К, В1, В2 in 

fixed system coordinates О1хyz (Fig.12), values of which af-

ter transformations are equal to  

      ;sincos11  bSxB      

;sincos12  bSxB        ;cos5.0 DxK   

     ;cossin11  bSyB       

;cossin12  bSyB       .sin5.0 DyK             

Projections of friction forces to fixed axes of coordinates shall 

be expressed through normal reactions in contact points 

      ;cos11

F

BBxB fNF 1         ;cos 222

F

BBxB fNF          ;cos F

KKKx fNF   

      ;cos1

F

BByyB fNF 1       ;cos 222

F

BBxB fNF            ;cos F

KKKy fNF   

where all direction cosines are defined by values (27). 

After substituting all values and further transformations, moments of friction forces 1BF , 2BF  and KF relative to axis 

О1z shall have the following values 

           xBByBBBz FyFxFm 11111)( ;
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Hence, generalized force of the second Lagrange equation shall be brought to the following form 
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                                                            .
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V
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  
                (28.2)  

Generalized force Qφ of the third Lagrange equation is equal to the sum of moments of all forces applied to the peg 

relative to peg axis О2ζ . Moments of gravity force and normal reactions are equal to zero, since lines of their action 

intersect this axis. Moments of friction forces relative to peg axis О2ζ shall be defined by formula 

  FFFm )( .  

Coordinates of contact points in moving system of coordinates О2εηζ are equal to 

;11 bBBB                ;22 bBBB              ;0K  

;221 SBOB            ;22 bBBB               .5,0 dK   

Fig.12. Position of contact points in co-

ordinate system О1хуz  
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Projections of friction forces are equal to 
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BBB fNF             ;cos F
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where direction cosines of friction forces with axes О2ε and О2η, determined using values (23), (24), (25), are equal to 
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After transformations, moments of friction forces relative to peg axis О2ζ shall be brought to the following form  
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Generalized force of the third Lagrange equation shall be as follows  
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       (28.3) 

where )( сбFm  is a moment of assembling force relative to peg axis О2ζ.  

 

Comprehensive analysis of the peg motion enabled to define right (5) and left (28) parts of differential equations of 

mass center movement (1), and right (8) and left (28) parts of Lagrange equations (2). After equating corresponding 

values of these components, six differential equations shall be obtained (29) 
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This is a system of Dynamic Differential equations (29), and it is a mathematical model of process for aligning cylindri-

cal parts in the most general way, when a peg, supported at the three points of the hole edge of vertically fixed hole, 

makes a compound motion characterized by three degrees of freedom. Such model may serve as a basis for considering 
all possible alternatives of vertical assembly schemes. A comparison of them will facilitate assessment of effect that ro-

tatory motions have on reliability and quality of assembly. 

Planar peg motion, that ensures a process of aligning parts occurs when one generalized coordinate, angle γ between 

axes of parts, changes. Such motion shall be performed when all assembling forces acting upon peg are brought to a 

plane system of forces in the symmetry plane of parts that is equivalent to one force 
asF  and pair of forces with mo-

ment 
asM  . Here, normal reactions and friction forces are equal in value 1BN  = 2BN , 1BF = 2BF  in symmetrical con-

tact points В1 and В2; their resultant forces BN  and BF  are applied in point В, the middle of segment В1В2, and are lo-

cated in the symmetry plane of parts (Fig.13). 
Differential equations of motion of the peg with one degree of freedom shall be obtained by substituting values φ = 0, 

,0    ψ = 0, 0  into system of equations (29) that shall be brought to form (30) after transformations made  
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Obtained equations 
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process. An algorithm for solving differential equations was compiled based on Mathcad package. Finally, it was found 
that interaction forces sharply increase irrespective of assembly method when angle between axes decreases, and reach 

maximum values when angle between axes approaches value γ =arccosd/D, when contact of parts in three points is re-

placed by two-point contact. 

By way of example, the results of analyzing the process of aligning parts when subjected to rotary moment 
asM  , 

transmitting planar motion to the peg, are presented. Dynamic reactions in contact points were determined in graphic 

form for parts of D = 50 mm, d = 49,9 mm, Н = 70 mm. Friction coefficient shall be taken equal to f = 0,2. To simplify 

calculations, steady motion of the peg was chosen with angular velocity 
12,0  s . Here, 0 , hence, two first 

equations (30.1) and (30.2) are sufficient to determine normal reactions 

2
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



d

xd
m C );cossin(sin2)sin(cos 111  fNfN BK   
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2

2





d

zd
m C ).sincos(sin2)cos(sin 111  fNfNmg BK           (31) 

Fig. 14 presents a graph showing relationship between angle γ and value 
mg

R
n K

K  , the ratio of overall reaction in 

point К to the peg gravity force. Overall reaction R  in each point was determined as a geometrical sum of normal reac-

tion N  and friction force F , equivalent to  22

KKK FNR  
21 fNK  . As it appears from the graph, when 

rotary moment 
asM   (Fig.13) aligns parts, reaction KR in point К exceeds peg gravity force by more than 50 times dur-

ing aligning and angle between axes approaching value γ =arccos(d/D). 

