DOI: https://doi.org/10.15587/2313-8416.2016.58758

Фотонно-кристаллические технологии и возможности развития телекоммуникационных систем

Haider Ali Muse, Tatyana Dribnokhod

Аннотация


Фотонно-кристаллические волокна в волоконно-лазерных системах позволяют формировать выход световых импульсов с шириной импульса порядка 100 фс мегаватт в диапазоне пиковых мощностей. Таким образом, фотонно-кристаллические волокна играют главную роль в разработке новых волоконно-лазерных источников сверхкоротких световых импульсов и создания компонентов волоконного формата для контроля таких импульсов. В этой статье мы обсудим возможности для развития фотонно-кристаллических волокон в телекоммуникационной системе


Ключевые слова


фотонный кристалл; коммуникации; распространения; дисперсию; фотонный кристалл волокон

Полный текст:

PDF (English)

Литература


Hondros, D., Debye, P. (1910). Electromagnetic waves along long cylinders of dielectric. Ann. Phys., 32 (3), 465–476.

Schriever, O. (1920). Electromagnetic waves in dielectric wires. Ann. Phys., 63 (7), 645–673.

Kapany, N. S. (1967). Fiber Optics. Principles and Applications. Academic Press, New York, 447.

Kapron, F. P. (1970). RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES. Applied Physics Letters, 17 (10), 423. doi: 10.1063/1.1653255

Miya, T., Terunuma, Y., Hosaka, T., Miyashita, T. (1979). Ultimate low-loss single-mode fibre at 1.55 μm. Electronics Letters, 15 (4), 106. doi: 10.1049/el:19790077

Adams, M. J. (1981). An Introduction to Optical Waveguides. John Wiley & Sons, 401.

Yablonovitch, E. (1987). Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Physical Review Letters, 58 (20), 2059–2062. doi: 10.1103/physrevlett.58.2059

Yablonovitch, E., Gmitter, T., Leung, K. (1991). Photonic band structure: The face-centered-cubic case employing nonspherical atoms. Physical Review Letters, 67 (17), 2295–2298. doi: 10.1103/physrevlett.67.2295

Chan, C. T., Datta, S., Yu, Q. L., Sigalas, M., Ho, K. M., Soukoulis, C. M. (1994). New structures and algorithms for photonic band gaps. Physica A: Statistical Mechanics and Its Applications, 211 (4), 411–419. doi: 10.1016/0378-4371(94)00133-2

Johnson, S., Joannopoulos, J. (2001). Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis. Optics Express, 8 (3), 173. doi: 10.1364/oe.8.000173

Anderson, M. H., Ensher, J. R., Matthews, M. R., Wieman, C. E., Cornell, E. A. (1995). Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor. Science, 269 (5221), 198–201. doi: 10.1126/science.269.5221.198

Russell, P. (2003). Photonic Crystal Fibers. Science, 299 (5605), 358–362. doi: 10.1126/science.1079280

Knight, J. C., Broeng, J., Birks, T. A., Russell, P. S. J. (1998). Photonic Band Gap Guidance in Optical Fibers. Science, 282 (5393), 1476–1478. doi: 10.1126/science.282.5393.1476

Russell, P. S. J. (2006). Photonic-Crystal Fibers. Journal of Lightwave Technology, 24 (12), 4729–4749. doi: 10.1109/jlt.2006.885258

Cregan, R. F., Mangan, B. J., Knight, J. C., Birks, T. A., Russell, P. S. J., Roberts, P. J., Allan, D. C. (1999). Single-Mode Photonic Band Gap Guidance of Light in Air. Science, 285 (5433), 1537–1539. doi: 10.1126/science.285.5433.1537

Marcatili, E. A. J., Schmeltzer, R. A. (1964). Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers. Bell System Technical Journal, 43 (4), 1783–1809. doi: 10.1002/j.1538-7305.1964.tb04108.x

Zheltikov, A. M. (2004). Nonlinear optics of microstructure fibers. Physics-Uspekhi, 47 (1), 69–98. doi: 10.1070/pu2004v047n01abeh001731

Knight, J. C., Birks, T. A., Russell, P. S. J., Atkin, D. M. (1996). All-silica single-mode optical fiber with photonic crystal cladding. Optics Letters, 21 (19), 1547. doi: 10.1364/ol.21.001547

Gfeller, F. R., Bapst, U. (1979). Wireless in-house data communication via diffuse infrared radiation. Proceedings of the IEEE, 67 (11), 1474–1486. doi: 10.1109/proc.1979.11508


Пристатейная библиография ГОСТ


1. Hondros, D. Electromagnetic waves along long cylinders of dielectric [Text] / D. Hondros, P. Debye // Ann. Phys. – 1910. – Vol. 32, Issue 3. – P. 465–476.

