Bone marrow fibrosis – the basis of mielofibrosis: pathogenesis, prognostication and antifibrogenic targeted strategies.
DOI:
https://doi.org/10.26641/2307-0404.2018.1.124952Keywords:
bone marrow fibrosis, myelofibrosis, pathogenesis, cell therapy, targeted strategiesAbstract
Bone marrow fibrosis is a key patological feature and major diagnostic criterion of mielofibrosis. Although bone marrow fibrosis is manifested in a variety of malignant and non-malignant disease states, the deposition of reticulin and collagen fibrosis in the bone marrow of patients with myelofibrosis is believed to be mediated by the mielofibrosis of hematopoietic stem/progenitor cells, contributing to an impaired microenvironment toward malignant over normal hematopoiesis. The increased expression of proinflammatory cytokines, transforming growth factor-β, impaired megakaryocyte function and aberrant JAK-STAT signaling are the peculiarities of pathogenesis of bone marrow fibrosis. Hematopoietic stem cell transplantation remains the only therapeutic approach that reliably results in resolution of bone marrow fibrosis in patients with mielofibrosis. In the work we review the pathogenesis, biological consequences and prognostic results of impact of bone marrow fibrosis. We discuss the rationale of various anti-fibrogenic treatment strategies targeting at clonal hematopoietic stem/progenitor cells, aberrant signaling pathway, fibrogenic cytokines, and tumor microenvironment.References
Dolgih TYu, Sholenberg EV, Kachesov IV. [Clinical and morphological study of myelofibrosis in various types of bone marrow tumor lesion in patients with chronic lymphocytic leukemia]. Byull. eksperim. biol. i med. 2016;161,3:386-90. Russian.
Silyutina AA, Gin II,MatyuhinaNM. [Models of myelofibrosis]. Onkogematologiya. 2017;10(1);75-84. Russian.
Baxter EJ, Scott LM, Campbell PJ. Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. Lancet. 2005;365(9464):1054-61.
Abbonante V, Gruppi C, Catarsi P. Altered fibronectin expression and deposition by myeloproliferative neoplasm-derived mesenchymal stromal cells. Br J Haematol. 2016;172(1):140-4.
Mascarenhas J, Li T, Sandy L. Anti-transforming growth factor-β therapy in patients with myelofibrosis. Leuk Lymphoma. 2014;55(2):450-52.
Haudek SB, Xia Y, Huebener P. Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proc Natl Acad Sci U S A. 2006;103(48):18284-9.
Zahr AA, Salama ME, Carreau N. Bone marrow fibrosis in myelofibrosis: pathogenesis, prognosis and targeted strategies. Haematologica. 2016;101(6):660-71.
Kuter DJ, Bain B, Mufti G. Bone marrow fibrosis: pathophysiology and clinical significance of increased bone marrow stromal fibres. Br J Haematol. 2007;139(3):351-62.
Bock O, Höftmann J, Theophile K. Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol. 2008;172(4):951-60.
Pallotta I, Lovett M, Rice W. Bone marrow osteoblastic niche: a new model to study physiological regulation of megakaryopoiesis. PLoS One. 2009;4(12):8359.
Bornstein P. Thrombospondins function as regulators of angiogenesis. https://www.ncbi.nlm.nih.gov/pubmed/19798599">J Cell Commun Signal. 2009;3(3-4):189-200.
Boulais PE, Frenette PS. Making sense of hematopoietic stem cell niches. Blood. 2015;125(17);2621-29.
Chang VT, Yook C, Rameshwar P, Chang VT. Synergism between fibronectin and transforming growth factor-β1 in the production of substance P in monocytes of patients with myelofibrosis. Leuk Lymphoma. 2013;54(3):631-38.
Chou JM, Li CY, Tefferi A. Bone marrow immunohistochemical studies of angiogenic cytokines and their receptors in myelofibrosis with myeloid metaplasia. Leuk Res. 2003;27(6):499-504.
Lekovic D, Gotic M, Perunicic-Jovanovic M. Contribution of comorbidities and grade of bone marrow fibrosis to the prognosis of survival in patients with primary myelofibrosis. Med Oncol. 2014;31(3):869.
