DOI: https://doi.org/10.15587/2313-8416.2015.52261

Functional activity of the adrenal glands and abdominal obesity index as markers of dyslipidemia in patients with diabetes mellitus type 2

Олеся Вадимівна Корпачева-Зінич

Abstract


Cortisol and DHEA disbalance that appears in patients with diabetes mellitus type 2 leads to certain metabolic changes especially hyperglycemia, dyslipidemia, accumulation of abdominal fats, increase of proteins decay.

Aim. The study of correlations between cortisol/DHEA ratio, constitutional parameters (degree of obesity, character of fat distribution), abdominal obesity index, rates of blood lipid spectrum in patients with diabetes mellitus (DM) type 2.

Methods. For this aim there were examined 19 patients with DM type 2. There were used general clinical (body mass, height, waist and hips size, body mass and visceral obesity indices), biochemical (glycemia level, blood serum lipid spectrum rates), hormonal (C-peptide, cortisol, dehydroepiandrosterone sulfate) and statistical (Student criterion) methods of research.

Results. There was established that increase of cortisol/DHEA ratio rate is followed with growth of glycemia and glycated hemoglobin ( HbA1c) levels and also has a negative influence on blood serum lipid spectrum, that is favors an increase of triglycerindes, atherogenic fractions of cholesterol lipoproteins of the low density (LPLD) and lipoproteins of the very low density (LPVLD) concentration, decrease of anti-atherogenic lipoproteins of the high density (LPHD) content at the stable C-peptide level. The aforesaid negative processes took place simultaneously with the changes of visceral obesity index (VOI) that includes both the character of distribution and the function of adipose tissue.

Conclusion. Calculation of VOI in patients with diabetes mellitus type 2 as the marker of lipid metabolism disorder and stress/anti-stress corticosteroid disbalance is useful and reasonable


Keywords


obesity; diabetes mellitus type 2; corticosteroids; cortisol; DHEA; visceral obesity index; dyslipidemia

References


Geetha, L., Deepa, M., Anjana, R. M., Mohan, V. (2011). Prevalence and Clinical Profile of Metabolic Obesity and Phenotypic Obesity in Asian Indians. Journal of Diabetes Science and Technology, 5 (2), 439–446. doi: 10.1177/193229681100500235

Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37 (12), 1595–1607. doi: 10.2337/diabetes.37.12.1595

Savineau, J.-P., Marthan, R., Dumas de la Roque, E. (2013). Role of DHEA in cardiovascular diseases. Biochemical Pharmacology, 85 (6), 718–726. doi: 10.1016/j.bcp.2012.12.004

Tchernof, A., Labrie, F. (2004). Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. European Journal of Endocrinology, 151 (1), 1–14. doi: 10.1530/eje.0.1510001

Traish, A. M., Kang, H. P., Saad, F., Guay, A. T. (2011). Dehydroepiandrosterone (DHEA)-A Precursor Steroid or an Active Hormone in Human Physiology (CME). The Journal of Sexual Medicine, 8 (11), 2960–2982. doi: 10.1111/j.1743-6109.2011.02523.x

Phillips, A. C., Carroll, D., Gale, C. R., Lord, J. M., Arlt, W., Batty, G. D. (2010). Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study. European Journal of Endocrinology, 163(2), 285–292. doi: 10.1530/eje-10-0299

Djurhuus, C. B., Gravholt, C. H., Nielsen, S., Mengel, A., Christiansen, J. S., Schmitz, O. E., Møller, N. (2002). Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans. American Journal of Physiology – Endocrinology And Metabolism, 283 (1), E172–E177. doi: 10.1152/ajpendo.00544.2001

Gross, K. L., Cidlowski, J. A. (2008). Tissue-specific glucocorticoid action: a family affair. Trends in Endocrinology & Metabolism, 19 (9), 331–339. doi: 10.1016/j.tem.2008.07.009

Hughes, K. A., Manolopoulos, K. N., Iqbal, J., Cruden, N. L., Stimson, R. H., Reynolds, R. M. et. al (2012). Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo. Diabetes, 61 (6), 1357–1364. doi: 10.2337/db11-1345

Kollind, M., Adamson, U., Lins, P., Efendic, S. (1987). Diabetogenic Action of GH and Cortisol in Insulin-Dependent Diabetes Mellitus Aspects of the Mechanisms Behind the Somogyi Phenomenon. Hormone and Metabolic Research, 19 (04), 156–159. doi: 10.1055/s-2007-1011766

Whitworth, J. A., Mangos, G. J., Kelly, J. J. (2000). Cushing, Cortisol, and Cardiovascular Disease. Hypertension, 36 (5), 912–916. doi: 10.1161/01.hyp.36.5.912

