DOI: https://doi.org/10.15587/2313-8416.2015.36332

Transfer of heat by phonons in Landauer-Datta-Lundstrom transport model

Юрій Олексійович Кругляк

Abstract


On the basis of Landauer-Datta-Lundstrom transport model the generalized model of heat transfer by phonons is formulated. Similarly to the Fermi window for electron conductivity the concept of the Fermi window for phonon conductivity is introduced and used to obtain the general expression for the lattice thermal conductivity with the quantum of thermal conductivity appearing at the very beginning. There are emphasized the similarity and differences in the construction of the theory of electron conductivity and the theory of heat conduction


Keywords


nanophysics; nanoelectronics; phonon transport; thermal conductivity quantum; transmission coefficient; phonon modes; Debye model; phonon scattering

References


Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, 15. doi: 10.1155/2014/725420

Kruglyak, Yu. A. (2014). A Generalized Landauer-Datta-Lundstrom Electron Transport Model. Russian Journal of Physical Chemistry, 88 (11), 1826–1836. doi: 10.1134/s0036024414110119

Ziman, J. M. (1960). Electrons and phonons. The theory of transport phenomena in solids. Oxford at the Clarendon Press, Oxford, 488.

Ziman, J. M. (1964). Principles of the theory of solids. Cambridge University Press, Cambridge, 472.

Kittel, C. (1971). Introduction to solid state physics, 4th ed. John Wiley and Sons, New York, 791.

Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 486.

Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., Thomsen, C. (2007). Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B, 76 (3), 035439/7. doi: 10.1103/physrevb.76.035439

Eletskii, A. V., Iskandarova, I. M., Knizhnik, A. A., Krasikov, D. N. (2011). Graphene: fabrication methods and thermophysical properties. Physics Uspekhi, 54, 227–258. doi: 10.3367/UFNe.0181.201103a.0233

Katsnelson, M. I. (2012). Graphene: Carbon in Two Dimensions. New York: Cambridge University Press. doi: 10.1017/cbo9781139031080

Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, 12 (2), 415.

Schwab, K., Henriksen, E. A., Worlock, J. M., Roukes, M. L. (2000). Measurement of the quantum of thermal conductance. Nature, 404, 974.

Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120

Lundstrom, M. (2012). Fundamentals of Carrier Transport. Cambridge UK: Cambridge University Press.

Jeong, C., Datta, S., Lundstrom, M. (2011). Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer Approach. Journal of Applied Physics, 109, 073718/8. doi: 10.1063/1.3567111

Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach. Physics in Higher Education, 19 (3), 99–110.

Fisher, T. S. (2013). Thermal Energy at the Nanoscale (Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2

Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach. Physics in Higher Education, 19 (2), 161–173.

Callaway, J. (1959). Model for lattice thermal conductivity at low temperatures. Physical Review, 113 (4), 1046–1015 doi: 10.1103/physrev.113.1046

Holland, M. G. (1963). Analysis of lattice thermal conductivity. Physical Review, 132 (6), 2461–2471. doi: 10.1103/physrev.132.2461

Jeong, C., Datta, S., Lundstrom, M. (2012). Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 111, 093708. doi: 10.1063/1.4710993

Gang, C. (2005). Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York: Oxford University Press, 560.

Glassbrenner, C. J., Slack, G. A. (1964). Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Physical Review, 134 (4A), A1058–A1069. doi: 10.1103/physrev.134.a1058

Pendry, J. B. (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16 (10), 2161. doi: 10.1088/0305-4470/16/10/012

Angelescu, D. E., Cross, M. C., Roukes, M. L. (1998). Heat transport in mesoscopic systems, Superlattices and Microstructures, 23 (3-4), 673–689. doi: 10.1006/spmi.1997.0561

Rego, L. G. C., Kirczenow, G. (1998). Quantized Thermal Conductance of Dielectric Quantum Wires. Physical Review Letters, 81 (1), 232–235. doi: 10.1103/physrevlett.81.232

Blencowe, M. P. (1999). Quantum energy flow in mesoscopic dielectric structures. Physical Review B, 59 (7), 4992–4998. doi: 10.1103/physrevb.59.4992

Rego, L. G. C., Kirczenow, G. (1999). Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Physical Review B, 59 (20), 13080–13086. doi: 10.1103/physrevb.59.13080

Krive, I. V., Mucciolo, E. R. (1999). Transport properties of quasiparticles with fractional exclusion statistics. Physical Review B, 60 (3), 1429–1432. doi: 10.1103/physrevb.60.1429

Caves, C. M., Drummond, P. D. (1994). Quantum limits on bosonic communication rates, Reviews of Modern Physics, 66 (2), 481–537. doi: 10.1103/revmodphys.66.481

Kruglyak, Yu. A., Kruglyak, N. Yu., Strikha, М. V. (2013). Lessons of nanoelectronics. Thermoelectric phenomena in «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.