Gangat N, Caramazza D, Vaidya R. DIPSS plus: a refined Dynamic International Prognostic Scoring System for primary myelofibrosis that incorporates prognostic information from karyotype, platelet count, and transfusion status. J Clin Oncol. 2011;29(4):392-97.
Ianotto JC, Boyer-Perrard F, Gyan E. Efficacy and safety of pegylated-interferon α-2a in myelofibrosis: a study by the FIM and GEM French cooperative groups. Br J Haematol. 2013;162(6):783-91.
Mascarenhas J, Roper N, Chaurasia P. Epigenetic abnormalities in myeloproliferative neoplasms: a target for novel therapeutic strategies. Clin Epigenetics. 2011;2(2):197-212.
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta. 2014;1840(8):2506-19.
Guerrouahen BS, Al-Hijji I, Tabrizi AR. Osteoblastic and vascular endothelial niches, their control on normal hematopoietic stem cells, and their consequences on the development of leukemia. Stem Cells Int. 2011;2011:375857.
Hasselbalch HC. The role of cytokines in the initiation and progression of myelofibrosis. Cytokine Growth Factor Rev. 2013;24(2):133-45.
Zhao R, Xing S, Li Z. Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 2005;280(24):22788-92.
Barbui T, Thiele J, Passamonti F. Initial bone marrow reticulin fibrosis in polycythemia vera exerts an impact on clinical outcome. Blood. 2012;119(10):2239-41.
Harrison C, Kiladjian JJ, Al-Ali HK. JAK inhibition with ruxolitinib versus best available therapy for myelofibrosis. N Engl J Med. 2012;366(9):787-98.
Klamer S, Voermans C. The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adh Migr. 2014;8(6):563-77.
Le Bousse-Kerdilès MC, Martyré MC, Samson M. Cellular and molecular mechanisms underlying bone marrow and liver fibrosis: a review. Eur Cytokine Netw. 2008;19(2):69-80.
Sangaletti S, Stoppacciaro A, Guiducci C. Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med. 2003;198(10):1475-85.
Lu M, Xia L, Liu YC. Lipocalin produced by myelofibrosis cells affects the fate of both hematopoietic and marrow microenvironmental cells. Blood. 2015;126(8):972-82.
Machlus KR, Italiano JE Jr Machlus KR. The incredible journey: From megakaryocyte development to platelet formation. J Cell Biol. 2013;201(6):785-96.
Malara A, Gruppi C, Rebuzzini P. Megakaryocyte-matrix interaction within bone marrow: new roles for fibronectin and factor XIII-A. Blood. 2011;117(8):2476-83.
Melo JV, Goldman JM. Hematologic malignancies: myeloproliferative disorders. Springer:New York. 2014;354.
Arranz L, Sánchez-Aguilera A, Martín-Pérez D. Neuropathy of haematopoietic stem cell niche is essential for myeloproliferative neoplasms. Nature. 2014;512(7512):78-81.
Kvasnicka HM, Orazi A, Thiele J. Net study on the reproducibility of bone marrow features in masked polycythemia vera and differentiation from essential thrombocythemia. Am J Hematol. 2017;7.
Cervantes F, Dupriez B, Pereira A. New prognostic scoring system for primary myelofibrosis based on a study of the International Working Group for Myelofibrosis Research and Treatment. Blood. 2009;113(13):2895-901.
Gupta V, Koschmieder S, Claire N. Phase 1b Dose-Escalation Study of Sonidegib (LDE225) in Combination with Ruxolitinib (INC424) in Patients with Myelofibrosis. Blood. 2014;124(21):712.
Ciurea SO, Merchant D, Mahmud N. Pivotal contributions of megakaryocytes to the biology of idiopathic myelofibrosis. Blood. 2007;110(3):986-93.
Di Buduo CA, Wray LS, Tozzi L. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood. 2015;125(14):2254-64.
Chagraoui H, Komura E, Tulliez M. Prominent role of TGF-beta 1 in thrombopoietin-induced myelofibrosis in mice. Blood. 2002;100(10):3495-503.
