Pharmacogenetic substantiation of personalized prescription of oral anticoagulants in clinical practice

Authors

DOI:

https://doi.org/10.26641/2307-0404.2023.1.275870

Keywords:

anticoagulants, thrombosis, warfarin, rivaroxaban, apixaban, clopidogrel, genes, inhibitors

Abstract

Thromboembolic diseases are of great clinical concern because of their high prevalence and consequences, which are often fatal. Despite significant progress in the prevention and treatment of thrombotic events, patients remain at risk of life-threatening bleeding episodes and other side effects arising from anticoagulant therapy, so the issue of personalizing prescriptions taking into account the genetic characteristics of patients has become urgent. The purpose of the study is to substantiate the need for patient genotype analysis in order to increase the effectiveness and safety of individual pharmacotherapy. The article has a conceptual nature, therefore the following research methods were chosen: systematization and generalization; analysis and specification; abstract and logical. For the search, we used PubMed, PubMedCentral, Google Scholar, dbSNP, Elsevier, Springer from September 2000 to November 2022. The review included studies written in English and Ukrainian. There were analyzed literature data on two main subclasses of oral antithrombotic agents, including oral anticoagulants and antiplatelet agents, namely warfarin, apixaban, rivaroxaban, and clopidogrel. Prognostically significant for evaluating the effectiveness and safety of anticoagulant use, as well as the most studied in this aspect, are CYP2C9 (rs1799853, rs1057910), CYP2C19 (rs4244285, rs4986893, rs12248560), VKORC1 (rs9923231, rs7294, rs9934438), MDR1 (rs4148738, rs2032582, rs1045642), FGB (rs1800787), PAI-1 (rs1799889) genes. The results of CYP2B6, CYP3A4/5 (rs776746), CYP4F2 (rs2108622) genes analysis indicate a certain influence on the anticoagulants metabolism and require further detailed study. Factors such as age, race, sex, smoking, diet, and other medications are known to influence the effectiveness of antithrombotic therapy, but the most influential factor is genetics, which accounts a significant percentage of interindividual variability. Future research should focus on the study of known and novel genetic variants that influence drug metabolism, as well as the molecular mechanisms that contribute to changes in plasma anticoagulant levels. The article provides a brief overview of action mechanisms, pharmacogenetics, and interactions between drugs and the genes responsible for their metabolism. The results indicate the need for studies of gene variants considered in this review before starting anticoagulant therapy, and attention should also be paid to the possibility of inhibitors and inductors influence on components of the metabolic pathway of anticoagulants and gene expression products that participate in their metabolism. The totality of these measures will ensure an increase in the efficiency and safety of individual pharmacotherapy and allow optimizing the choice and dosage of anticoagulants.

References

Iaccarino A, Frati G, Schirone L, Saade W, Iovi-ne E, D'Abramo M, et al. Surgical embolectomy for acute massive pulmonary embolism: state of the art. J Thorac Dis. 2018 Aug;10(8):5154-61. doi: https://doi.org/10.21037/jtd.2018.07.87

Barco S, Valerio L, Ageno W, Cohen AT, Goldhaber SZ, Hunt BJ, et al. Age-sex specific pulmonary embolism-related mortality in the USA and Canada, 2000-18: an analysis of the WHO Mortality Database and of the CDC Multiple Cause of Death database. Lancet Respir Med. 2021 Jan;9(1):33-42. doi: https://doi.org/10.1016/S2213-2600(20)30417-3

Gupta N, Zhao YY, Evans CE. The stimulation of thrombosis by hypoxia. Thromb Res. 2019 Sep;181:77-83. doi: https://doi.org/10.1016/j.thromres.2019.07.013

Ansell J, Hirsh J, Hylek E, Jacobson A, Cro-wther M, Palareti G. Pharmacology and management of the vitamin K antagonists: American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008 Jun;133(6 Suppl):160S-98S. doi: https://doi.org/10.1378/chest.08-0670

