Geometry of Chaos: Advanced computational approach to treating chaotic dynamics of some hydroecological systems II

Autor

  • Alexander Glushkov Odessa State Environmental University, Ukraine
  • Viktor Kuzakon Odessa National Academy of Food Technologies, Ukraine
  • Yuliya Bunyakova Odessa State Environmental University, Ukraine
  • Vasily Buyadzhi Odessa State Environmental University, Ukraine

DOI:

https://doi.org/10.15673/2072-9812.2/2015.51584

Słowa kluczowe:

Geometry of chaos, Non-linear analysis, Nature system

Abstrakt

This paper goes on our work on  application of the chaos theory and non-linear analysis technique to studying chaotic features of different nature systems. Here we present new results of using an advanced chaos-geometric approach to treating chaotic pollution dynamics in the hydroecological systems, in particular, forested watersheds. Generally, an approach combines together application of the advanced mutual information scheme, Grasberger-Procachi algorythm, Lyapunov exponent's analysis etc

Biogramy autorów

Alexander Glushkov, Odessa State Environmental University

Department of higher and applied mathematics, Head of department, professor

Viktor Kuzakon, Odessa National Academy of Food Technologies

Department of higher mathematics, Head of department, docent

Yuliya Bunyakova, Odessa State Environmental University

Department of environmental economics , assoc.-prof.

Vasily Buyadzhi, Odessa State Environmental University

Department of higher and applied mathematics, assoc.-docent

Bibliografia

Glushkov A.V., Bunyakova Yu.Ya., Analysis and estimation of anthropogenic loading influence on industrial city air basin.-Odessa: Ecology, 2011.-290P.

Glushkov A.V., Buyadzhi V.V., Ponomarenko E.L., Geometry of Chaos: Advanced approach to treating chaotic dynamics in some nature systems// Proc. Int. Geom. Centre.- 2014.-Vol.7,N1.-P.24-29

Glushkov A.V., Kuzakon' V.M., Khetselius O.Yu., Prepelitsa G.P. and Svinarenko A.A., Geometry of Chaos: Theoretical basis's of a consistent combined approach to treating chaotic dynamical systems and their parameters determination// Proc. Int. Geom. Centre.-2013.-Vol.6,N1.-P.6-12.

Glushkov A.V., Kuzakon V.M., Buyadzhi V.V., Solyanikova E.P., Geometry of Chaos: Advanced computational approach to treating chaotic dynamics of some hydroecological systems// Proc. Int. Geom. Centre.-2015.-Vol.8,N1.-P.67--72.

Bunyakova Yu.Ya., Glushkov A.V.,Fedchuk A.P., Serbov N.G., Svinarenko A.A., Tsenenko I.A., Sensing non-linear chaotic features in dynamics of system of couled autogenerators: standard multifractal analysis// Sensor Electr. and Microsyst. Techn.-2007.-N1.-P.14-17.

Glushkov A.V., Khokhlov V.N., Loboda N.S., Bunyakova Yu.Ya., Short-range forecast of atmospheric pollutants using non-linear prediction method// Atmospheric Environment (Elsevier).-2008.-Vol.42.-P. 7284--7292.

Bunyakova Yu.Ya., Khetselius O.Yu., Non-linear prediction statistical method in forecast of atmospheric pollutants//Proc. of the 8th International Carbon Dioxide Conference.-Jena (Germany).-2009.- P.T2-098.

Glushkov A.V., Khokhlov V.N., Loboda N.S., Khetselius O.Yu., Bunyakova Yu.Ya., Non-linear prediction method in forecast of air pollutants CO2, CO// Transport and Air Pollution. -- Zurich: ETH University Press (Switzerland). --2010. -- P.131--136.

Glushkov A.V., Khetselius O.Yu., Bunyakova Yu.Ya., Prepelitsa G.P., Solyanikova E.P., Serga E.N., Non-linear prediction method in short-range forecast of atmospheric pollutants: low-dimensional chaos// Dynamical Systems -- Theory and Applications. -- Lodz: Lodz Univ. Press (Poland). --2011.- LIF111 (6p.).

Glushkov A.V., Bunyakova Yu.Ya., Zaichko P.A., Geometry of Chaos: Consistent combined approach to treating chaotic dynamics atmospheric pollutants and its forecasting// Proc. of Int. Geometry Center.-2013.-Vol.6,N3.-P.6-14.

Pekarova P., Miklanek P., Konicek A., Pekar J.: Water quality in experimental basins. National Report 1999 of the UNESKO.-Project 1.1.-Intern.Water Systems. 1999, 1-98.

Koзak K., Saylan L., Sen O., Nonlinear time series prediction of O3 concentration in CityplaceIstanbul. Atmospheric Environment}$ (Elsevier) 34, 2000, 1267-1271.

Kuznetsov S.P., Dunamical chaos.-Moscow: Fizmatlit.-2006.-356P.

Kennel M., Brown R., Abarbanel H., Determining embedding dimension for phase-space reconstruction using a geometrical construction//Phys Rev A.-1992.-Vol.45.-P.3403--3411.

Packard N., Crutchfield J., Farmer J., Shaw R., Geometry from a time series//Phys Rev Lett.-1988.-Vol.45.-P.712--716.

Grassberger P., SnplaceProcaccia SnI., Measuring the strangeness of strange attractors//Physica D.-1983.-Vol.9.-P.189--208.

Fraser A., Swinney H., Independent coordinates for strange attractors from mutual information// Phys Rev A.-1986.-Vol.33.-P.1134--1140.

Takens F (1981) Detecting strange attractors in turbulence. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg New York, pp 366--381

Mane R (1981) On the dimensions of the compact invariant sets of certain non-linear maps. In: Rand DA, Young LS (eds) Dynamical systems and turbulence, Warwick 1980. (Lecture notes in mathematics No 898). Springer, Berlin Heidelberg N.-Y., p. 230--242

Sano M, Sawada Y (1985) Measurement of the Lyapunov spectrum from a chaotic time series//Phys Rev.Lett.-1995.-Vol.55.-P.1082--1085

Theiler J., Eubank S., Longtin A., Galdrikian B., Farmer J., Testing for nonlinearity in time series: The method of surrogate data// Physica D.-1992.-Vol.58.-P.77--94.

Kaplan J.L., Yorke J.A., Chaotic behavior of multidimensional difference equations, in: Peitgen H.-O., Walter H.-O. (Eds.), Functional Differential Equations and Approximations of Fixed Points. Lecture Notes in Mathematics No. 730. Springer, Berlin.-1979.-pp.204-227.

Gottwald G.A., Melbourne I., A new test for chaos in deterministic systems// Proc. Roy. Soc. London. Ser. A.– 2004. – Vol. 460. – P. 603--611.

##submission.downloads##

Opublikowane

2015-10-15