Хаос-геометрический подход к анализу хаотической динамики
DOI:
https://doi.org/10.15673/2072-9812.4/2014.42031Ключевые слова:
Геометрия хаоса, нелинейный анализ, квантово-генераторная система,Аннотация
В рамках хаос- геометрического подхода проведено моделирование и анализ динамики нелинейных процессов в квантово-генераторной системе (временные ряды интенсивности лазерного излучения). Метод моделирования включает улучшенные алгоритмы средней взаимной информации, корреляционного интеграла, анализ показателей Ляпунова и др.
Библиографические ссылки
Glushkov A.V., Bunyakova Yu.Ya., Analysis and estimation of anthropogenic influence on industrial city air basin.-Odessa: Ecology, 2011.-290P.
Glushkov A.V., Kuzakon' V.M., Khetselius O.Yu., Prepelitsa G.P. and Svinarenko A.A., Geometry of Chaos: Theoretical basis's of a consistent combined approach to treating chaotic dynamical systems and their parameters determination// Proc. Int. Geom.Centre.-2013.-V.6.-P.6-12.
Bunyakova Yu.Ya., Glushkov A.V.,Fedchuk A.P., Serbov N.G., Svinarenko A.A., Tsenenko I.A., Sensing non-linear chaotic features in dynamics of system of couled autogenerators:standard multifractal analysis// Sensor Electr. and Microsyst. Techn.-2007.-N1.-P.14-17.
Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya., Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier).-2008.-Vol.42.-P. 7284-7292.
Glushkov A.V., Svinarenko A.A., Buyadzhi V.V., Zaichko P.A., Ternovsky V.B., Chaos-geometric attractor and quantum neural networks approach to simulation chaotic evolutionary dynamics during perception process// Advances in Neural Networks, Fuzzy Systems and Artificial Intelligence, Series: Recent Advances in Computer Engineering (Gdansk,EU, World Sci.).-2014.-Vol.21.-P.143-150.
Glushkov A.V., Prepelitsa G.P., Lepikh Ya.I., Buyadzhi V.V., Ternovsky V.B., Zaichko P.A., Chaotic dynamics of non-linear processes in atomic and molecular systems in electromagnetic field and semiconductor and fiber laser devices: new approaches, uniformity and charm of chaos// Sensor Electronics and Microsystems Techn.-2014.-Vol.11,N4.-P.43-57.
Glushkov A.V., Khetselius O.Yu., Bunyakova Yu.Ya., Prepelitsa G.P., Solyanikova E.P., Serga E.N., Non-linear prediction method in short-range forecast of atmospheric pollutants: low-dimensional chaos// Dynamical Systems _ Theory and Applications. _ Lodz:Lodz Univ. Press (Poland). -2011.-P. LIF111 (6p.).
Glushkov A.V., Bunyakova Yu.Ya., Zaichko P.A., Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proc. of Int. Geometry Center.-2013.-Vol.6,N3.-P.6-14.
Fischer I., Hess O., Elsaber W., Gobel E.: High-dimensional chaotic dynamics of an external cavity semiconductor laser//Phys Rev Lett.-1994.-Vol.73.-P.2188-2192.
Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys Rev A.-1992.-Vol.45.-P.3403-3411.
Packard N., Crutch_eld J., Farmer J., Shaw R., Geometry from a time series//Phys Rev.Lett.-1988.-Vol.45.-P.712-716.
Grassberger P., Procaccia I., Measuring the strangeness of strange attractors//Physica D.-1983.-Vol.9.-P.189-208.
Fraser A., Swinney H., Independent coordinates for strange attractors from mutual information// Phys Rev A.-1986.-Vol.33.-P.1134-1140.
Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence,Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg New York, pp 366-381.
Mane R (1981) On the dimensions of the compact invariant sets of certain non-linear maps. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg N.-Y., p. 230-242
Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series//Phys Rev.Lett.-1995.-Vol.55.-P.1082-1085