Lefebvre, P. (2006). Sorting out the roles of PPAR in energy metabolism and vascular homeostasis. Journal of Clinical Investigation, 116 (3), 571–580. doi: 10.1172/jci27989

Semple, R. K. (2006). PPAR and human metabolic disease. Journal of Clinical Investigation, 116 (3), 581–589. doi: 10.1172/jci28003

Unger, R. H. (2001). Diseases of liporegulation: new perspective on obesity and related disorders. The FASEB Journal, 15 (2), 312–321. doi: 10.1096/fj.00-0590

Samaras, N., Samaras, D., Frangos, E., Forster, A., Philippe, J. (2013). A Review of Age-Related Dehydroepiandrosterone Decline and Its Association with Well-Known Geriatric Syndromes: Is Treatment Beneficial? Rejuvenation Research, 16 (4), 285–294. doi: 10.1089/rej.2013.1425

Davis, S. R., Shah, S. M., McKenzie, D. P., Kulkarni, J., Davison, S. L., Bell, R. J. (2008). Dehydroepiandrosterone Sulfate Levels Are Associated with More Favorable Cognitive Function in Women. The Journal of Clinical Endocrinology & Metabolism, 93 (3), 801–808. doi: 10.1210/jc.2007-2128

Weiss, E., Villareal, D. T., Fontana, L., Han, D.-H., Holloszy, J. O. (2011). Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans. Aging, 3 (5), 533–542.

Bao, A.-M., Meynen, G., Swaab, D. F. (2008). The stress system in depression and neurodegeneration: Focus on the human hypothalamus. Brain Research Reviews, 57 (2), 531–553. doi: 10.1016/j.brainresrev.2007.04.005

McNelis, J. C., Manolopoulos, K. N., Gathercole, L. L., Bujalska, I. J., Stewart, P. M., Tomlinson, J. W., Arlt, W. (2013). Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake. AJP: Endocrinology and Metabolism, 305 (9), E1134–E1144. doi: 10.1152/ajpendo.00314.2012

Ohlsson, C., Labrie, F., Barrett-Connor, E., Karlsson, M. K., Ljunggren, Ö., Vandenput, L. et. al (2010). Low Serum Levels of Dehydroepiandrosterone Sulfate Predict All-Cause and Cardiovascular Mortality in Elderly Swedish Men. The Journal of Clinical Endocrinology & Metabolism, 95 (9), 4406–4414. doi: 10.1210/jc.2010-0760

Barrett-Connor, E., von Mühlen, D., Laughlin, G. A., Kripke, A. (1999). Endogenous Levels of Dehydroepiandrosterone Sulfate, but Not Other Sex Hormones, Are Associated with Depressed Mood in Older Women: The Rancho Bernardo Study. Journal of the American Geriatrics Society, 47 (6), 685–691. doi: 10.1111/j.1532-5415.1999.tb01590.x

Fukui, M., Kitagawa, Y., Ose, H., Hasegawa, G., Yoshikawa, T., Nakamura, N. (2007). Role of Endogenous Androgen Against Insulin Resistance and Athero-sclerosis in Men with Type 2 Diabetes. Current Diabetes Reviews, 3 (1), 25–31. doi: 10.2174/157339907779802094

Amato, M. C., Giordano, C., Galia, M., Criscimanna, A., Vitabile, S., Midiri, M., Galluzzo, A. (2010). Visceral Adiposity Index: A reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care, 33 (4), 920–922. doi: 10.2337/dc09-1825

Petta, S., Amato, M., Cabibi, D., Cammà, C., Di Marco, V., Giordano, C. et. al (2010). Visceral adiposity index is associated with histological findings and high viral load in patients with chronic hepatitis C due to genotype 1. Hepatology, 52 (5), 1543–1552. doi: 10.1002/hep.23859

Andrews, R. C., Herlihy, O., Livingstone, D. E. W., Andrew, R., Walker, B. R. (2002). Abnormal Cortisol Metabolism and Tissue Sensitivity to Cortisol in Patients with Glucose Intolerance. The Journal of Clinical Endocrinology & Metabolism, 87 (12), 5587–5593. doi: 10.1210/jc.2002-020048

Apostolova, G. (2004). Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue. AJP: Endocrinology and Metabolism, 288 (5), E957–E964. doi: 10.1152/ajpendo.00442.2004


GOST Style Citations


1. Geetha, L. Prevalence and Clinical Profile of Metabolic Obesity and Phenotypic Obesity in Asian Indians [Text] / L. Geetha, M. Deepa, R. M. Anjana, V. Mohan // Journal of Diabetes Science and Technology. – 2011. – Vol. 5, Issue 2. – P. 439–446. doi: 10.1177/193229681100500235