Kruglyak, Yu. A. (2014). Lessons of nanoelectronics. 5. Phonon transport in «bottom – up» approach. Physics in Higher Education, 20 (1), 39–43.


GOST Style Citations


1. Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport [Electronic resource] / Hackensack, New Jersey: World Scientific Publishing Company, 2012. – Available at: www.nanohub.org/courses/FoN1

2. Lundstrom, M. Near-Equilibrium Transport: Fundamentals and Applications [Electronic resource] / M. Lundstrom, C. JeongHackensack. – New Jersey: World Scientific Publishing Company. 2013. – Available at: www.nanohub.org/resources/11763

3. Kruglyak, Yu. Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics [Text] / Yu. Kruglyak // Journal of Nanoscience. – 2014. – Vol. 2015. – P. 15. doi: 10.1155/2014/725420

4. Kruglyak, Yu. A. A Generalized Landauer-Datta-Lundstrom Electron Transport Model [Text] / Yu. A. Kruglyak // Russian Journal of Physical Chemistry. – 2014. – Vol. 88, Issue 11. – P. 1826–1836. doi: 10.1134/s0036024414110119 

5. Займан, Дж. Электроны и фононы. Теория явлений переноса в твердых телах [Текст] / Дж. Займан. – М: ИИЛ, 1962. – 488 с.

6. Займан, Дж. Принципы теории твердого тела [Текст] / Дж. Займан. – М: Высшая школа, 1974. – 472 с.

7. Киттель, Ч. Введение в физику твердого тела [Текст] / Ч. Киттель. – М: Наука: 1978. – 791 с.

8. Ашкрофт, Н. Физика твердого тела, тома 1 и 2 [Текст] / Н. Ашкрофт, Н. Мермин. – М: Мир: 1979. – 486 с.

9. Mohr, M. Phonon dispersion of graphite by inelastic x-ray scattering [Text] / M. Mohr, J. Maultzsch, E. Dobardžić, S. Reich, I. Milošević, M. Damnjanović, A. Bosak, M. Krisch, C. Thomsen // Physical Review B. – 2007. – Vol. 76, Issue 3. doi: 10.1103/physrevb.76.035439 

10. Елецкий, А. В. Графен: методы получения и теплофизические свойства [Текст] / А. В. Елецкий, И. М. Искандарова, А. А. Книжник, Д. Н. Красиков // Успехи физических наук. – 2011. – Т. 181, № 3. –С. 227–258. doi: 10.3367/UFNr.0181.201103a.0233

11. Katsnelson, M. I. Graphene: Carbon in Two Dimensions [Text] / M. I. Katsnelson. – New York: Cambridge University Press, 2012. doi: 10.1017/cbo9781139031080 

12. Кругляк, Ю. А. Обобщенная модель электронного транспорта Ландауэра-Датты-Лундстрома [Текст] / Ю. А. Кругляк // Nanosystems, Nanomaterials, Nanotechnologies, 11, № 3: 519 – 549 (2013); Erratum: ibid, 12, № 2: 415 (2014).

13. Schwab, K. Measurement of the quantum of thermal conductance [Text] / K. Schwab, E. A. Henriksen, J. M. Worlock, M. L. Roukes // Nature. – 2000. – Vol. 404. – P. 974.

14. Jeong, C. On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients [Text] / C. Jeong, R. Kim, M. Luisier, S. Datta, M. Lundstrom // Journal of Applied Physics. – 2010. – Vol. 107, Issue 2. – P. 023707. doi: 10.1063/1.3291120 

15. Lundstrom, M. Fundamentals of Carrier Transport [Text] / M. Lundstrom. – Cambridge UK: Cambridge University Press, 2012.

16. Jeong, C. Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer Approach [Text] / C. Jeong, S. Datta, M. Lundstrom // Journal of Applied Physics. – 2011. – Vol. 109. – P. 073718/8. doi: 10.1063/1.3567111 

17. Кругляк, Ю. А. Уроки наноэлектроники. 3. Электронная проводимость и моды проводимости в концепции «снизу – вверх» [Текст] / Ю. А. Кругляк, Н. Е. Кругляк // Физическое образование в вузах. – 2013. – Т. 19, № 3. – С. 99–110.