Panibratyuk OA, Yakovleva OO. [Determination of genetic polymorphism CYP2C9 against the background of warfarin prescription in patients with coronary heart disease complicated by permanent form of atrial fibrillation]. International Academy Journal Web of Scholar. 2020;1(43):40-2. Ukrainian. doi: https://doi.org/10.31435/rsglobal_wos/31012020/6888

Kanuri SH, Kreutz RP. Pharmacogenomics of Novel Direct Oral Anticoagulants: Newly Identified Genes and Genetic Variants. J Pers Med. 2019 Jan 17;9(1):7. doi: https://doi.org/10.3390/jpm9010007

Thachil J. The newer direct oral anticoagulants: a practical guide. Clin Med (Lond). 2014 Apr;14(2):165-75. doi: https://doi.org/10.7861/clinmedicine.14-2-165

Tarasenko SO, Dubrov SO, Suslov GG, Maznichenko VA. [Anticoagulant and antiplatelet therapy over perioperative period]. Pain, anaesthesia & intensive care. 2021;1:65-77. Ukrainian. doi: https://doi.org/10.25284/2519-2078.1(94).2021.230618

Меretskyi VМ, Меretska ІV. [Application of a new peroral anticoagulants in treatment and prophylaxis of thromboembolic complications]. Klinichna khirurhiia. 2019;86(6):73-6. Ukrainian. doi: https://doi.org/10.26779/2522-1396.2019.06.73

Burn J, Pirmohamed M. Direct oral anticoagulants versus warfarin: is new always better than the old? Open Heart. 2018 Feb 7;5(1):e000712. doi: https://doi.org/10.1136/openhrt-2017-000712

Gill K, Servati N, Flahive J, Fraielli K. Safety and Efficacy of Triple Therapy With Ticagrelor or Prasugrel Versus Clopidogrel After Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. J Cardiovasc Pharmacol Ther. 2021 Nov;26(6):625-9. doi: https://doi.org/10.1177/10742484211031436

Akkaif MA, Daud NA, Sha'aban A, Ng ML, Ab-dul Kader MA, Noor DA, et al. The Role of Genetic Polymorphism and Other Factors on Clopidogrel Re-sistance (CR) in an Asian Population with Coronary Heart Disease (CHD). Molecules. 2021 Apr 1;26(7):1987. doi: https://doi.org/10.3390/molecules26071987

Drozda K, Pacanowski MA, Grimstein C, Zineh I. Pharmacogenetic Labeling of FDA-Approved Drugs: A Regulatory Retrospective. JACC Basic Transl Sci. 2018 Aug 28;3(4):545-9. doi: https://doi.org/10.1016/j.jacbts.2018.06.001

Johnson JA, Cavallari LH. Warfarin pharmaco-genetics. Trends Cardiovasc Med. 2015 Jan;25(1):33-41. doi: https://doi.org/10.1016/j.tcm.2014.09.001

Cîmpan PL, Chira RI, Mocan M, Anton FP, Far-caş AD. Oral Anticoagulant Therapy-When Art Meets Science. J Clin Med. 2019 Oct 21;8(10):1747. doi: https://doi.org/10.3390/jcm8101747

Theken KN, Lee CR, Gong L, Caudle KE, For-mea CM, Gaedigk A, et al. Clinical Pharmacogenetics Implementation Consortium Guideline (CPIC) for CYP2C9 and Nonsteroidal Anti-Inflammatory Drugs. Clin Pharmacol Ther. 2020 Aug;108(2):191-200. doi: https://doi.org/10.1002/cpt.1830

Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011 Oct;90(4):625-9. doi: https://doi.org/10.1038/clpt.2011.185

Fekete F, Mangó K, Déri M, Incze E, Minus A, Monostory K. Impact of genetic and non-genetic factors on hepatic CYP2C9 expression and activity in Hungarian subjects. Sci Rep. 2021 Aug 24;11(1):17081. doi: https://doi.org/10.1038/s41598-021-96590-3