2. Reaven, G. M. Banting lecture 1988. Role of insulin resistance in human disease [Text] / G. M. Reaven // Diabetes. – 1988. – Vol. 37, Issue 12. – P. 1595–1607. doi: 10.2337/diabetes.37.12.1595

3. Savineau, J.-P. Role of DHEA in cardiovascular diseases [Text] / J.-P. Savineau, R. Marthan, E. Dumas de la Roque // Biochemical Pharmacology. – 2013. – Vol. 85, Issue 6. – P. 718–726. doi: 10.1016/j.bcp.2012.12.004

4. Tchernof, A. Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies [Text] / A Tchernof, F Labrie // European Journal of Endocrinology. – 2004. – Vol. 151, Issue 1. – P. 1–14. doi: 10.1530/eje.0.1510001

5. Traish, A. M. Dehydroepiandrosterone (DHEA) – a precursor steroid or an active hormone in human physiology [Text] / A. M. Traish, H. P. Kang, F. Saad, A. T. Guay // The Journal of Sexual Medicine. – 2011. – Vol. 8, Issue 11. – P. 2960–2982. doi: 10.1111/j.1743-6109.2011.02523.x

6. Phillips, A. C. Cortisol, DHEA sulphate, their ratio, and all-cause and cause-specific mortality in the Vietnam Experience Study [Text] / A. C. Phillips, D. Carroll, C. R. Gale, J. M. Lord, W. Arlt, G. D. Batty // European Journal of Endocrinology. 2010. – Vol. 163, Isuue 2. – V. 285–292. doi: 10.1530/eje-10-0299

7. Djurhuus, C. B. Effects of cortisol on lipolysis and regional interstitial glycerol levels in humans [Text] / C. B. Djurhuus, C. H. Gravholt, S. Nielsen, A. Mengel, J. S. Christiansen, O. E. Schmitz, N. Møller // American Journal of Physiology – Endocrinology And Metabolism. – 2002. – Vol. 283, Issue 1. – P. E172–E177. doi: 10.1152/ajpendo.00544.2001

8. Gross, K. L. Tissue-specific glucocorticoid action: a family affair [Text] / K. L. Gross, J. A. Cidlowski // Trends in Endocrinology & Metabolism. – 2008. – Vol. 19, Issue 9. – P. 331–339. doi: 10.1016/j.tem.2008.07.009

9. Hughes, K. A. Recycling Between Cortisol and Cortisone in Human Splanchnic, Subcutaneous Adipose, and Skeletal Muscle Tissues In Vivo [Text] / K. A. Hughes, K. N. Manolopoulos, J. Iqbal, N. L. Cruden, R. H. Stimson, R. M. Reynolds et. al // Diabetes. – 2012. – Vol. 61, Issue 6. – P. 1357–1364. doi: 10.2337/db11-1345

10. Kollind, M. Diabetogenic action of GH and cortisol in insulin-dependent diabetes mellitus. Aspects of the mechanisms behind the Somogyi phenomenon [Text] / M. Kollind, U. Adamson, P. Lins, S. Efendic // Hormone and Metabolic Research. – 1987. – Vol. 19, Issue 04. – P. 156–159. doi: 10.1055/s-2007-1011766

11. Whitworth, J. A. Cushing, Cortisol, and Cardiovascular Disease [Text] / J. A. Whitworth, G. J. Mangos, J. J. Kelly // Hypertension. – 2000. – Vol. 36, Issue 5. – P. 912–916. doi: 10.1161/01.hyp.36.5.912

12. Lefebvre, P. Sorting out the roles of PPAR in energy metabolism and vascular homeostasis [Text] / P. Lefebvre // Journal of Clinical Investigation. – 2006. – Vol. 116, Issue 3. P. 571–580. doi: 10.1172/jci27989

13. Semple, R. K. PPAR gamma and metabolic disease [Text] / R. K. Semple // Journal of Clinical Investigation. – 2006. – Vol. 116, Issue 3. – P. 581–589. doi: 10.1172/jci28003

14. Unger, R. H. Diseases of liporegulation: new perspective on obesity and related disorders [Text] / R. H. Unger // The FASEB Journal. – 2001. – Vol. 15, Issue 2. – P. 312–321. doi: 10.1096/fj.00-0590

