Перенос тепла фононами в транспортной модели Ландауэра-Датты-Лундстрома
DOI:
https://doi.org/10.15587/2313-8416.2015.36332Ключові слова:
нанофизика, наноэлектроника, фононный транспорт, квант теплопроводности, коэффициент прохождения, фононные моды, дебаевская модель, рассеяние фононовАнотація
С позиций транспортной модели ЛДЛ строится обобщенная модель переноса тепла фононами. Аналогично фермиевскому окну электронной проводимости вводится понятие фермиевского окна фононной проводимости и через него выводится общее выражение для решеточной теплопроводности, в котором с самого начала фигурирует квант теплопроводности. Подчеркивается подобие и различия в построении теории электронной проводимости и теории теплопроводности
Посилання
Supriyo Datta, Lessons from Nanoelectronics: A New Perspective on Transport (2012). Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/FoN1
Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763
Kruglyak, Yu. (2014). Landauer-Datta-Lundstrom Generalized Transport Model for Nanoelectronics. Journal of Nanoscience, 2014, 15. doi: 10.1155/2014/725420
Kruglyak, Yu. A. (2014). A Generalized Landauer-Datta-Lundstrom Electron Transport Model. Russian Journal of Physical Chemistry, 88 (11), 1826–1836. doi: 10.1134/s0036024414110119
Ziman, J. M. (1960). Electrons and phonons. The theory of transport phenomena in solids. Oxford at the Clarendon Press, Oxford, 488.
Ziman, J. M. (1964). Principles of the theory of solids. Cambridge University Press, Cambridge, 472.
Kittel, C. (1971). Introduction to solid state physics, 4th ed. John Wiley and Sons, New York, 791.
Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 486.
Mohr, M., Maultzsch, J., Dobardžić, E., Reich, S., Milošević, I., Damnjanović, M., Bosak, A., Krisch, M., Thomsen, C. (2007). Phonon dispersion of graphite by inelastic x-ray scattering. Physical Review B, 76 (3), 035439/7. doi: 10.1103/physrevb.76.035439
Eletskii, A. V., Iskandarova, I. M., Knizhnik, A. A., Krasikov, D. N. (2011). Graphene: fabrication methods and thermophysical properties. Physics Uspekhi, 54, 227–258. doi: 10.3367/UFNe.0181.201103a.0233
Katsnelson, M. I. (2012). Graphene: Carbon in Two Dimensions. New York: Cambridge University Press. doi: 10.1017/cbo9781139031080
Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, 12 (2), 415.
Schwab, K., Henriksen, E. A., Worlock, J. M., Roukes, M. L. (2000). Measurement of the quantum of thermal conductance. Nature, 404, 974.
Jeong, C., Kim, R., Luisier, M., Datta, S., Lundstrom, M. (2010). On Landauer vs. Boltzmann and Full Band vs. Effective Mass Evaluation of Thermoelectric Transport Coefficients. Journal of Applied Physics, 107 (2), 023707. doi: 10.1063/1.3291120
Lundstrom, M. (2012). Fundamentals of Carrier Transport. Cambridge UK: Cambridge University Press.
Jeong, C., Datta, S., Lundstrom, M. (2011). Full Dispersion vs. Debye Model Evaluation of Lattice Thermal Conductivity with a Landauer Approach. Journal of Applied Physics, 109, 073718/8. doi: 10.1063/1.3567111
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 3. Electronic conductivity and conductivity modes by «bottom – up» approach. Physics in Higher Education, 19 (3), 99–110.
Fisher, T. S. (2013). Thermal Energy at the Nanoscale (Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/courses/2
Kruglyak, Yu. A., Kruglyak, N. E. (2013). Lessons of nanoelectronics. 2. Elastic resistor model and new Ohm’s law by «bottom – up» approach. Physics in Higher Education, 19 (2), 161–173.
Callaway, J. (1959). Model for lattice thermal conductivity at low temperatures. Physical Review, 113 (4), 1046–1015 doi: 10.1103/physrev.113.1046
Holland, M. G. (1963). Analysis of lattice thermal conductivity. Physical Review, 132 (6), 2461–2471. doi: 10.1103/physrev.132.2461
Jeong, C., Datta, S., Lundstrom, M. (2012). Thermal conductivity of bulk and thin-film silicon: a Landauer approach. Journal of Applied Physics, 111, 093708. doi: 10.1063/1.4710993
Gang, C. (2005). Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons. New York: Oxford University Press, 560.
Glassbrenner, C. J., Slack, G. A. (1964). Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Physical Review, 134 (4A), A1058–A1069. doi: 10.1103/physrev.134.a1058
Pendry, J. B. (1983). Quantum limits to the flow of information and entropy. Journal of Physics A: Mathematical and General, 16 (10), 2161. doi: 10.1088/0305-4470/16/10/012
Angelescu, D. E., Cross, M. C., Roukes, M. L. (1998). Heat transport in mesoscopic systems, Superlattices and Microstructures, 23 (3-4), 673–689. doi: 10.1006/spmi.1997.0561
Rego, L. G. C., Kirczenow, G. (1998). Quantized Thermal Conductance of Dielectric Quantum Wires. Physical Review Letters, 81 (1), 232–235. doi: 10.1103/physrevlett.81.232
Blencowe, M. P. (1999). Quantum energy flow in mesoscopic dielectric structures. Physical Review B, 59 (7), 4992–4998. doi: 10.1103/physrevb.59.4992
Rego, L. G. C., Kirczenow, G. (1999). Fractional exclusion statistics and the universal quantum of thermal conductance: A unifying approach. Physical Review B, 59 (20), 13080–13086. doi: 10.1103/physrevb.59.13080
Krive, I. V., Mucciolo, E. R. (1999). Transport properties of quasiparticles with fractional exclusion statistics. Physical Review B, 60 (3), 1429–1432. doi: 10.1103/physrevb.60.1429
Caves, C. M., Drummond, P. D. (1994). Quantum limits on bosonic communication rates, Reviews of Modern Physics, 66 (2), 481–537. doi: 10.1103/revmodphys.66.481
Kruglyak, Yu. A., Kruglyak, N. Yu., Strikha, М. V. (2013). Lessons of nanoelectronics. Thermoelectric phenomena in «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.
Kruglyak, Yu. A. (2014). Lessons of nanoelectronics. 5. Phonon transport in «bottom – up» approach. Physics in Higher Education, 20 (1), 39–43.
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2015 Юрій Олексійович Кругляк
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Наше видання використовує положення про авторські права Creative Commons CC BY для журналів відкритого доступу.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.