To determine an impact of rotary motion of the peg around its axis on the process of aligning parts, differential equa-

tions of the peg motion with the two degrees of freedom: angle γ, characterizing planar motion, and self-rotation angle 

φ, specifying common patterns of the peg rotary motion around its axis, need to be written. Here, differential equations 

shall be obtained by substituting values ψ = 0, 0  into equations (33). After all transformations five equations (36) 

were compiled that define common patterns of motion of the peg with the two degrees of motion, which enable to write 
equations of the peg motion and normal reactions in contact points depending on assembly forces applied. 
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To compare values of dynamic reactions with the previous example, a process of alignment was considered, when both 

components of the peg motion occurred due to moments 
as

LlM  and 
asM  acting upon it, creating motion with constant 

angular velocities: 
12,0  s , 

12  s . Here, four differential equations may be adequate to determine reactions, 

as follows  
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The obtained equations were solved using Mathcad software for 

the parts with the same dimensions as when planar motion occurs. 

Graph )(KK nn  , specifying relationship between angle γ 

and a ratio of overall reaction in point К to gravity force when peg 

rotates about its axis, is given in Fig. 15. As it follows from the 

graph, maximum value of this reaction is considerably lower than 

that, when rotation of a peg with one degree of freedom occurs, 

hence, rotation of a peg around its axis reduces interaction forces 

in contact points increasing thereby reliability and quality of the 

parts’ assembly. 

Differential equations, describing the process of aligning parts, 

involve friction forces as components. Hence, expressions for all 

required values, obtained as a result of solving these equations, 

depend on the value of friction coefficient that specifies all partic-
ular features of a certain method for assembly: dimensions, mate-

rial, and quality of processing the parts. 

Friction coefficient needs to be determined to increase accuracy 

of all calculations associated with computing forces applied to the 

peg in contact points. There are no recommendations about de-

termining friction coefficient in the published theoretical studies 

of the process of aligning cylindrical parts; all studies specify fric-

tion coefficient with no justification of selecting its value. Therefore, to improve accuracy of all calculations associated 

with aligning a peg and a hole, a problem of determining friction coefficient appropriate to certain parts and conditions 

of movement thereof is of relevance. 

The determined common patterns of planar motion of a peg enable to experimentally identify the coefficient based on 

the results of alignment process. The peg gravity force may, depending on a position of mass center, facilitate or impede 
alignment of the parts, however, gravity force moment relative to instantaneous center of velocities is not sufficient to 

transmit alignment movement to a peg. Peg equilibrium with no assembly forces is possible in a certain range of angle γ 

values between axes of the parts. Here, a pattern of equilibrium and values of interaction forces in contact points depend 

not only on inclination angle, but also on a relative position of instantaneous center of velocities L and mass center of 

peg С, where gravity force is applied. 
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Fig. 15. Graph of changing reaction 

in point К when shaft rotates around 

its axis 
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When 1111 LOCO  , gravity force moment impedes 

alignment of parts. When values 1111 LOCO   

(Fig.16), gravity force creates a moment facilitating 

alignment process, however, according to practice, when 

vertical scheme of assembly is utilized, there are no val-

ues of angle γ, at which a peg would turn towards align-

ment of parts when subjected to only gravity force. 

Gravity force moment creates a stalling torque towards 

increasing angle γ, and peg motion under gravity is pos-

sible only towards increasing angle between parts’ axes. 
 

Beginning of stalling corresponds to the maximum value 

of friction coefficient in equilibrium. 

To determine friction coefficient, a peg was installed on 

a hole edge under various angles, and angle γ was identi-

fied when the peg started to move towards its increasing. 

An inclination angle was determined for several pegs 

and holes fabricated from the same material. For exper-

imentally identified value of angle γ, equations of peg 

equilibrium shall be written (34), with unknown normal 

reactions and friction coefficient in the alignment meth-

od in question (Fig. 15) 

                  kхF  

;0)cossin(sin2)sin(cos 1   fNfN BK

                   (34.1) 

                  kzF ;0)sincos(sin2)cos(sin 1  mgfNfN BK      (34.2) 

                 )( KL Fm .02  BBKKmg hfNhfNhmg                               (34.3) 

Normal reactions in the symmetrical contact points in these equations are equal in value: 21 BB NN  , α – angle be-

tween segments В1В2 and ОВ1, ;sin)5,0( 1211 SaHLСhmg     ;KLhK   .. BLh B   

To solve equations computer software ”PTC Mathcad“ was used. Thus, for parts fabricated from steel with hole diame-

ter D = 50 mm, clearance setting δ = 0, 1 mm, peg height H = 70 mm, angle γ when peg started to stall is equal to 

0,33(20,060), and friction coefficient determined using equations (11) was equal to f = 0,209. For part of H = 100 mm 

height, D = 50 mm, δ = 0, 1 mm stalling angle γ =0,27(41,040) that corresponded to f=0,2.  