2. Schriever, O. Electromagnetic waves in dielectric wires [Text] / O. Schriever // Ann. Phys. – 1920. – Vol. 63, Issue 7. – P. 645–673.

3. Kapany, N. S. Fiber Optics. Principles and Applications [Text] / N. S. Kapany. – Academic Press, New York, 1967. – 447 p.

4. Kapron, F. P. RADIATION LOSSES IN GLASS OPTICAL WAVEGUIDES [Text] / F. P. Kapron // Applied Physics Letters. – 1970. – Vol. 17, Issue 10. – P. 423. doi: 10.1063/1.1653255

5. Miya, T. Ultimate low-loss single-mode fibre at 1.55 μm [Text] / T. Miya, Y. Terunuma, T. Hosaka, T. Miyashita // Electronics Letters. – 1979. – Vol. 15, Issue 4. – P. 106. doi: 10.1049/el:19790077

6. Adams, M. J. An Introduction to Optical Waveguides [Text] / M. J. Adams. – John Wiley & Sons, 1981. – 401 p.

7. Yablonovitch, E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics [Text] / E. Yablonovitch // Physical Review Letters. – 1987. – Vol. 58, Issue20. – P. 2059–2062. doi: 10.1103/physrevlett.58.2059

8. Yablonovitch, E. Photonic Band Structure: The Face-Centered-Cubic Case Employing Nonspherical Atoms [Text] / E. Yablonovitch, T. J. Gmitter, K. M. Leung // Physical Review Letters. – 1991. – Vol. 67, Issue 17. – P. 2295–2298. doi: 10.1103/physrevlett.67.2295

9. Chan, C. T. New structures and algorithms for photonic band gaps [Text] / C. T. Chan, S. Datta, Q. L. Yu, M. Sigalas, K. M. Ho, C. M. Soukoulis // Physica A: Statistical Mechanics and its Applications. – 1994. – Vol. 211, Issue 4. – P. 411–419. doi: 10.1016/0378-4371(94)00133-2

10. Johnson, S. Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis [Text] / S. Johnson, J. Joannopoulos // Optics Express. – 2001. – Vol. 8, Issue 3. – P. 173. doi: 10.1364/oe.8.000173

11. Anderson, M. Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor [Text] / M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, E. A. Cornell // Science. – 1995. – Vol. 269, Issue 5221. – P. 198–201. doi: 10.1126/science.269.5221.198

12. Russell, P. Photonic Crystal Fibers [Text] / P. Russell // Science. – 2003. – Vol. 299, Issue 5605. – P. 358–362. doi: 10.1126/science.1079280

13. Knight, J. C. Photonic Band Gap Guidance in Optical Fibers [Text] / J. C. Knight, J. Broeng, T. A. Birks, P. S. J. Russell // Science. – 1998. – Vol. 282, Issue 5393. – P. 1476–1478. doi: 10.1126/science.282.5393.1476

14. Russell, P. S. J. Photonic-Crystal Fibers [Text] / P. S. J. Russell // Journal of Lightwave Technology. – 2006. – Vol. 24, Issue 12. – P. 4729–4749. doi: 10.1109/jlt.2006.885258

15. Cregan, R. F. Single-Mode Photonic Band Gap Guidance of Light in Air [Text] / R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, D. C. Allan // Science. – 1999. – Vol. 285, Issue 5433. – P. 1537–1539. doi: 10.1126/science.285.5433.1537

16. Marcatili, E. A. J. Hollow Metallic and Dielectric Waveguides for Long Distance Optical Transmission and Lasers [Text] / E. A. J. Marcatili, R. A. Schmeltzer // Bell System Technical Journal. – 1964. – Vol. 43, Issue 4. – P. 1783–1809. doi: 10.1002/j.1538-7305.1964.tb04108.x

17. Zheltikov, A. M. Nonlinear optics of microstructure fibers [Text] / A. M. Zheltikov // Physics-Uspekhi. – 2004. – Vol. 47, Issue 1. – P. 69–98. doi: 10.1070/pu2004v047n01abeh001731

18. Knight, J. C. All-silica single-mode optical fiber with photonic crystal cladding [Text] / J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin // Optics Letters. – 1996. – Vol. 21, Issue 19. – 1547. doi: 10.1364/ol.21.001547

19. Gfeller, F. R. Wireless in-house communication via diffuse infrared radiation [Text] / F. R. Gfeller, U. Bapst // Proceedings of the IEEE. – 1979. – Vol. 67, Issue 11. – P. 1474–1486. doi: 10.1109/proc.1979.11508







Copyright (c) 2016 Haider Ali Muse

Creative Commons License
Эта работа лицензирована Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)