Role of gut microbiota in the pathogenesis of type 2 diabetes mellitus (literature review)

Authors

DOI:

https://doi.org/10.26641/2307-0404.2021.4.248064

Keywords:

type 2 diabetes mellitus, gut microbiota, gut microbiota metabolites, incretins, subclinical inflammation

Abstract

Type 2 diabetes mellitus is an extremely common disease that leads to the development of life-threatening complications but its pathogenesis remains poorly understood. One of the promising directions in this area is the study of disorders of gut microbiota. Literature data indicate that a number of quantitative and qualitative changes in the composition of the gut microbiota are the most important factors in the pathogenesis of type 2 diabetes mellitus. Bacteria of the genera Ruminococcus, Fusobacterium and Blautia are most involved in the pathogenesis of this disease. The participation of the gut microbiota in the pathogenesis of type 2 diabetes mellitus is due to its metabolites, which play an important role in the regulation of the permeability and integrity of the intestinal wall, the expression of specific intestinal receptors, incretin secretion, gluconeogenesis activity, chronic subclinical inflammation, and even in adipose tissue remodeling. Further in-depth study of gut microbiota disorders is promising in order to develop fundamentally new approaches to the treatment and prevention of type 2 diabetes mellitus.

References

Belousova ON, Sirotina SS, Yakunchenko TI, Zhernakova NI. [Molecular and genetic mechanisms of the pathogenesis of type 2 diabetesmellitus]. Nauchnyie vedomosti BelGU. Ser. Meditsina. Farmatsiya. 2015;16(213):12-19. Russian. Available from: http://dspace.bsu.edu.ru/handle/123456789/23761

Koval SM, Yushko KO, Snihurska IO. [Gut microbiota and hypertension (a literature review]. Zaporozhskii meditsinskii zhurnal. 2020.22(4):561-67. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2020.4.208409

Lyzogub VG, Kramarova VN, Melnychuk IO. [Role of intestinal microbiota changes in cardiovascular diseases pathogenesis (a literature review]. Zaporozhskii meditsinskii zhurnal. 2019.21(116):672-678. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2019.5.179462

[Type 2 diabetes mellitus: from theory to practice], editors I.I. Dedova, M.V. Shestakova. Moskva: OOO "Izdatelstvo "Meditsinskoe informatsionnoe agenstvo; 2016. р. 576. Russian.

Fadeenko GD, Gridnev AE. [Irritable bowel syndrome and gut microbiome. From pathogenetic mecha¬nisms to treatment]. Gastroenterologiya. 2018.52(4):24-29. Russian.

Allin KH, Tremaroli V, Caesar R, Jensen BAH, Damgaard MTF, Bahl MI, et al. Aberrant intestinal microbiota in individuals with prediabetes. Diabetologia. 2018;61:810-20. doi: https://doi.org/10.1007/s00125-018-4550-1

Zhang L, Qin Q, Liu M, Zhang X, He F, Guoqing Wang G, et al. Akkermansia muciniphila can reduce the damage of gluco/lipotoxicity, oxidative stress and inflammation, and normalize intestine microbiota in strepto¬zotocin-induced diabetic rats. Pathog and Dis. 2018;76(4). doi: https://doi.org/10.1093/femspd/fty028

Tian P, Li B, He C, Song W, Hou A, Tian S, et al. Antidiabetic (type 2) effects of lactobacillus G15 and Q14 in rats through regulation of intestinal permeability and microbiota. Food Funct. 2016;7:3789-97. doi: https://doi.org/10.1039/c6fo00831c

Grasset E, Puel A, Charpentier J, Collet X, Chris¬tensen JE, Terci F, et al. A specific gut microbiota dysbiosis of type 2 diabetic mice induces GLP-1 resistance through an enteric NO-dependent and gut-brain axis mechanism. Cell Metab. 2017;26:278. doi: https://doi.org/10.1016/j.cmet.2017.06.003

Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig. 2018;9:5-12. doi: https://doi.org/10.1111/jdi.12673

Aydin W, Nieuwdorp M, Gerdes V. The gut microbiome as a target for the treatment of type 2 diabetes. Curr Diab Rep. 2018;18(8):55. doi: https://doi.org/10.1007/s11892-018-1020-6

Bleau C, Karelis AD, St-Pierre DH, Lamontagne L. Crosstalk between intestinal microbiota, adipose tissue and skeletal muscle as an early event in systemic low-grade inflammation and the development of obesity and diabetes. Diabetes Metab Res Rev. 2015;31:545-61. doi: https://doi.org/10.1002/dmrr.2617

Murphy R Rinki Murphy, Tsai P, Jmllig M, Liu A, Plank L, Booth M. Differential changes in gut microbiota after gastric bypass and sleeve gastrectomy bariatric surgery vary according to diabetes remission. Obes Surg. 2017;27:917-25. doi: https://doi.org/10.1007/s11695-016-2399-2