Sangkuhl K, Claudio-Campos K, Cavallari LH, Agundez JA, Whirl-Carrillo M, Duconge J, et al. PharmVar GeneFocus: CYP2C9. Clin Pharmacol Ther. 2021 Sep;110(3):662-76. doi: https://doi.org/10.1002/cpt.2333

Owen RP, Gong L, Sagreiya H, Klein TE, Altman RB. VKORC1 pharmacogenomics summary. Pharmacogenet Genomics. 2010 Oct;20(10):642-4. doi: https://doi.org/10.1097/FPC.0b013e32833433b6

Dong AN, Tan BH, Pan Y, Ong CE. Cytochrome P450 genotype-guided drug therapies: An update on current states. Clin Exp Pharmacol Physiol. 2018 Oct;45(10):991-1001. doi: https://doi.org/10.1111/1440-1681.12978

D'Andrea G, D'Ambrosio RL, Di Perna P, Chet-ta M, Santacroce R, Brancaccio V, et al. A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood. 2005 Jan 15;105(2):645-9. doi: https://doi.org/10.1182/blood-2004-06-2111

Kocael A, Eronat AP, Tüzüner MB, Ekmekçi A, Orhan AL, İkizceli İ, et al. Interpretation of the effect of CYP2C9, VKORC1 and CYP4F2 variants on warfarin dosing adjustment in Turkey. Mol Biol Rep. 2019 Apr;46(2):1825-33. doi: https://doi.org/10.1007/s11033-019-04634-9

Maliarchuk IV, Horovenko NH, inventors; Institute of Genetic and Regenerative Medicine NAMS of Ukraine, patent holder. [The method of an individual approach to the warfarin dosage regimen during anti-coagulant therapy]. Patent of Ukraine N u90521. 2014 May 26. Ukrainian.

Li D, Zhang X, Huang H, Zhang H. Association of β-fibrinogen polymorphisms and venous thromboem-bolism risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore). 2019 Nov;98(48):e18204. doi: https://doi.org/10.1097/MD.0000000000018204

Canseco-Avila LM, Lopez-Roblero A, Serrano-Guzman E, Aguilar-Fuentes J, Jerjes-Sanchez C, Rojas-Martinez A, et al. Polymorphisms -455G/A and -148C/T and Fibrinogen Plasmatic Level as Risk Markers of Coronary Disease and Major Adverse Cardiovascular Events. Dis Markers. 2019 Jul 1;2019:5769514. doi: https://doi.org/10.1155/2019/5769514

Tsymbaliuk VI, Vasylieva IG, Kostiuk MR, Chopyk NG, Galanta OS, Tsiubko OI, et al. [Analysis of the association of FGB, MTHFR, MTR, MTRR gene poly-morphic loci with the risk of developing ischemic and hemorrhagic strokes]. Zaporozhye medical journal. 2020;4(121):459-67. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2020.4.208354

Sun Y, Li Q, Liu W, Zhang B. Relationship bet-ween fibrinogen level and its regulatory gene with Alzheimer's disease and vascular dementia. J Int Med Res. 2020 Feb;48(2):300060520902578. doi: https://doi.org/10.1177/0300060520902578

Potapov OO, Kmyta OP, Tsyndrenko OO, Khav-ro MP, Bereznyi TV, Karpeko IO. [Changes in the plasma level of plasminogen activator inhibitor-1 in patients with cranio-cerebral trauma depending on body weight and PAI-1 -675 4G/5G gene polymorphism]. Zaporozhye medical journal. 2019;1(112):44-8. Ukrainian. doi: https://doi.org/10.14739/2310-1210.2019.1.155802

Zhang Q, Jin Y, Li X, Peng X, Peng N, Song J, et al. Plasminogen activator inhibitor-1 (PAI-1) 4G/5G promoter polymorphisms and risk of venous thromboembolism – a meta-analysis and systematic review. Vasa. 2020 Mar;49(2):141-6. doi: https://doi.org/10.1024/0301-1526/a000839

