Bone marrow fibrosis – the basis of mielofibrosis: pathogenesis, prognostication and antifibrogenic targeted strategies.

Authors

  • A. S. Timchenko
  • V. N. Zalessky

DOI:

https://doi.org/10.26641/2307-0404.2018.1.124952

Keywords:

bone marrow fibrosis, myelofibrosis, pathogenesis, cell therapy, targeted strategies

Abstract

Bone marrow fibrosis is a key patological feature and major diagnostic criterion of mielofibrosis. Although bone marrow fibrosis is manifested in a variety of malignant  and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the mielofibrosis of hematopoietic stem/progenitor cells, contributing to an impaired microenvironment toward malignant over normal hematopoiesis. The increased expression of pro­inflammatory cytokines, transforming growth factor-β, impaired megakaryocyte function and aberrant JAK-STAT signaling are the peculiarities of pathogenesis of bone marrow fibrosis. Hematopoietic stem cell transplantation remains the only therapeutic approach that reliably results in resolution of  bone marrow fibrosis in patients with mielofibrosis. In the work we review the pathogenesis, biological consequences and prognostic results of impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting at clonal hematopoietic stem/progenitor cells, aberrant signaling pathway, fibrogenic cytokines, and tumor microenvironment.

Author Biographies

A. S. Timchenko

SI «Iinstitute of haematology and transfusiology NAMS Ukraine»
M. Berlinskogo st., 12, Kyiv, 04060, Ukraine

V. N. Zalessky

«M.D. Strazhesko institute of cardiology, MAS of Ukraine»
Narodnogo Opolcheniya str., 5, Kyiv, 02000, Ukraine,

References

Dolgih TYu, Sholenberg EV, Kachesov IV. [Cli­nical and morphological study of myelofibrosis in various types of bone marrow tumor lesion in patients with chronic lymphocytic leukemia]. Byull. eksperim. biol. i med. 2016;161,3:386-90. Russian.

Silyutina AA, Gin II,MatyuhinaNM. [Models of myelofibrosis]. Onkogematologiya. 2017;10(1);75-84. Russian.

Baxter EJ, Scott LM, Campbell PJ. Acquired mu­tation of the tyrosine kinase JAK2 in human myelo­proliferative disorders. Lancet. 2005;365(9464):1054-61.

Abbonante V, Gruppi C, Catarsi P. Altered fibro­nectin expression and deposition by myeloproliferative neoplasm-derived mesenchymal stromal cells. Br J Haematol. 2016;172(1):140-4.

Mascarenhas J, Li T, Sandy L. Anti-transforming growth factor-β therapy in patients with myelofibrosis. Leuk Lymphoma. 2014;55(2):450-52.

Haudek SB, Xia Y, Huebener P. Bone marrow-derived fibroblast precursors mediate ischemic cardio­myopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284-9.

Zahr AA, Salama ME, Carreau N. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101(6):660-71.

Kuter DJ, Bain B, Mufti G. Bone marrow fib­rosis: pathophysiology and clinical significance of inc­reased bone marrow stromal fibres. Br J Haematol. 2007;139(3):351-62.

Bock O, Höftmann J, Theophile K. Bone mor­phogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol. 2008;172(4):951-60.

Pallotta I, Lovett M, Rice W. Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One. 2009;4(12):8359.

Bornstein P. Thrombospondins function as regu­lators of angiogenesis. https://www.ncbi.nlm.nih.gov/pubmed/19798599">J Cell Commun Signal. 2009;3(3-4):189-200.

Boulais PE, Frenette PS. Making sense of hema­topoietic stem cell niches. Blood. 2015;125(17);2621-29.

Chang VT, Yook C, Rameshwar P, Chang VT. Synergism between fibronectin and transforming growth factor-β1 in the production of substance P in monocytes of patients with myelofibrosis. Leuk Lymphoma. 2013;54(3):631-38.

Chou JM, Li CY, Tefferi A. Bone marrow im­munohistochemical studies of angiogenic cytokines and their receptors in myelofibrosis with myeloid metaplasia. Leuk Res. 2003;27(6):499-504.

Lekovic D, Gotic M, Perunicic-Jovanovic M. Con­tribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis. Med Oncol. 2014;31(3):869.

Gangat N, Caramazza D, Vaidya R. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392-97.

Ianotto JC, Boyer-Perrard F, Gyan E. Efficacy and safety of pegylated-interferon α-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol. 2013;162(6):783-91.

Mascarenhas J, Roper N, Chaurasia P. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin Epigenetics. 2011;2(2):197-212.

Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506-19.

Guerrouahen BS, Al-Hijji I, Tabrizi AR. Osteo­blastic and vascular endothelial niches, their control on normal hematopoietic stem cells, and their consequences on the development of leukemia. Stem Cells Int. 2011;2011:375857.

Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013;24(2):133-45.

Zhao R, Xing S, Li Z. Identification of an ac­quired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280(24):22788-92.