15. Samaras, N. A review of age-related dehydroepiandrosterone decline and its association with well-known geriatric syndromes: is treatment beneficial? [Text] / N. Samaras, D. Samaras, E. Frangos, A. Forster, J. Philippe // Rejuvenation Research. – 2013. – Vol. 16, Issue 4. – P. 285–294. doi: 10.1089/rej.2013.1425

16. Davis, S. R. Dehydroepiandrosterone sulfate levels are associated with more favorable cognitive function in women [Text] / S. R. Davis, S.M. Shah, D. P. McKenzie, J. Kulkarni, S. L. Davison, R. J. Bell // The Journal of Clinical Endocrinology & Metabolism. – 2008. – Vol. 93, Issue 3. – P. 801–808. doi: 10.1210/jc.2007-2128

17. Weiss, E. Dehydroepiandrosterone (DHEA) replacement decreases insulin resistance and lowers inflammatory cytokines in aging humans [Text] / E. Weiss, D. T. Villareal, L. Fontana, D.-H. Han, J. O. Holloszy // Aging. – 2011. – Vol. 3, Issue 5. – P. 533–542.

18. Bao, A.-M. The stress system in depression and neurodegeneration: focus on the human hypothalamus [Text] / A.-M. Bao, G. Meynen, D. F. Swaab // Brain Research Reviews. – 2008. – Vol. 57, Issue 2. – P. 531–553. doi: 10.1016/j.brainresrev.2007.04.005

19. McNelis, J. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation and glucose uptake [Text] / J. C. McNelis, K. N. Manolopoulos, L. L. Gathercole, I. J. Bujalska, P. M. Stewart, J. W. Tomlinson, W. Arlt // AJP: Endocrinology and Metabolism. – 2013. – Vol. 305, Issue 9. – P. E1134–E1144. doi: 10.1152/ajpendo.00314.2012

20. Ohlsson, C. Low serum levels of dehydroepiandrosterone sulfate predict all-cause and cardiovascular mortality in elderly Swedish men [Text] / C. Ohlsson, F. Labrie, E. Barrett-Connor, M. K. Karlsson, Ö. Ljunggren, L. Vandenput et. al // The Journal of Clinical Endocrinology & Metabolism. – 2010. – Vol. 95, Issue 9. – P. 4406–4414. doi: 10.1210/jc.2010-0760

21. Barrett-Connor, E. Endogenous levels of dehydroepiandrosterone sulfate, but not other sex hormones, are associated with depressed mood in older women: the Rancho Bernardo Study [Text] / E. Barrett-Connor, D. von Mühlen, G. A. Laughlin, A. Kripke // Journal of the American Geriatrics Society. – 1999. – Vol. 47, Issue 6. – P. 685–691. doi: 10.1111/j.1532-5415.1999.tb01590.x

22. Fukui, M. Role of Endogenous Androgen Against Insulin Resistance and Atherosclerosis in Men with Type 2 Diabetes [Text] / M. Fukui, Y. Kitagawa, H. Ose, G. Hasegawa, T. Yoshikawa, N. Nakamura // Current Diabetes Reviews. – 2007. – Vol. 3, Issue 1. – P. 25–31. doi: 10.2174/157339907779802094

23. Amato, M. C. Visceral adiposity index: a reliable indicator of visceral fat function associated with cardiometabolic risk [Text] / M. C. Amato, C. Giordano, M. Galia, A. Criscimanna, S. Vitabile, M. Midiri, A. Galluzzo // Diabetes Care. – 2010. – Vol. 33, Issue 4. – P. 920–922. doi: 10.2337/dc09-1825

24. Petta, S. Visceral adiposity index is associated with histological findings and high viral load in patients with chronic hepatitis C due to genotype 1 [Text] / S. Petta, M. Amato, D. Cabibi, C. Cammà, V. Di Marco, C. Giordano et. al // Hepatology. – 2010. – Vol. 52, Issue 5. – P. 1543–1552. doi: 10.1002/hep.23859

25. Andrews, R. C. Abnormal cortisol metabolism and tissue sensitivity to cortisol in patients with glucose intolerance [Text] / R. C. Andrews, O. Herlihy, D. E. W. Livingstone, R. Andrew, B. R. Walker // The Journal of Clinical Endocrinology & Metabolism. – 2002. – Vol. 87, Issue 12. – P. 5587–5593. doi: 10.1210/jc.2002-020048

26. Apostolova, G. Dehydroepiandrosterone inhibits the amplification of glucocorticoid action in adipose tissue [Text] / G. Apostolova // AJP: Endocrinology and Metabolism. – 2004. – Vol. 288, Issue 5. – P. E957–E964. doi: 10.1152/ajpendo.00442.2004







Copyright (c) 2015 Олеся Вадимівна Корпачева-Зінич

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)