Li J, Yang W, Xie Z, Yu K, Chen Y, Cui K. Impact of VKORC1, CYP4F2 and NQO1 gene variants on warfarin dose requirement in Han Chinese patients with catheter ablation for atrial fibrillation. BMC Cardiovasc Disord. 2018 May 18;18(1):96. doi: https://doi.org/10.1186/s12872-018-0837-x

Dehkordi MF, Mafakher L, Samiee-Rad F, Rahmani B. Computational analysis of missense variant CYP4F2*3 (V433M) in association with human CYP4F2 dysfunction: A functional and structural impact. Research Square; 2022. doi: https://doi.org/10.21203/rs.3.rs-2154240/v1

Naushad SM, Kutala VK, Hussain T, Alrokayan SA. Pharmacogenetic determinants of warfarin in the Indian population. Pharmacol Rep. 2021 Oct;73(5):1396-404. doi: https://doi.org/10.1007/s43440-021-00297-1

Danese E, Raimondi S, Montagnana M, Tagetti A, Langaee T, Borgiani P, et al. Effect of CYP4F2, VKORC1, and CYP2C9 in Influencing Coumarin Dose: A Single-Patient Data Meta-Analysis in More Than 15,000 Individuals. Clin Pharmacol Ther. 2019 Jun;105(6):1477-91. doi: https://doi.org/10.1002/cpt.1323

Deedwania P, Huang GW. An evidence-based review of apixaban and its potential in the prevention of stroke in patients with atrial fibrillation. Core Evid. 2012;7:49-59. doi: https://doi.org/10.2147/CE.S25637

Huppertz A, Grond-Ginsbach C, Dumschat C, Foerster KI, Burhenne J, Weiss J, et al. Unexpected exces-sive apixaban exposure: case report of a patient with polymorphisms of multiple apixaban elimination pathways. BMC Pharmacol Toxicol. 2019 Aug 29;20(1):53. doi: https://doi.org/10.1186/s40360-019-0331-9

Ueshima S, Hira D, Kimura Y, Fujii R, Tomit-suka C, Yamane T, et al. Population pharmacokinetics and pharmaco¬genomics of apixaban in Japanese adult patients with atrial fibrillation. Br J Clin Pharmacol. 2018 Jun;84(6):1301-12. doi: https://doi.org/10.1111/bcp.13561

Martins E, Silva V, Lemos A, Palmeira A, Puthongking P, et al. Newly Synthesized Oxygenated Xant¬hones as Potential P-Glycoprotein Activators: In Vitro, Ex Vivo, and In Silico Studies. Molecules. 2019 Feb 15;24(4):707. doi: https://doi.org/10.3390/molecules24040707

Baba SM, Pandith AA, Shah ZA, Geelani SA, Mir MM, Bhat JR, et al. Impact of ABCB1 Gene (C3435T/A2677G) Polymorphic Sequence Variations on the Outcome of Patients with Chronic Myeloid Leukemia and Acute Lymphoblastic Leukemia in Kashmiri Population: A Case-Control Study. Indian J Hematol Blood Transfus. 2021 Jan;37(1):21-9. doi: https://doi.org/10.1007/s12288-020-01289-6

Cohen AT, Bauersachs R. Rivaroxaban and the EINSTEIN clinical trial programme. Blood Coagul Fibrinolysis. 2019 Apr;30(3):85-95. doi: https://doi.org/10.1097/MBC.0000000000000800

Vimalesvaran K, Dockrill SJ, Gorog DA. Role of rivaroxaban in the management of atrial fibrillation: insights from clinical practice. Vasc Health Risk Manag. 2018 Jan 9;14:13-21. doi: https://doi.org/10.2147/VHRM.S134394

Ašić A, Marjanović D, Mirat J, Primorac D. Pharmacogenetics of novel oral anticoagulants: a review of identified gene variants & future perspectives. Per Med. 2018 May 1;15(3):209-21. doi: https://doi.org/10.2217/pme-2017-0092