18. Timothy S. Fisher, Thermal Energy at the Nanoscale [Electronic resource] / Hackensack, New Jersey: World Scientific Publishing Company, 2013. – Available at: www.nanohub.org/courses/2

19. Кругляк, Ю. А. Уроки наноэлектроники. 2. Модель упругого резистора и новая формулировка закона Ома в концепции «снизу – вверх» [Текст] / Ю. А. Кругляк, Н. Е. Кругляк // Физическое образование в вузах. – 2013. – Т. 19, № 2. – С. 161–173.

20. Callaway, J. Model for lattice thermal conductivity at low temperatures [Text] / J. Callaway // Physical Review. – 1959. – Vol. 113, Issue 4. – P. 1046–1051. doi: 10.1103/physrev.113.1046 

21. Holland, M. G. Analysis of lattice thermal conductivity [Text] / M. G. Holland // Physical Review. – 1963. – Vol. 132, Issue 6. – P. 2461–2471. doi: 10.1103/physrev.132.2461 

22. Jeong, C. Thermal conductivity of bulk and thin-film silicon: a Landauer approach [Text] / C. Jeong, S. Datta, M. Lundstrom // Journal of Applied Physics. –2012. – Vol. 111. – P. 093708. doi: 10.1063/1.4710993 

23. Gang, C. Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons [Text] / C. Gang. – New York: Oxford University Press, 2005. – 560 p.

24. Glassbrenner, C. J. Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point [Text] / C. J. Glassbrenner, G. A. Slack // Physical Review. – 1964. – Vol. 134, Issue 4A. – P. A1058–A1069. doi: 10.1103/physrev.134.a1058 

25. Pendry, J. B. Quantum limits to the flow of information and entropy [Text] / J. B. Pendry // Journal of Physics A: Mathematical and General. – 1983. – Vol. 16, Issue 10. – P. 2161–2171. doi: 10.1088/0305-4470/16/10/012 

26. Angelescu, D. E. Heat transport in mesoscopic systems [Text] / D. E. Angelescu, M. C. Cross, M. L. Roukes // Superlattices and Microstructures. – 1998. –Vol. 23, Issue 3-4. – P. 673–689. doi: 10.1006/spmi.1997.0561 

27. Rego, L. G. C. Quantized Thermal Conductance of Dielectric Quantum Wires [Text] / L. G. C. Rego, G. Kirczenow // Physical Review Letters. – 1998. – Vol. 81, Issue 1. – P. 232–235. doi: 10.1103/physrevlett.81.232 

28. Blencowe, M. P. Quantum energy flow in mesoscopic dielectric structures [Text] / M. P. Blencowe // Physical Review B. – 1999. – Vol. 59, Issue 7. – P. 4992–4998. doi: 10.1103/physrevb.59.4992 

29. Rego, L. G. C. Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach [Text] / L. G. C. Rego, G. Kirczenow // Physical Review B. – 1999. – Vol. 59, Issue 20. –P. 13080–13086. doi: 10.1103/physrevb.59.13080 

30. Krive, I. V. Transport properties of quasiparticles with fractional exclusion statistics [Text] / I. V. Krive, E. R. Mucciolo // Physical Review B. – 1999. – Vol. 60, Issue 3. – P. 1429–1432. doi: 10.1103/physrevb.60.1429 

31. Caves, C. M. Quantum limits on bosonic communication rates [Text] / C. M. Caves, P .D. Drummond // Reviews of Modern Physics. – 1994. – Vol. 66, Issue 2. – P. 481–537. doi: 10.1103/revmodphys.66.481 

32. Кругляк, Ю. O. Уроки наноелектроніки. Термоелектричні явища в концепції «знизу – вгору» [Text] / Ю. O. Кругляк, Н. Ю. Кругляк, М. В. Стріха // Sensor Electronics Microsys. Tech. – 2013. – Т. 13, № 1. – С. 6–21.

33. Кругляк, Ю. А. Уроки наноэлектроники. 5. Перенос тепла фононами в концепции «снизу – вверх» [Текст] / Ю. А. Кругляк // Физическое образование в вузах. – 2014. – Т. 20, № 1. – С. 39–43.







Copyright (c) 2015 Юрій Олексійович Кругляк

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)