Differential equations of planar motion (38) enable to determine reactions in contact points depending on the value of 

friction coefficient between parts in the course if their alignment. Reactions КN  and 1BN were identified based on 

these equations during assembling cylindrical parts of the following sizes: D = 50 mm, d=49,9 mm, Н = 70 mm for two 
values of friction coefficient between their surfaces, one of which f1 = 0,201 corresponds to angle γ1 = 700, the second f2 

= 0,252 corresponds to angle γ2 = 690. In both cases alignment process was analyzed for steady motion when 

,/12,0 s 0 . For f2 = 0,252 maximum value of reaction in point К exceeded 1.3 times the value of the 

same reaction for f1 = 0,201. Hence, to increase accuracy of calculations when evaluating assembly devices, it is neces-

sary to identify the value of pertinent friction coefficient. 

Conclusions. A detailed kinematic analysis of a compound motion of the peg supported at the edge of verti-

cally fixed hole was performed. In this analysis all three degrees of freedom in the course of alignment process were 

taken into account. The directions of the interaction forces were identified at the peg and hole contact points. 

Dynamic Differential equations describing a process of aligning cylindrical parts were written. They depend 
on the relative position of the parts and acting forces between them. In these equations, the impact of the two rotary 

motions of the peg, around its axis and around axis of the hole, is taken into account, so they are considered in the 

most general case. According to the study, the friction coefficient is dependent on the position of the peg with the 

three-point contact at the hole aperture. A method for experimental determination of this friction coefficient was sug-

gested in this paper. The material presented in this paper is a complete mathematical theory of mechanical movement 

of a quadric cylinder supported at the edge of a circular horizontal hole. It was developed using methods of theoreti-

cal mechanics. The theory enables to analyze all possible alternatives of vertical assembly, to determine interaction 

forces of parts at contact points, and to specify the impact of all parameters of the peg motion components on the 

alignment process.  
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The developed mathematical model of the peg compound motion may help to select parameters and modes of assem-
bly, to design the assembly devices. Its major advantage lies in the increased technological potential of a robotized 

assembly, base either on classical computer modelling or supported AI training. 

Discussion. In all the devices for Peg-in-Hole assembly, the angle between the peg and the hole is consid-

ered for their alignment. The devices take care about a decrease in this angle until the axes of the details are aligned, 

and the peg can be inserted into the hole. The process of simple alignment, however, can have undesirable effects and 

lead to the seizure of the parts. To overcome this effect, a certain kind of assembly devices has been widely devel-

oped and introduced into practice. In these devices the additional vibration motions are transmitted to either peg or 

hole, in addition to the planar alignment motion. These vibration motions reduce the interaction forces and, hence, in-

crease the quality and reliability of the assembly. 

In order to further develop and improve the process, the mathematical description of the alignment process, 

and attendant effects, could be of a significant importance. Unfortunately, the number of the publications, where this 
description was extensively considered is relatively low. Among the good examples are papers [21] and [22]. They 

mathematically consider the Peg-on-Hole alignment with vibration motion transmitted to a peg. The conditions, upon 

which the peg mass center approaches the sleeve axis are specified in this paper. The obtained mathematical model 

describes the alignment of the parts in two cases: with one- and two-point contact between the parts. The model spec-

ifies the coordinates of the peg mass center in the system. Unfortunately, the position of the mass center of the peg 

characterizes the relative position only partially, and cannot be used, for a three-point contact between the parts.  

Works [23], [24], [25] cover the dynamics process of the high-speed rotation assembly. During this process, 

the high-speed rotation motion is transmitted to a peg about its vertical axis. The presented dynamic model of align-

ment process based upon gyroscope theory allows to define the time for alignment and the threshold for angular ve-

locity. The computations given in these papers are incomplete since they do not determine interaction forces between 

parts and do not assess their impact on alignment process. 

Paper [26] gives a comprehensive theoretical description of the peg compound motion with the two degrees 
of freedom. It overcame the limitations of the previously mentioned models. In that paper all kinematic characteris-

tics, and directions of the interaction forces were determined. The model expressed in Dynamic Differential equations 

included the dependence of the motion parameters on the applied assembly forces as well as nutation and precession 

angles. It allowed to analyze the alignment process taking all these effects into account.  

Current work extends the study of the previous paper. It takes all three generalized coordinates into account, 

and performs the kinematic and dynamic analyses of the peg motion in the most general case. 

The presented material of this paper is the mathematical model of mechanical motion of the Peg-on-Hole 

alignment in the most general case. Use of this model can be of a great importance for the design of the assembly devic-

es for the vertical Peg-in-Hole assembly. It helps to optimize the parameters regimes, and specifications for the already 

existing assembly devices. In addition, general theory could lead to the design of the new modes of assembly that were 

previously inaccessible due to limitations of the previous models. And as an acknowledgement for the digital era, the 
knowledge of the mathematics behind the assembly process simplifies the programming of Peg-in-Hole assembly de-

vices, including classical control systems and training of Artificial Intelligence. 

 

 