Faerch K, Torekov SS, Vistisen D, Johansen NB, Witte DR, Jonsson A, et al. GLP-1 response to oral glu¬cose is reduced in prediabetes, screen-detected type 2 diabetes, and obesity and influenced by sex: the ADDITION-PRO study. Diabetes. 2015;64:2513-25. doi: https://doi.org/10.2337/db14-1751

McNelis JC, Lee YS, Mayoral R, van der Kant R, Johnson AM, Wollam J, et al. GPR43 potentiates beta-cell function in obesity. Diabetes. 2015;64:3203-17. doi: https://doi.org/10.2337/db14-1938

Grard C, Vidal H. Impact of Gut Microbiota on Host Glycemic Control. Front Endocrinol (Lausanne). 2019;30:10-29. doi: https://doi.org/10.3389/fendo.2019.00029

Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, et al. Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science. 2018;359:1151-6. doi: https://doi.org/ 10.1126/science.aao5774

Harsch IA, Konturek PC. The role of gut microbiota in obesity and type 2 and type 1 diabetes mellitus: new insights into “Old” diseases. Med Sci. 2018;6:E32. doi: https://doi.org/10.3390/medsci6020032

Hulston CJ, Churnside AA, Venables MC. Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br J Nutr. 2015;113(4):596-602. doi: https://doi.org/10.1017/S0007114514004097

Dagdeviren S, Jung DY, Friedline RH, Noh HL, Kim JH, Patel PR et al. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle. FASEB J. 2017 Feb;31(2):701-10. doi: https://doi.org/10.1096/fj.201600832R

Simon MC, Strassburger K, Nowotny B, Kolb H, Nowotny P, Burkart V, et al. Intake of lactobacillus reuteri improves incretin and insulin secretion in glucose-tolerant humans: a proof of concept.Diabetes Care. 2015;38(10):1827-34.

doi: https://doi.org/10.2337/dc14-2690

Pathak P, Xie C, Nichols RG, Ferrell JM, Boehme S, Krausz KW, et al. Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology. 2018;68:1574-88. DOI: https://doi.org/10.1002/hep.29857

Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi J, et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166. doi: https://doi.org/10.1038/ncomms10166

Yang M, Fukui H, Eda H, Kitayama Y, Hara K, Kodani M, et al. Involvement of gut microbiota in the association between gastrointestinal motility and 5HT expression/M2 macrophage abundance in the gastrointestinal tract. Mol Med Rep. 2017;16:3482-8. doi: https://doi.org/10.3892/mmr.2017.6955

Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332-45. doi: https://doi.org/10.1016/j.cell.2016.05.041

Koval S, Iushko K, Starchenko T. The relations of apelin with the carbohydrate metabolism in hypertensive patients with type 2 diabetes or without it. Endocrine Abstracts 19th European Congress of ndocrinology Lisbon, Portugal; 2017 May 20-23;49:458. doi: https://doi.org/10.1530/endoabs.49.EP458

Koval S, Snigurska I, Grozna L, Bozhko V. Features changes blood levels adiponektin in patients with essential hypertension and obesity and impaired glucose tolerance. Journal of Hypertension. 2014;32(e-Suppl.1):362.

Sun KY, Xu D-H, Xie C, Plummer S, Tang J, Yang XF, Ji XH. Lactobacillus paracasei modulates LPS-induced inflammatory cytokine release by monocyte-macrophages via the up-regulation of negative regulators of NF-kappaB signaling in a TLR2-dependent manner. Cytokine. 2017;92:1-11. doi: https://doi.org/10.1016/j.cyto.2017.01.003

Liu WC, Yang M-C, Wu Y-Y, Chen P-H, Hsu C-M, Chen L-W. Lactobacillus plantarum reverse diabetes-induced Fmo3 and ICAM expression in mice through enteric dysbiosis-related c-Jun NH2-terminal kinase pathways. PloS ONE. 2018;13(5):e0196511. doi: https://doi.org/10.1371/journal.pone.0196511

Breyner NM, Michon C, de Sousa CS, Boas PBV, Chain F, Azevedo V A et al. Microbial anti-inflammatory molecule (MAM) from faecalibacterium prausnitzii shows a protective effect on DNBS and DSS-Induced colitis model in mice through inhibition of NF-kappaB pathway. Front Microbiol. 2017;8:114. doi: https://doi.org/10.3389/fmicb.2017.00114

Suarez-Zamorano N, Fabbiano S, Chevalier C, Stojanovic O, Colin DJ, Stevanovic A, et al. Microbiota depletion promotes browning of white adipose tissue and reduces obesity. Nat Med. 2015;21:1497-501. doi: https://doi.org/10.1038/nm.3994

