THE OPTIMIZATION OF THE MULTI-SHAFT EXPANDER-COMPRESSOR UNIT OF THE AIR SEPARATION UNIT OF MEDIUM CAPACITY

Authors

  • Г. К. Лавренченко Institute of low temperature energy technology, POB 188, Odessa, Ukraine, 65026, Ukraine
  • А. В. Плесной Institute of low temperature energy technology, POB 188, Odessa, Ukraine, 65026, Ukraine

DOI:

https://doi.org/10.18198/j.ind.gases.2013.0693

Keywords:

Air separation init, Liquid oxygen, Multi-shaft expander-compressor unit, Compressor stage, Expander stage, Expansion operation, Specific energy expenditure

Abstract

In the modern air separation unit (ASU) that realize medium pressure cycles it is not possible to use effectively the air expansion operation in the expander. Studies have shown that expansion operation of a part of the processed air can be usefully transformed in additional refrigerating capacity in the expander-compressor unit (ECU) of a special design. ECU is characterized, firstly, by the availability of a turbo reducer for providing the optimum rotation frequency of the shaft of the compressor stage (CS), and, secondly, of two expander stages in which the air expansion is occurred. In CS of the unit of the multi-shaft construction with operation of two expander stages the air flow arriving after that in the expander stage of low pressure is compressed. In the course of ECU mode and design optimization the conditions under which two expander stages can be placed on one shaft were found. Optimization calculations of ASU together with ECU have shown that specific expenditure of energy in this unit can be reduced from 1.1 to 0.89 kWh/kg of liquid oxygen.

Author Biographies

Г. К. Лавренченко, Institute of low temperature energy technology, POB 188, Odessa, Ukraine, 65026

G. K. Lavrenchenko, Doctor of Technical Sciences

А. В. Плесной, Institute of low temperature energy technology, POB 188, Odessa, Ukraine, 65026

A.V. Plesnoy, PhD Student

References

Lavrenchenko G.K., Plesnoy A.V. (2012). Research of work expander-compressor units with two stages extensions in composition medium pressure ASU// Tekhnicheskie Gazy. [Industrial Gases]. — № 6. — P. 34-41. (Rus.).

Lavrenchenko G.K., Plesnoy A.V. (2013). Optimization of a two-shaft detendre compressor unit with simultaneous improvement of air-separating installations of medium productivity// Tekhnicheskie Gazy. [Industrial Gases]. — № 2. — P. 15-23. (Rus.).

Lavrenchenko G.K., Plesnoy A.V. (2013). Increasing the efficiency of the gas-expansion machine-compressor units used in the structure of the air-separating unit of medium pressure// Tekhnicheskie Gazy. [Industrial Gases]. — № 4. — P. 18-23. (Rus.).

Epifanova V.I. (1998). Compressor and expander radial turbo machine. — Moskow: Bauman Moskow State Technical University. — 624 p. (Rus.).

Barzdaitis V., Maћeika P. (2010). Diagnostics practice of heavy duty high speed gear transmissions// Mechanika. — No. 1. — P. 58-61.

Shalaev D.Yu. (2010). Features of «MAN Turbo» compressors for modern cryogenic air separation plants// Tekhnicheskie Gazy. [Industrial Gases]. — № 1. — P.45-49. (Rus.).

Stavitskiy V.V., Nosko P.L. (2012). The method of designing energy-efficient high-speed gears// Proceedings of the National Technical University «Kharkiv Polytechnic Institute». — № 42. — P. 132-139. (Rus.).

Davyidov A. B., Kobulashvili A.Sh., Sherstyuk A.N. (1987). Calculation and design of turbine expanders. — Moskow: Mashinostroenie. — 231 p. (Rus.).

Taran V.N. (2003) Prediction of the cryogenic turbo expander characteristics// Tekhnicheskie Gazy. [Industrial Gases]. — № 4. — P. 28-38. (Rus.).

Galerkin Yu.B., Soldatova K.V., Titenskiy V.I. (2007). The theory, calculation and design of compressor machines dynamic action. Turbocompressors. — Sanсt-Peterburg: SPbGPU, — 142 p. (Rus.).

Boyko L.G. Barysheva E.S. (2011). Transonic flow research in high-pressure centrifugal impeller// Vestnik dvigatelestroeniya. [Vestnik engine building]. — №. 2. — P. 203-207. (Rus.).

Krain H. (2002). Unsteady Diffuser Flow in a Transonic Centrifugal Compressor// Int. Journal of Rotating Machinery. — V. 8. — No. 3. — P. 223-231.

Krain H., Hoffmann B. (2008). Flow Study of a Redesigned High-Pressure-Ratio Centrifugal Compressor// Journal of Propulsion and Power. — V. 24. — No. 5. — P. 1117-1123.

Bulot N., Trebinjac I. (2008). Effect of the unsteadiness on the diffuser flow in a transonic centrifugal compressor stage// International Journal of Rotating Machinery. — Article ID 932593. — P. 1-11.

Fleming R., Lou F., Key N. L. (2011). The Development of a High Speed Centrifugal Compressor Research Facili-ty// 49th AIAA Aerospace Sciences Meeting. — V. 7. — P. 4-7.

Issue

Section

PROCESSES, CYCLES, SCHEMES AND THE EQUIPMENT OF REFRIGERATION AND CRYOGENIC SYSTEMS