Dillingh MR, van den Blink B, Moerland M. Recombinant human serum amyloid P in healthy volunteers and patients with pulmonary fibrosis. Pulm Pharmacol Ther. 2013;26(6):672-76.
Campbell PJ, Bareford D, Erber WN. Reticulin accumulation in essential thrombocythemia: prognostic significance and relationship to therapy. J Clin Oncol. 2009;27(18):2991-9.
Alchalby H, Yunus DR, Zabelina T. Risk models predicting survival after reduced-intensity transplantation for myelofibrosis. Br J Haematol. 2012;157(1):75-85.
Katayama Y, Battista M, Kao WM. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell. 2006;124(2):407-21.
Silver RT, Vandris K, Goldman JJ. Recombinant interferon-α may retard progression of early primary myelofibrosis: a preliminary report. Blood. 2011;117(24):6669-72.
Klampfl T, Gisslinger H, Harutyunyan AS. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379-90.
Adams GB, Chabner KT, Alley IR. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature. 2006;439(7076):599-603.
Abdulkarim K, Ridell B, Johansson P. The impact of peripheral blood values and bone marrow findings on prognosis for patients with essential thrombocythemia and polycythemia vera. Eur J Haematol. 2011;86(2):148-55.
Kopp HG, Avecilla ST, Hooper AT. The bone marrow vascular niche: home of HSC differentiation and mobilization. Physiology (Bethesda). 2005;20:349-56.
Gianelli U, Vener C, Bossi A. The European Consensus on grading of bone marrow fibrosis allows a better prognostication of patients with primary myelofibrosis. Mol Pathol. 2012;25(9):1193-202.
Frantz C, Stewart KM, Weaver VM. The extracellular matrix at a glance. J Cell Sci. 2010;123(Pt 24):4195-200.
Guglielmelli P, Lasho TL, Rotunno G. The number of prognostically detrimental mutations and prognosis in primary myelofibrosis: an international study of 797 patients. Leukemia. 2014;28(9):1804-10.
Leiva O, Ng SK, Chitalia S. The role of the extracellular matrix in primary myelofibrosis. Blood Cancer J. 2017;7(2):525.
Chachoua I, Pecquet C, El-Khoury M. Thrombopoietin receptor activation by myeloproliferative neoplasm associated calreticulin mutants. Blood. 2016;127(10):1325-33.
Abbonante V, Di Buduo CA, Gruppi C. Thrombopoietin/TGF-β1 loop regulates megakaryocyte extracellular matrix component synthesis. Stem Cells. 2016;34(4):1123-33.
Muth M, Engelhardt BM, Kröger N. Thrombospondin-1 (TSP-1) in primary myelofibrosis (PMF) – a megakaryocyte-derived biomarker which largely discriminates PMF from essential thrombocythemia. Ann Hematol. 2011;90(1):33-40.
Roberts AB, Sporn MB, Assoian RK. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc Natl Acad Sci U S A. 1986;83(12):4167-71.
Martinelli G, Oehler VG, Papayannidis C. Treatment with PF-04449913, an oral smoothened antagonist, in patients with myeloid malignancies: a phase 1 safety and pharmacokinetics study. Lancet Haematol. 2015;2(8):339-46.
Wilson A, Trumpp A. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol. 2006;6(2):93-106.
Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210.
Yin T, Li L. The stem cell niches in bone. J Clin Invest. 2006;116(5):1195-201.
Downloads
How to Cite
Issue
Section
License
Copyright (c) 2018 Medicni perspektivi
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submitting manuscript to the journal "Medicni perspektivi" the author(s) agree with transferring copyright from the author(s) to publisher (including photos, figures, tables, etc.) editor, reproducing materials of the manuscript in the journal, Internet, translation into other languages, export and import of the issue with the author’s article, spreading without limitation of their period of validity both on the territory of Ukraine and other countries. This and other mutual duties of the author and all co-authors separately and editorial board are secured by written agreement by special form to use the article, the sample of which is presented on the site.
Author signs a written agreement and sends it to Editorial Board simultaneously with submission of the manuscript.