Barbui T, Thiele J, Passamonti F. Initial bone mar­row reticulin fibrosis in polycythemia vera exerts an im­pact on clinical outcome. Blood. 2012;119(10):2239-41.

Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhi­bition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787-98.

Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microen­vironment. Cell Adh Migr. 2014;8(6):563-77.

Le Bousse-Kerdilès MC, Martyré MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Netw. 2008;19(2):69-80.

Sangaletti S, Stoppacciaro A, Guiducci C. Leuko­cyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med. 2003;198(10):1475-85.

Lu M, Xia L, Liu YC. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood. 2015;126(8):972-82.

Machlus KR, Italiano JE Jr Machlus KR. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785-96.

Malara A, Gruppi C, Rebuzzini P. Mega­karyo­cy­te-matrix interaction within bone marrow: new roles for fib­ronectin and factor XIII-A. Blood. 2011;117(8):2476-83.

Melo JV, Goldman JM. Hematologic maligna­ncies: myeloproliferative disorders. Springer:New York. 2014;354.

Arranz L, Sánchez-Aguilera A, Martín-Pérez D. Neu­ropathy of haematopoietic stem cell niche is essential for mye­loproliferative neoplasms. Nature. 2014;512(7512):78-81.

Kvasnicka HM, Orazi A, Thiele J. Net study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;7.

Cervantes F, Dupriez B, Pereira A. New progno­stic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895-901.

Gupta V, Koschmieder S, Claire N. Phase 1b Dose-Escalation Study of Sonidegib (LDE225) in Com­bination with Ruxolitinib (INC424) in Patients with Myelofibrosis. Blood. 2014;124(21):712.

Ciurea SO, Merchant D, Mahmud N. Pivotal contributions of megakaryocytes to the biology of idio­pathic myelofibrosis. Blood. 2007;110(3):986-93.

Di Buduo CA, Wray LS, Tozzi L. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood. 2015;125(14):2254-64.

Chagraoui H, Komura E, Tulliez M. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofib­rosis in mice. Blood. 2002;100(10):3495-503.

Dillingh MR, van den Blink B, Moerland M. Recombinant human serum amyloid P in healthy volun­teers and patients with pulmonary fibrosis. Pulm Pha­rmacol Ther. 2013;26(6):672-76.

Campbell PJ, Bareford D, Erber WN. Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol. 2009;27(18):2991-9.

Alchalby H, Yunus DR, Zabelina T. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol. 2012;157(1):75-85.

Katayama Y, Battista M, Kao WM. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407-21.

Silver RT, Vandris K, Goldman JJ. Recombinant int­er­feron-α may retard progression of early primary myelo­fibrosis: a preliminary report. Blood. 2011;117(24):6669-72.

Klampfl T, Gisslinger H, Harutyunyan AS. So­matic mutations of calreticulin in myeloproliferative neo­plasms. N Engl J Med. 2013;369(25):2379-90.

Adams GB, Chabner KT, Alley IR. Stem cell engraftment at the endosteal niche is specified by the cal­cium-sensing receptor. Nature. 2006;439(7076):599-603.

Abdulkarim K, Ridell B, Johansson P. The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera. Eur J Haematol. 2011;86(2):148-55.

Kopp HG, Avecilla ST, Hooper AT. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005;20:349-56.

Gianelli U, Vener C, Bossi A. The European Con­sensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mol Pathol. 2012;25(9):1193-202.

Frantz C, Stewart KM, Weaver VM. The extra­cel­lular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195-200.

Guglielmelli P, Lasho TL, Rotunno G. The number of prognostically detrimental mutations and prog­nosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804-10.

Leiva O, Ng SK, Chitalia S. The role of the extra­cellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7(2):525.

Chachoua I, Pecquet C, El-Khoury M. Thrombo­poietin receptor activation by myeloproliferative neo­plasm associated calreticulin mutants. Blood. 2016;127(10):1325-33.

Abbonante V, Di Buduo CA, Gruppi C. Throm­bopoietin/TGF-β1 loop regulates megakaryocyte extra­cellular matrix component synthesis. Stem Cells. 2016;34(4):1123-33.

Muth M, Engelhardt BM, Kröger N. Thrombo­spondin-1 (TSP-1) in primary myelofibrosis (PMF) – a megakaryocyte-derived biomarker which largely dis­criminates PMF from essential thrombocythemia. Ann Hematol. 2011;90(1):33-40.

Roberts AB, Sporn MB, Assoian RK. Trans­forming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167-71.

Martinelli G, Oehler VG, Papayannidis C. Treat­ment with PF-04449913, an oral smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study. Lancet Haematol. 2015;2(8):339-46.

Wilson A, Trumpp A. Bone-marrow haemato­poie­tic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93-106.

Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210.

Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195-201.

How to Cite

1.
Timchenko AS, Zalessky VN. Bone marrow fibrosis – the basis of mielofibrosis: pathogenesis, prognostication and antifibrogenic targeted strategies. Med. perspekt. [Internet]. 2018Apr.2 [cited 2024Apr.26];23(1):121-33. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/124952

Issue

Section

REVIEW ARTICLES