Канонические квази-геодезические отображения параболически келеровых пространств
DOI:
https://doi.org/10.15673/2072-9812.1/2014.29277Ключевые слова:
Риманово пространство, параболически келерова структураАннотация
Мы исследуем специальный тип отображений между римановыми пространствами с параболически келеровой структурой.Библиографические ссылки
Д. В. Беклемишев. Дифференциальная геометрия пространств с почти комплексной структурой // Итоги науки. Геометрия. М., ВИНИТИ АН СССР, 1963 165-212.
J. Mikes, A. Vanzurova, I. Hinterleitner. Geodesic Mappings and Some Generalizations // Palacky University, Olomouc, Faculty of Science. Olomouc, 2009.
T. Otsuki, Y. Tashiro. On curves in Kaehlerian spaces // J.Okayama Univ. №4, 1954 57-78.
H. С. Синюков. Геодезические отображения римановых пространств // М.: Наука, Москва, 1979. 256 с.
А. П. Широков. Пространства над алгебрами и их применения // Итоги науки и техники. Современная математика и ее приложения ВИНИТИ. М., Т.73, 2002 135— 161.
В. В. Вишневский. Интегрируемые аффинорные структуры и их плюральные интерпретации // Итоги науки и техники. Современная математика и ее приложения ВИНИТИ. М., Т.73, 2002 5-64.
И. Микеш, Н. С. Синюков. О квазипланарных отображениях пространств аффинной связности // Известия ВУЗов. Математика. №1, 1983 55-61.
Петров А.З. Моделирование физических полей // Гравитация и теория относительности, 1968, вып.4-5. Изд. Казанск. ун-та. С. 7-21.
И. Н. Курбатова. Квази-геодезические отображения римановых пространств // Дисс. на соиск. учен. степ. к. ф.-м. и. Одес. ОГУ, 1979 99 с.
П. А. Широков. Избранные работы по геометрии // Казань: Изд-во Казан.ун-та, 1966 432 с.