Sennesael AL, Panin N, Vancraeynest C, Pochet L, Spinewine A, Haufroid V, et al. Effect of ABCB1 genetic polymorphisms on the transport of rivaroxaban in HEK293 recombinant cell lines. Sci Rep. 2018 Jul 12;8(1):10514. doi: https://doi.org/10.1038/s41598-018-28622-4

Kreutz R. Pharmacodynamic and pharmacokinetic basics of rivaroxaban. Fundam Clin Pharmacol. 2012 Feb;26(1):27-32. doi: https://doi.org/10.1111/j.1472-8206.2011.00981.x

Lee CR, Luzum JA, Sangkuhl K, Gammal RS, Sabatine MS, Stein CM, et al. Clinical Pharmacogenetics Implementation Consortium Guideline for CYP2C19 Genotype and Clopidogrel Therapy: 2022 Update. Clin Pharmacol Ther. 2022 Nov;112(5):959-67. doi: https://doi.org/10.1002/cpt.2526

Brown SA, Pereira N. Pharmacogenomic Impact of CYP2C19 Variation on Clopidogrel Therapy in Precision Cardiovascular Medicine. J Pers Med. 2018 Jan 30;8(1):8. doi: https://doi.org/10.3390/jpm8010008

Xie HG, Zou JJ, Hu ZY, Zhang JJ, Ye F, Chen SL. Individual variability in the disposition of and response to clopidogrel: pharmacogenomics and beyond. Pharmacol Ther. 2011 Mar;129(3):267-89. doi: https://doi.org/10.1016/j.pharmthera.2010.10.001

Sibbing D, Koch W, Gebhard D, Schuster T, Braun S, Stegherr J, et al. Cytochrome 2C19*17 allelic variant, platelet aggregation, bleeding events, and stent thrombosis in clopidogrel-treated patients with coronary stent placement. Circulation. 2010 Feb 2;121(4):512-8. doi: https://doi.org/10.1161/CIRCULATIONAHA.109.885194

Frére C, Cuisset T, Gaborit B, Alessi MC, Hu-lot JS. The CYP2C19*17 allele is associated with better platelet response to clopidogrel in patients admitted for non-ST acute coronary syndrome. J Thromb Haemost. 2009 Aug;7(8):1409-11. doi: https://doi.org/10.1111/j.1538-7836.2009.03500.x

Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010 Jan;38(1):92-9. doi: https://doi.org/10.1124/dmd.109.029132

Park KW, Kang J, Park JJ, Yang HM, Lee HY, Kang HJ, et al. Amlodipine, clopidogrel and CYP3A5 genetic variability: effects on platelet reactivity and clinical outcomes after percutaneous coronary intervention. Heart. 2012 Sep;98(18):1366-72. doi: https://doi.org/10.1136/heartjnl-2012-301892

Chen F, Zhang J, Bian CX, Zhang J, Xin XB, Pan YY, et al. A Study on the Correlation Between MDR1 Polymorphism and Clopidogrel Resistance in Hui Patients Treated with Percutaneous Coronary Intervention. Int J Gen Med. 2021 Feb 25;14:665-71. doi: https://doi.org/10.2147/IJGM.S293947

Muderrisoglu A, Babaoglu E, Korkmaz ET, Ongun MC, Karabulut E, Iskit AB, et al. Effects of Genetic Polymorphisms of Drug Transporter ABCB1 (MDR1) and Cytochrome P450 Enzymes CYP2A6, CYP2B6 on Nicotine Addiction and Smoking Cessation. Front Genet. 2020 Nov 30;11:571997. doi: https://doi.org/10.3389/fgene.2020.571997

Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and Pharmacodynamics of Approved and Investigational P2Y12 Receptor Antagonists. Clin Pharmacokinet. 2020 May;59(5):545-66. doi: https://doi.org/10.1007/s40262-020-00864-4

Jarrar YB, Lee SJ. Molecular functionality of CYP2C9 polymorphisms and their influence on drug therapy. Drug Metabol Drug Interact. 2014;29(4):211-20. doi: https://doi.org/10.1515/dmdi-2014-0001

