Prediction of course and progression of nonalcoholic fatty liver disease in patients with obesity and pathology of the biliary tract with the help of mathematical modeling.

A. Yu. Filippova, I. A. Gubar, V. V. Rudakova


Determination of the most important functional parameters of the liver, lipid peroxidation (LPO) and antioxidant protection (AOP) markers of endogenous intoxication and indicators of connective-tissue metabolism in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity and pathology of the biliary tract and development of criteria for predicting the likelihood of the transformation of non-alcoholic steatosis (NAHS) to non-alcoholic steatohepatitis (NASH) using mathematical modeling was performed. The data of patients with different clinical stages of NAFLD in combination with obesity and BT pathology were analyzed: the study group consisted of patients with NASH (n=100) and control group – patients with NAHS (n=100). The diagnosis of NAFLD and pathology of BT was established on the basis of anamnesis, clinical and instrumental (ultrasound imaging of the abdomen) examination. The body mass index was determined according to the Quetelet formula. Thymol test, total protein level and protein fractions in blood serum, the concentration of molecules of average weight (MSM) and their fractional composition were investigated. The condition of the LPO system was evaluated by the concentration of malondialdehyde, schiff bases and intermediate LPO products. The AOP was assessed by the activity of superoxide dismutase and catalase in the hemolysate of erythrocytes. The process of fibrosis was evaluated according to the content of free oxyproline, total oxyproline and protein-binding oxyproline, hexosamines. According to the correlation analysis 30 factors that increase the risk of transformation of NAHS in NASH (p<0.05) were selected. ROC-analysis was conducted with the definition of factor levels that provides the maximum difference between the compared groups in terms of sensitivity and specificity. Logistic regression model was built basing on certain criteria for distinguishing between different NAHP stages. Logistic regression model was built with the coefficients В0=-2,610 and В1=0,157 (p<0.001 by Student's t test and Wald), the adequacy of the model – χ2=131.4; p<0.001. Designed logistic regression model allows to predict the progression of non-alcoholic steatosis to steatohepatitis stage in persons with obesity and pathology of the biliary tract with the help of laboratory data with indicators of sensitivity – 83.0%, specificity – 91.0%, forecast accuracy – 87.0%, validity – 76.1%.


nonalcoholic steatosis; nonalcoholic steatohepatitis; obesity; biliary tract; mathematical modeling

Full Text:



Gubler EV. [Informatics in Pathology, Clinical Medicine and Pediatrics]. Meditsina, 1990;175. Russian.

Vinnitskaya EV, Drozdov VN, Yunusova YuM. [Diagnostic value of serum markers of fibrosis in chronic liver diseases]. Therapeutic archive. 2013;2:27-31. Russian.

Kamyishnikov VS. [Clinical and laboratory diag­nosis of liver diseases]. Moskva, MEDpress-inform 2-e izd; 2014. Russian.

Rebrova Oyu. [Statistical analysis of medical data. Application of the STATISTICA software package]. Moskva, Media Sfera. 2002;312. Russian.

Filippova AYu. [The process of lipid peroxidation and status of antioxidant defense system in patients with no­nalcoholic fatty liver disease]. Vrachebnoe delo. 2013;7:36-43. Ukrainian.

Chesnokov BV, Petrov, IM,TroshinaIA.[Insulin resistance, atherogenic disorders and liver fibrosis in patients with metabolic syndrome]. Obesity and meta­bolism. 2014;2:17-23. Ukrainian.

Dietrich P, Hellerbrand C. Non-alcoholic fatty liver disease, obesity and the metabolic syndrome. Best Pract Res Clin Gastroenterol. 2014;28(4):637-53.

Sowa JP, Heider D, Bechmann LP, Gerken G. Novel Algorithm for Non-Invasive Assessment of Fibrosis in NAFLD. PLoS One. 2013;8(4):e62439.

Argo CK, Northup PG, Al-Osaimi AM. Sys­tematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis. J. Hepatol. 2009;51:371-79.

Toouli James, Fried Michael, Ghafoor Khan Aamir. Obe­sity World Gastroenterology Organisation Global Gui­de­line. 2009;1-30. Available from: http://www.worldgas­troe­­loads/­en/pdf/guidelines/22_obesity.pdf.

GOST Style Citations

1.       Гублер Е.В. Информатика в патологии, клини­ческой медицине и педиатрии / Е.В. Гублер. – Ле­нинград: Медицина, 1990. – 175 с.

2.       Диагностическая значимость сывороточных маркеров фиброза при хронических заболеваниях пе­чени / Е.В. Винницкая В.Н. Дроздов Ю.М. Юнусова [и др.] // Терапевт. архив. – 2013. – № 2. – С.27-31.

3.       Камышников В.С. Клинико-лабораторная ди­агностика заболеваний печени / В.С. Камышников. – 2-е изд. – Москва: МЕДпресс-информ, 2014. – 96 с.

4.       Реброва О.Ю. Статистический анализ меди­цинских данных. Применение пакета прикладных программ STATISTICA / О.Ю. Реброва. – Москва: Медиа Сфера, 2002. – 312 с.

5.       Філіппова О.Ю. Процеси перекисного окис­нення ліпідів та стан системи антиоксидантного захисту у хворих на неалкогольну жирову хворобу печінки / О.Ю. Філіппова // Лікарська справа. – 2013. – № 7. – С. 36-43.

6.       Чеснокова Л.В. Инсулинорезистентность, ате­рогенные нарушения и фиброз печени у больных с метаболическим синдромом / Л.В. Чеснокова, И.М. Петров, И.А. Трошина // Ожирение и мета­болизм. – 2014. – № 2. – С. 17-23.

7.       Dietrich P. Non-alcoholic fatty liver disease, obe­sity and the metabolic syndrome / P. Dietrich, C. Hel­lerbrand // Best. Pract. Res. Clin. Gastroenterol. – 2014. – Vol. 28. – P. 637-653.

8.       Novel Algorithm for Non-Invasive Assessment of Fibrosis in NAFLD / J.P. Sowa, D. Heider, L.P. Bech­mann, G. Gerken // PLoS One. – 2013. – Vol. 8. – e62439.

9.       Systematic review of risk factors for fibrosis progression in non-alcoholic steatohepatitis / C.K. Argo, P.G. Northup, A.M. Al-Osaimi [et. al.] // J. Hepatol. – 2009. – Vol. 51. – P. 371-379.

10.    ToouliJames. Obesity World Gastroenterology Organisation Global Guideline / JamesToouli, Michael Fried, Aamir Ghafoor Khan. – 2009. – 30 p.


This work is licensed under a Creative Commons Attribution 4.0 International License