Pichette J, Fynn-Sackey N, Gagnon J. Hydrogen sulfide and sulfate prebiotic stimulates the secretion of GLP-1 and improves glycemia in male mice. Endocrinology. 2017;158:3416-25. doi: https://doi.org/10.1210/en.2017-00391

He Y, Wu W, Zheng HM, Li P, McDonald D, Sheng H-F, et al. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med. 2018;24(10):1532-5. doi: https://doi.org/10.1038/s41591-018-0164-x

Koval SM, Yushko KO, Snihurska IO, Starchenko TG, Pankiv IV, Lytvynova OM, Mysnychenko OV. Relations of angiotensin-(1-7) with hemodynamic and cardiac structural and functional parameters in patients with hypertension and type 2 diabetes. Arterial Hypertens. 2019;23(3):183-9. doi: https://doi.org/10.5603/AH.a2019.0012

Bala V, Rajagopal S, Kumar DP, Nalli AD, Mahavadi S, Sanyal AJ, et al. Release of GLP-1 and PYY in response to the activation of G protein-coupled bile acid receptor TGR5 is mediated by Epac/PLC-epsilon pathway and modulated by endogenous H2S. Front Physiol. 2014;5:420. doi: https://doi.org/10.3389/fphys.2014.00420

Gurung M, Li Z, You H, Rodrigues R, Jump DB, Morgun A, Shulzhenko N. Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 2020;51:102590. doi: https://doi.org/10.1016/j.ebiom.2019.11.051

Zhu C, Song K, Shen Z, Quan Y, Tan B, Luo W, Wu S, Tang K, Yang Z, Wang X. Roseburia intestinalis inhibits interleukin‑17 excretion and promotes regulatory T cells differentiation in colitis. Molecular medicine reports. 2018;17(6):7567-74. doi: https://doi.org/10.3892/mmr.2018.8833

Priyadarshini M, Wicksteed B, Schiltz GE, Gilchrist A, Layden BT. SCFA receptors in pancreatic beta cells: novel diabetes targets? Trends Endocrinol Metab. 2016;27:653-64. doi: https://doi.org/10.1016/j.tem.2016.03.011

Shapiro H, Kolodziejczyk AA, Halstuch D, Elinav E. Bile acids in glucose metabolism in health and disease. J Exp Med. 2018;215:383-96. doi: https://doi.org/10.1084/jem.20171965

Xu YH, Gao CL, Guo HL, Zhang WQ, Huang W, Tang SS , Gan WJ, Xu Y, Zhou H, Zhu Q. Sodium butyrate supplementation ameliorates diabetic inflammation in db/db mice. J Endocrinol. 2018;238(3):231-44. doi: https://doi.org/10.1530/JOE-18-0137

Stange EF. Gut microbiome, metabolic syndrome, and atherosclerosis. In: The ESC Textbook of Cardiovascular Medicine. Third edition. Edited by: A. John Camm, Thomas F. Luscher, Gerald Mauer, Patrick W.Serruys. OXFORD University press. 2019;1082-5.

Tong X, Xu J, Lian F, Yu X, Zhao Y, Xu L, et al. Structural alteration of gut microbiota during the amelioration of human type 2 diabetes with hyperlipidemia by metformin and a traditional Chinese herbal formula: a multicenter, randomized, open label clinical trial. MBio. 2018;9(3):e02392-17. doi: https://doi.org/10.1128/mBio.02392-17

Kim M, Furuzono T, Yamakuni K, Li Y, Kim YI, Takahashi H, et al. 10-oxo-12(Z)-octadecenoic acid, a linoleic acid metabolite produced by gut lactic acid bacteria, enhances energy metabolism by activation of TRPV1. FASEB J. 2017;31:5036-48. doi: https://doi.org/10.1096/fj.201700151R

Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC, et al. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes. 2015.39:424-9. doi: https://doi.org/10.1038/ijo.2014.153

Torres S, Fabersani E, Marquez A, Gauffin-Cano P. Adipose tissue inflammation and metabolic syndrome. The proactive role of probiotics. Eur J Nutr. 2019;58(1):27-43.

doi: https://doi.org/10.1007/s00394-018-1790-2

Cosentino F, Grant PJ, Aboyans V, Bailey CJ, Ceriello A, Delgado V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD: The Task Force for diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC) and the European Association for the Study of Diabetes (EASD). European Heart Journal. 2020.41(2):255-323. doi: https://doi.org/10.1093/eurheartj/ehz486

Published

2021-12-20

How to Cite

1.
Koval S, Snihurska I. Role of gut microbiota in the pathogenesis of type 2 diabetes mellitus (literature review). Med. perspekt. [Internet]. 2021Dec.20 [cited 2024May19];26(4):22-30. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/248064

Issue

Section

THEORETICAL MEDICINE