Geometry of Chaos: Advanced approach to treating chaotic dynamics in some nature systems
DOI:
https://doi.org/10.15673/2072-9812.1/2014.29271Schlagworte:
geometry of chaos, non-linear analysis, nature systemAbstract
It is presented an advanced chaos-geometrical approach to treating chaotic dynamics in some nature systems and its numerical application to hydroecological one. The approach combines together application of the advanced mutual information approach, correlation integral analysis, Lyapunov exponent’s analysis etc.
Literaturhinweise
Glushkov A.V., Bunyakova Yu.Ya., Analysis and estimation of anthropogenic loading influence on industrial city air basin.-Odessa: Ecology, 2011.-290P.
Glushkov A.V., Chaos-geometrical universal numerical approach to life science processes: Theoretical basis’s// Computational Life Sciences (Sprinfger), in print.
Glushkov A.V., Khokhlov V.N., Tsenenko I.A. Atmospheric teleconnection patterns: wavelet analysis// Nonlin. Proc.in Geophys.-2004.-V.11,N3.-P.285-293.
Bunyakova Yu.Ya., Glushkov A.V., Fedchuk A.P., Serbov N.G., Svinarenko A.A., Tsenenko I.A., Sensing non-linear chaotic features in dynamics of system of couled autogenerators: standard multifractal analysis// Sensor Electr. and Microsyst. Techn.-2007.-N1.-P.14-17.
Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya., Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier).-2008.-Vol.42.-P. 7284-7292.
Bunyakova Yu.Ya., Khetselius O.Yu., Non-linear prediction statistical method in forecast of atmospheric pollutants//Proc. of the 8th International Carbon Dioxide Conference.-Jena (Germany).-2009.- P.T2-098.
Glushkov A.V., Khokhlov V.N., Loboda N.S., Khetselius O.Yu., Bunyakova Yu.Ya., Nonlinear prediction method in forecast of air pollutants CO2, CO// Transport and Air Pollution. - Zurich: ETH University Press (Switzerland). -2010. - P.131-136.
Glushkov A.V., Khetselius O.Yu., Bunyakova Yu.Ya., Prepelitsa G.P., Solyanikova E.P., Serga E.N., Non-linear prediction method in short-range forecast of atmospheric pollutants: low-dimensional chaos// Dynamical Systems - Theory and Applications. - Lodz: Lodz Univ. Press (Poland). -2011.- LIF111 (6p.).
Glushkov A.V., Bunyakova Yu.Ya., Zaichko P.A., Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proc. of Int. Geometry Center.-2013.-Vol.6,N3.-P.6-14.
Pekarova P., Miklanek P., Konicek A., Pekar J.: Water quality in experimental basins. National Report 1999 of the UNESKO.-Project l.l.-Intern.Water Systems. 1999, 1-98.
KoP-ak K., Saylan L., Sen O., Nonlinear time series prediction of O3 concentration in Cityplacelstanbul.. AtmosphericEnvironment (Elsevier) 34, 2000, 1267-1271.
Kuznetsov S.P., Dunamical chaos.-Moscow: Fizmatlit.-2006.-356P.
Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys Rev A.-1992.-Vol.45.-P.3403-3411.
Packard N., Crutchfield J., Farmer J., Shaw R., Geometry from a time series//Phys Rev Lett.-1988.-Vol.45.-P. 712-716.
Grassberger P., SnplaceProcaccia SnI., Measuring the strangeness of strange attractors//Physica D.-1983.-Vol.9.-P.189-208.
Fraser A., Swinney H., Independent coordinates for strange attractors from mutual information// Phys Rev A.-1986.-Vol.33.-P. 1134-1140.
Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg New York, pp 366-381
Mane R (1981) On the dimensions of the compact invariant sets of certain non-linear maps. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg N.-Y., p. 230-242
Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series//Phys Rev.Lett.-1995.-Vol.55.-P. 1082-1085
Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J., Testing for nonlinearity in time series: The method of surrogate data// Physica D.-1992.-Vol.58.-P.77-94.
Kaplan J.L., Yorke J.A., Chaotic behavior of multidimensional difference equations, in: Peitgen H.-O., Walter H.-O. (Eds.), Functional Differential Equations and Approximations of Fixed Points. Lecture Notes in Mathematics No. 730. Springer, Berlin.-1979.-pp.204-227.