OPTIMIZATION OF A TWO-SHAFT EXPANDER COMPRESSOR UNIT WITH SIMULTANEOUS IMPROVEMENT OF AIR-SEPARATING INSTALLATIONS OF MEDIUM PRODUCTIVITY

Authors

  • Г. К. Лавренченко Ukrainian Association of Industrial Gases Manufacturers «UA-SIGMA», p.o.b. 188, Odessa, Ukraine, 65026, Ukraine
  • А. В. Плесной Ukrainian Association of Industrial Gases Manufacturers «UA-SIGMA», p.o.b. 188, Odessa, Ukraine, 65026, Ukraine

DOI:

https://doi.org/10.18198/j.ind.gases.2013.0662

Keywords:

Air-separating installation, Liquid oxygen, Expander stage, Compressor stage, Expander compressor unit, Optimisation, Efficiency

Abstract

Application of expander compressor units (ECU) in air-separating installations (ASI) allows reducing of energy consumption. For the purpose of ECU effective use in the technological scheme of medium productivity installations its most general mathematical model has been developed. The task of optimization of ECU operation mode and design parameters, taking into account a number of restrictions, as well as the method of its optimization calculation has been described. The operation mode and design parameters of the unit on the basis of iterative calculations have been determined. It is shown that in determining the parameters that correspond to minimum energy consumption when producing liquid oxygen it is necessary to optimize the characteristics of ASI and ECU taking into account connections between them.

Author Biographies

Г. К. Лавренченко, Ukrainian Association of Industrial Gases Manufacturers «UA-SIGMA», p.o.b. 188, Odessa, Ukraine, 65026

G.K. Lavrenchenko , Doctor of Technical Science

А. В. Плесной, Ukrainian Association of Industrial Gases Manufacturers «UA-SIGMA», p.o.b. 188, Odessa, Ukraine, 65026

A.V. Plesnoy   PhD Student

References

Gorenshteyn I.V., Lavrenchenko G.K. (2003). The analysis of methods for increase of an output of liquid products in air separation plants of average pressure// Tekhnicheskie Gazy | Industrial Gases. — No. 3. — P.33-37. (Rus.).

Lavrenchenko G.K., Plesnoy A.V. (2012). Cost reductions energy to produce liquid products in ASP medium pressure with expander-compressor units// Tekhnicheskie Gazy | Industrial Gases. — No. 5. — P.21-28.

Lavrenchenko G.K., Shvets S.G. (2007). Optimization of cryogenic air separation plants with simultaneous development of effective expander-compressor units// Tekhnicheskie Gazy | Industrial Gases. — No. 6. — P.24-30. (Rus.).

Epyfanova V.I. (1998). Compressing and expanding turbomachines of radial type. — Moscow: Publ. house of MSTU by name N.E. Bauman. — 624 p. (Rus.).

Peng D.Y., Robinson D.B. A new two constant equation of state// Ind. Eng. Chem. Fundamen. — 1976. — V. 15. — P. 59-64.

Stryjek R., Vera J.H. PRSV: An improved Peng-Robinson equation of state for pure components and mixtures// The Canadian J. of Chemical Eng. — 1986. — V. 64. — P. 323-333.

Lavrenchenko G.K., Shvets S.G. (2007). Method of designing of expander-compressor units for cryogenic air separation plants // Tekhnicheskie Gazy | Industrial Gases. — No. 4. — P. 22-28. (Rus.).

Lavrenchenko G.K., Shvets S.G. (2007). Analysis of characteristics of liquefaction cycles of air with expander-compressor units// Tekhnicheskie Gazy | Industrial Gases. — No. 5. — P. 22-29. (Rus.).

Davydov A.B., Kobulashvyly A.Sh., Sherstyuk A.N. (1987). Calculation and constructing turboexpanders. — Moscow: Machinery construction. — 231 с. (Rus.).

Taran V.N. (2003). Prediction of the cryogenic turboexpanders characteristics// Tekhnicheskie Gazy | Industrial Gases. — No. 4. — P. 28-38. (Rus.).

Seleznev K.P., Galerkyn Yu.B. (1982). Centrifugal compressors. — Leningrad: Machinery construction. 1982. — 271 с. (Rus.).

Chistyakov F.M., Ignatenko V.V., Romanenko N.T. et al. (1969). Centrifugal compressor machines. — Moscow; Machinery construction. — 328 p. (Rus.).

Issue

Section

PROCESSES, CYCLES, SCHEMES AND THE EQUIPMENT OF REFRIGERATION AND CRYOGENIC SYSTEMS