MODERN TECHNOLOGY TO EXTRACT СО2 FROM THE FLUE GAS OF THERMAL POWER PLANTS

Authors

  • Г. К. Лавренченко Ukrainian Association of Technical Gases Manufacturers «UA-SIGMA», POB 188, Odessa, Ukraine, 65026, Ukraine
  • А. В. Копытин Ukrainian Association of Technical Gases Manufacturers «UA-SIGMA», POB 188, Odessa, Ukraine, 65026, Ukraine

DOI:

https://doi.org/10.18198/j.ind.gases.2013.0656

Keywords:

Carbon dioxide, Flue gas, Chemical absorption, Desorption, Absorbent, Monoethanolamine, Technology, Specific consumption of heat, Specific consumption of steam, The degree of extraction

Abstract

In recent years, increased attention being given to reducing CO2 emissions in the environment related to human activities. The main contribution to the emission (about 40 %) are in the flue gases, waste from large thermal power plants (TPP). Since electricity consumption by 2030 year will double, energy must achieve a significant reduction in CO2 emissions from the combustion gases. To do this, begin to take root in the TPP effective technology of carbone capture and storage. The most advanced technology is «Chilled ammonia process», developed by «Alstom». Specific consumption heat for the regeneration of the solution is 2 GJ/t of CO2, which is equivalent to consumption of about 1 t steam/t CO2.

Author Biographies

Г. К. Лавренченко, Ukrainian Association of Technical Gases Manufacturers «UA-SIGMA», POB 188, Odessa, Ukraine, 65026

G.K. Lavrenchenko, Doctor of Technical Sciences

А. В. Копытин, Ukrainian Association of Technical Gases Manufacturers «UA-SIGMA», POB 188, Odessa, Ukraine, 65026

A.V. Kopytin, Candidate of Technical Sciences

References

Dan G. Chapel, Carl L. (1999). Recovery of CO2 from Flue Gases: Commercial Trends// Originally presented at the Canadian Society of Chemical Engineers annual meeting. October 4-6. Saskatoon, Saskatchewan, Canada. — 1999.

«Dow Chemical Co.»: http://www.dow.com.

«Fluor Daniel Inc..»: http://www.fluor.com.

Mariz C. L. (1998). Carbon Dioxide Recovery: Large Scale Design Trends// Journal of Canadian Petroleum Technology. — V. 37. — No. 7. — Р. 42-47.

Aboudheir A., Asghari K., Idem R. et al. (2007). Design and Engineering Factors Affecting CO2 Capture and EOR Applications// The 7th International Conference and Exhibition on Chemistry in Industry, CHEMINDIX-2007, Manama, Kingdom of Bahrain, March 26-28, 2007.

Reddy S., Johnson D., Gilmartin J. (2008). Fluor’s Econamine FG Plus Technology for CO2 Capture at Coal-fired Power Plants// Power Plant Air Pollutant Control «Mega» Symposium, Baltimore, USA. August 25-28, 2008.

Masaki I., Tatsuto N., Susumu O. et al. (2009). CO2 Recovery Technology for Coal-Fired Power Plants// Mitsubishi Heavy Industries Technical Review. — V. 46. — No. 1. — Р. 46-52.

Yasuyuki Y., Tomio M., Masaki I. et al. (2003). Improvements of carbon dioxide capture technology from flue gas// Kansai Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd, Japan.

Mimura T., Matsumoto K., Masaki I. et al. (2000). Development and application of flue gas carbon dioxide recovery technology//Kansai Electric Power Co., Inc. and Mitsubishi Heavy Industries, Ltd, Japan.

Aboudheir A., McIntyre G. (2008). Industrial design and optimization of CO2 capture, dehydration and compression facilities// «HTC Purenergy», Regina, SK, Canada and «Bryan Research & Engineering», Bryan, Texas, USA/ Report. http://www.bre.com.

U.S. Department of Energy: http://www.energy.org.

«Kerr-McGee Chemical Corp.»: http://www.kerrmcgee.com.

«HTC Purenergy»: http://www.htcenergy.com.

Janecke E. (1929). Über das System H2O, CO2 und NH3// Zeitschrift für Elektrochemie. — B. 39. — S. 332-334; 716-728.

Terres E., Weiser H. (1921). Beitrag zur Kenntnis der Ammoniak-Kohlensaureverbindungen im Gleigewicht mit ihren wasserigen Lősungen// Zeitschrift für Elektrochemie. — B. 27. — S. 177-193.

Terres E. and Behrens H. (1928). Zur Kenntnis des physikalisch-chemischen Grundlagen der Harnstoffsynthese aus Ammoniak, Kohlensaure und Wasser// Zeitschrift fuer Physikalische Chemie. — B. 139. — S. 693-716.

Guyer А., Piechowicz T. (1944). Lősungsgleichgewichte in wassеringen Systemen. Das System CO2-NH3-H2O bei 20-50°// Helvitica Chimica Acta. — B. 27. — S. 858-867.

Thomsen K., Rasmussen P. (1999). Modeling of Vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems// Chemical Engineering Science. — V. 54. — P. 1787-1802.

«ALSTOM»: http://www.alstom.com/.

Rhudy R., Black S. (2007). Chilled Ammonia Process// «EPRI», «ALSTOM»/ CO2 Capture Network, Lyon, France. May 24.

Kozak F., Petig A., Morris E. et al. (2009). Chilled Ammonia Process for CO2 Capture// Energy Procedia. — V. 1. — Р. 1419-1426.

Issue

Section

PLANTS AND THE EQUIPMENT FOR MANUFACTURING OF AIR SEPARATION PRODUCTS AND OTHER INDUSTRIAL GASES