Nanoelectronics «bottom – up»: thermodynamics of electric conductor, information-driven battery and quantum entropy

Authors

  • Юрий Алексеевич Кругляк Odessa State Environmental University 15 Lvovskaya str., Odessa, Ukraine, 65016

DOI:

https://doi.org/10.15587/2313-8416.2015.53495

Keywords:

nanophysics, nanoelectronics, resistor thermodynamics, information storage, Landauer principleб quantum entropy

Abstract

Within the «bottom – up» approach of nanoelectronics the equilibrium thermodynamics of a conductor with a current is presented and the accumulation of information in a non-equilibrium state with an analysis of information-driven battery model is discussed in connection with the Landauer principle on the minimum of energy needed to erase one bit of information. The concept of quantum entropy is introduced and the importance of integration of spintronics and magnetronics in connection with the upcoming development of the spin architecture for the computing devices are discussed

Author Biography

Юрий Алексеевич Кругляк, Odessa State Environmental University 15 Lvovskaya str., Odessa, Ukraine, 65016

Doctor of Chemical Sciences, Professor

Department of Information Technologies

References

Kruglyak, Yu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized Ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76. doi: 10.15587/2313-8416.2015.45700

Krugljak, Ju. O., Striha, M. V. (2014). Uroky nanoelektroniky. Rol' elektrostatyki i kontaktiv v koncepcii' «znyzu – vgoru». Sensor Electronics Microsys, 11 (4), 27–42.

Feynman, R. P (1972). Statistical Mechanics. Benjamin, New York.

Kruglyak, Yu. A. (2015). Transfer of heat by phonons in Landauer – Datta – Lundstrom transport model. ScienceRise, 2/2 (7), 81–93. doi: 10.15587/2313-8416.2015.36332

Fock, V. (1932). Konfigurationsraum und zweite Quantelung. Zeitschrift for Physik, 75 (9-10), 622–647. doi: 10.1007/bf01344458

Kruglyak, Yu. A. (2014). Configuration interaction in the second quantization representation: basics with application up to full CI. ScienceRise, 4/2 (4), 98–115. doi: 10.15587/2313-8416.2014.28948

Kuprievich, V. A., Kruglyak, Y. A., Mozdor, E. V. (1970). Full configuration interaction for the benzyl radical. International Journal of Quantum Chemistry, 4 (1), 73–87. doi: 10.1002/qua.560040107

Kuprievich, V. A., Kruglyak, Yu. A., Mozdor, E. V. (1971). The Configuration Interaction Method in the Second Quantization Representation. Croat. Chem. Acta., 43, 1–13.

Kruglyak, Yu. A., Mozdor, E. V., Kuprievich, V. A. (1971). Study of the Electronic Structure of Radicals by the CI Method. 1. Matrix Elements of the Physical Value Operators. Croat. Chem. Acta., 43, 15–23.

Kruglyak, Y. A., Ukrainsky, I. I. (1970). Study of the electronic structure of alternant radicals by theDODS method. International Journal of Quantum Chemistry, 4 (1), 57–72. doi: 10.1002/qua.560040106

Kruglyak, Y. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. 1. Polyenes. ScienceRise, 5/2 (10), 69–105. doi: 10.15587/2313-8416.2015.42643

Kruglyak, Yu. A. (2015). Quantum-chemical studies of quasi-one-dimensional electron systems. Part 2. Cumulenes and origin of the forbidden zone. ScienceRise, 6/2 (11), 122–148. doi: 10.15587/2313-8416.2015.44540

Dill, K. A., Bromberg, S. (2010). Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience. New York: Garland Science, 778.

Salahuddin, S., Datta, S. (2006). An All Electrical Spin Detector: Sixth IEEE Conference on Nanotechnology. School of Electrical and Computer Engineering, Purdue University, West Lafayette, 2, 834–837. doi: 10.1109/nano.2006.247788

Kruglyak, Yu. A. (2015). The «bottom – up» nanoelectronics: elements of spintronics and magnetronics. ScienceRise, 8/2 (13), 51–68. doi: 10.15587/2313-8416.2015.47792

Shennon, K. (1963). Raboty po teorii informacii i kibernetike. Mocow: Izd-vo IL, 824. Available at: http://www.novsu.ru/file/1086154

Vol'kenshtejn, M. V. (1986). Jentropija i informacija. Moscow: Izd-vo "Nauka", 192.

Landauer, R. (1961). Irreversibility and Heat Generation in the Computing Process. IBM Journal of Research and Development, 5 (3), 183–191. doi: 10.1147/rd.53.0183

Bennett, C. H. (2003). Notes on Landauer's principle. Reversible Computation and Maxwell's Demon. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 34 (3), 501–510. doi: 10.1016/s1355-2198(03)00039-x

Bérut, A., Arakelyan, A., Petrosyan, A., Ciliberto, S., Dillenschneider, R., Lutz, E. (2012). Experimental verification of Landauer’s principle linking information and thermodynamics. Nature, 483 (7388), 187–189. doi: 10.1038/nature10872

Leff, H. S., Rex, A. F. (Eds.) (2002). Maxwell's Demon 2 Entropy, Classical and Quantum Information, Computing. Bristol: Institute of Physics Publishing, 502. doi: 10.1201/9781420033991

Datta, S. (2007). Nanodevices and Maxwell's Demon. Purdue Universtiy, West Lafayette, USA, 18. Available at: http://arxiv.org/ftp/arxiv/papers/0704/0704.1623.pdf

Kruglyak, Yu. A. (2015). Nanoelectronics «bottom – up»: non-equillibrium green’s functions method, model transport problems and quantum interference. ScienceRise, 9/2 (14), 41–72. doi: 10.15587/2313-8416.2015.48827

Krugljak, Ju. O., Striha, M. V. (2014). Uroky nanoelektroniky: Kvantova interferencija i defazirovka v metodi nerivnovazhnyh funkcij Grina. Sensor Electronics Microsys. Tech., 11 (3), 5.

Kruglyak, Yu. A. (2015). «Bottom – up» nanoelectronics: the hall effects, measurement of electrochemical potentials and spin transport in the NEGF model. ScienceRise, 10/2 (15), 35–67. doi: 10.15587/2313-8416.2015.51353

Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K. (2009). Quantum entanglement. Reviews of Modern Physics, 81 (2), 865–942. doi: 10.1103/revmodphys.81.865

Friedman, J. R., Sarachik, M. P. (2010). Single-Molecule Nanomagnets. Annual Review of Condensed Matter Physics, 1 (1), 109–128. doi: 10.1146/annurev-conmatphys-070909-104053

Molecular Magnetism Web. A gate to molecular magnetism. Available at: http://www.molmag.de/

Fundamentals of Nanoelectronics, Part 2: Quantum Models. nanoHUB-U. Available at: http://nanohub.org/courses/FoN2

PurdueX. Free online courses from Purdue University. Available at: https://www.edx.org/school/purduex

Published

2015-11-23

Issue

Section

Physics and mathematics