Automatic determination of a speaker’s gender based on the Cauchy distribution in the octave frequency band

Authors

DOI:

https://doi.org/10.15587/2313-8416.2019.172408

Keywords:

Cauchy distribution, formant frequencies, antiformant frequencies, moment functions, gender recognition

Abstract

Algorithms for recognition of a speaker’s gender based on the use of the Cauchy distribution in the octave frequency band with a geometric mean frequency of 125 Hz are obtained. Classifiers based on the maximum logarithm of the likelihood function are constructed. The algorithm for determining the speaker’s gender is considered, where not only the logarithm of the Cauchy distribution in the octave frequency band is taken into account, but also estimates of the average value of the formant frequencies and the antiformant frequencies. Studies of the probability of correct recognition of the speaker's gender determination algorithms are carried out

Author Biography

Sergey Omelchenko, Kharkiv National University of Radio Electronics Nauky ave., 14, Kharkiv, Ukraine, 61166

PhD, Associate Professor

Department of Information and Network Engineering

References

Kalyuzhnyiy, A. Ya., Semenov, V. Yu. (2009). Metod identifikatsii pola diktora na osnove modelirovaniya akusticheskih parametrov golosa gaussovyimi smesyami. Akustichniy visnik, 12 (2), 31–38.

Scheme, E., Castillo-Guerra, E., Englehart, K., Kizhanatham, A. (2006). Practical Considerations for Real-Time Implementation of Speech-Based Gender Detection. Progress in Pattern Recognition, Image Analysis and Applications. Berlin, Heidelberg: Springer, 426–436. doi: http://doi.org/10.1007/11892755_44

Pribil, J., Pribilova, A., Matousek, J. (2016). GMM-based speaker gender and age classification after voice conversion. 2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE). IEEE, 1–5. doi: http://doi.org/10.1109/splim.2016.7528391

Omelchenko, S. (2018). Development of the method of automatic determination of the speaker gender on the basis of joint evaluation of frequency moments of basic tons and formant frequencies. Technology Audit and Production Reserves, 3 (2 (41)), 29–33. doi: http://doi.org/10.15587/2312-8372.2018.134977

Buyukyilmaz, M., Cibikdiken, A. O. (2016). Voice Gender Recognition Using Deep Learning. Proceedings of 2016 International Conference on Modeling, Simulation and Optimization Technologies and Applications (MSOTA2016). Atlantis Press, 409–411. doi: http://doi.org/10.2991/msota-16.2016.90

Levitan, S. I., Mishra, T., Bangalore, S. (2016). Automatic identification of gender from speech. Proceeding of Speech Prosody, 84–88. doi: http://doi.org/10.21437/speechprosody.2016-18

Faek, F. (2015). Objective Gender and Age Recognition from Speech Sentences. Aro, The Scientific Journal of Koya University, 3 (2), 24–29. doi: http://doi.org/10.14500/aro.10072

Harb, H., Liming, C. (2003). Gender identification using a general audio classifier. 2003 International Conference on Multimedia and Expo. ICME’03. Proceedings (Cat. No.03TH8698). IEEE. doi: http://doi.org/10.1109/icme.2003.1221721

Sorokin, V. N., Makarov, I. S. (2008). Opredelenie pola diktora po golosu. Akusticheskiy zhurnal, 54 (4), 659–668.

Zeng, Y., Wu, Z., Falk, T., Chan, W. (2006). Robust GMM Based Gender Classification using Pitch and RASTA-PLP Parameters of Speech. 2006 International Conference on Machine Learning and Cybernetics. Dalian, 2006. P. 3376–3379. doi: https://doi.org/10.1109/icmlc.2006.258497

Presniakov, I. N., Omel'chenko, S. V. (2003). Pomehoustoichivye algoritmy segmentacii rechi v sistemah obrabotki [Interference-free speech segmentation algorithms in processing systems]. Radiotehnika. Vseukrainskii mezhvedomstvennyi nauchno-tehnicheskii sbornik, 131, 165–173.

Published

2019-07-16

Issue

Section

Technical Sciences