Asiimwe IG, Zhang EJ, Osanlou R, Krause A, Dil-lon C, Suarez-Kurtz G, et al. Genetic Factors Influencing Warfarin Dose in Black-African Patients: A Systematic Review and Meta-Analysis. Clin Pharmacol Ther. 2020 Jun;107(6):1420-33. doi: https://doi.org/10.1002/cpt.1755

Pratt VM, Cavallari LH, Del Tredici AL, Hachad H, Ji Y, Kalman LV, et al. Recommendations for Clinical Warfarin Genotyping Allele Selection: A Report of the Association for Molecular Pathology and the College of American Pathologists. J Mol Diagn. 2020 Jul;22(7):847-59. doi: https://doi.org/10.1016/j.jmoldx.2020.04.204

Danese E, Montagnana M, Johnson JA, Rettie AE, Zambon CF, Lubitz SA, et al. Impact of the CYP4F2 p.V433M polymorphism on coumarin dose requirement: systematic review and meta-analysis. Clin Pharmacol Ther. 2012 Dec;92(6):746-56. doi: https://doi.org/10.1038/clpt.2012.184

Khan AR, Raza A, Firasat S, Abid A. CYP3A5 gene polymorphisms and their impact on dosage and trough concentration of tacrolimus among kidney transplant patients: a systematic review and meta-analysis. Pharmacogenomics J. 2020 Aug;20(4):553-62. doi: https://doi.org/10.1038/s41397-019-0144-7

Raymond J, Imbert L, Cousin T, Duflot T, Va-rin R, Wils J, et al. Pharmacogenetics of Direct Oral Anticoagulants: A Systematic Review. J Pers Med. 2021 Jan 11;11(1):37. doi: https://doi.org/10.3390/jpm11010037

Geers LM, Pozhidaev IV, Ivanova SA, Frei-din MB, Schmidt AF, Cohen D, et al. Association between 8 P-glycoprotein (MDR1/ABCB1) gene polymorphisms and antipsychotic drug-induced hyperprolactinaemia. Br J Clin Pharmacol. 2020 Sep;86(9):1827-35. doi: https://doi.org/10.1111/bcp.14288

Saiz-Rodríguez M, Belmonte C, Román M, Ochoa D, Jiang-Zheng C, Koller D, et al. Effect of ABCB1 C3435T Polymorphism on Pharmacokinetics of Antipsychotics and Antidepressants. Basic Clin Pharmacol Toxicol. 2018 Oct;123(4):474-85. doi: https://doi.org/10.1111/bcpt.13031

Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology. 2000 Sep;61(3):174-83. doi: https://doi.org/10.1159/000028398

Chen L, Prasad GV. CYP3A5 polymorphisms in renal transplant recipients: influence on tacrolimus treatment. Pharmgenomics Pers Med. 2018 Mar 7;11:23-33. doi: https://doi.org/10.2147/PGPM.S107710

Zou X, Deng XL, Wang YM, Li JH, Liu L, Huang X, et al. Genetic polymorphisms of high platelet reactivity in Chinese patients with coronary heart disease under clopidogrel therapy. Int J Clin Pharm. 2020 Feb;42(1):158-66. doi: https://doi.org/10.1007/s11096-019-00953-w

Suh JW, Koo BK, Zhang SY, Park KW, Cho JY, et al. Increased risk of atherothrombotic events associated with cytochrome P450 3A5 polymorphism in patients taking clopidogrel. CMAJ. 2006 Jun 6;174(12):1715-22. doi: https://doi.org/10.1503/cmaj.060664

Published

2023-03-30

How to Cite

1.
Bentsionova K, Rossokha Z, Ievseienkova O, Gorovenko N. Pharmacogenetic substantiation of personalized prescription of oral anticoagulants in clinical practice. Med. perspekt. [Internet]. 2023Mar.30 [cited 2024Apr.26];28(1):55-68. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/275870

Issue

Section

THEORETICAL MEDICINE