Treatment and prophylaxis of moderate and severe bronchopulmonary dysplasia in premature neonates
DOI:
https://doi.org/10.26641/2307-0404.2021.3.241961Keywords:
bronchopulmonary dysplasia, premature, neonates, newborns, respiratory support, prophylaxisAbstract
Bronchopulmonary dysplasia in premature neonates leads to physical and mental developmental disorders and behavioral problems and associated with frequent rehospitalizations and long hospital stay. Study objective: to study the predictors of bronchopulmonary dysplasia development in premature neonates in structure of intensive care. Study design: A retrospective cohort analysis was performed in 127 children recruited from two NICU of Dnipro between January 2016 to March 2020. Inclusion criteria: preterm neonates 28-32 gestation weeks with respiratory distress syndrome (RDS). Results demonstrated that every day of mechanical ventilation, supplemental oxygen with FiO2 more than 30% and cardiac drugs usage increased risk of bronchopulmonary dysplasia development by 15-20%. In conclusion, finding out predictors of bronchopulmonary dysplasia helps to improve and prudently use usual treatment regimens in premature neonates and decrease the frequency of moderate and severe bronchopulmonary dysplasia.
References
Dobrianskyi DO, Menshykova AO, Borysuk OP. [Long-term outcomes of bronchopulmonary dysplasia in preterm infants.] Modern pediatrics. Ukraine. 2019;4(100):43-52. Ukrainian. doi: https://doi.org/10.15574/SP.2019.100.43
Kurland G, Deterding RR, Hagood JS, Young LR, Brody AS, Castile RG, et al. An official American Thora¬cic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med. 2013;188(3):376-94. PMid:23905526 PMCid:PMC3778735. doi: https://doi.org/10.1164/rccm.201305-0923ST
Baud O, Laughon M, Lehert P. Survival without Bronchopulmonary Dysplasia of Extremely Preterm Infants: A Predictive Model at Birth. Neonatology. 2021;18:1-9. doi: https://doi.org/10.1159/000515898
Bijapur MB, Kudligi NA, Asma S. Central Ve¬nous Blood Gas Analysis: An Alternative to Arterial Blood Gas Analysis for pH, PCO2, Bicarbonate, Sodium, Potassium and Chloride in the Intensive Care Unit Patients. Indian J Crit Care Med. 2019 Jun;23(6):258-62. PMID: 31435143; PMCID: PMC6698350. doi: https://doi.org/10.5005/jp-journals-10071-23176
Bilan N, Dastranji A, Ghalehgolab Behbahani A. Comparison of the Spo2/Fio2 ratio and the Pao2/Fio2 ratio in patients with acute lung injury or acute respiratory distress syndrome. J Cardiovasc Thorac Res. 2015;7(1):28-31. doi: https://doi.org/10.15171/jcvtr.2014.06
Higgins RD, Jobe AH, Koso-Thomas M, et al. Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr. 2018;197:300-8. doi: https://doi.org/10.1016/j.jpeds.2018.01.043
Buzzella B, Claure N, D'Ugard C, Bancalari E. A randomized controlled trial of two nasal continuous positive airway pressure levels after extubation in preterm infants. J Pediatr. 2014;164(1):46-51. doi: https://doi.org/10.1016/j.jpeds.2013.08.040
Cokyaman T, Kavuncuoglu S. Bronchopulmonary dysplasia frequency and risk factors in very low birth weight infants: A 3-year retrospective study. North Clin Istanb. 2019 Aug 9;7(2):124-30. PMID: 32259033; PMCID: PMC7117633. doi: https://doi.org/10.14744/nci.2019.23427
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a non¬pa¬rametric approach. Biometrics. 1988;44(3):837-45. doi: https://doi.org/10.2307/2531595
Gajdos M, Waitz M, Mendler MR, Braun W, Hummler H. Effects of a new device for automated closed loop control of inspired oxygen concentration on fluctuations of arterial and different regional organ tissue oxygen saturations in preterm infants. Arch Dis Child Fetal Neonatal Ed.; 2018. doi: https://doi.org/10.1136/archdischild-2018-314769
Jensen EA, DeMauro SB, Kornhauser M, Aghai ZH, Greenspan JS, Dysart KC. Effects of Multiple Ventilation Courses and Duration of Mechanical Ventilation on Respiratory Outcomes in Extremely Low-Birth-Weight Infants. JAMA Pediatr. 2015;169(11):1011-7. doi: https://doi.org/10.1001/jamapediatrics.2015.2401
Sweet DG, Carnielli V, Greisen G, et al. European Consensus Guidelines on the Management of Respiratory Distress Syndrome – 2019 Update. Neona¬tology. 2019;115(4):432-50. doi: https://doi.org/10.1159/000499361
Firke S. janitor: Simple Tools for Examining and Cleaning Dirty Data [Internet]. 2020. Available from: https://CRAN.R-project.org/package=janitor
Ga Won Jeon. Changes in the Incidence of Bronchopulmonary Dysplasia among Preterm Infants in a Single Center over 10 Years. Neonatal Medicine 2020;27(1):1-7. doi: https://doi.org/10.5385/nm.2020.27.1.1.
Gharehbaghi MM, Hosseini MB, Eivazi G, Yasrebinia S. Comparing the Efficacy of Nasal Continuous Positive Airway Pressure and Nasal Intermittent Positive Pressure Ventilation in Early Management of Respiratory Distress Syndrome in Preterm Infants. Oman Med J. 2019;34(2):99-104. doi: https://doi.org/10.5001/omj.2019.20
Hadanny A, Efrati S. The Hyperoxic-Hypoxic Paradox. Biomolecules. 2020;10(6):958. doi: https://doi.org/10.3390/biom10060958
Hussain WA, Marks JD. Approaches to Noninvasive Respiratory Support in Preterm Infants: From CPAP to NAVA. Neoreviews. 2019;20(4):213-21. doi: https://doi.org/10.1542/neo.20-4-e213
Jain D, Bancalari E. New Developments in Respiratory Support for Preterm Infants. Am J Perinatol. 2019;36(S 02):S13-7.
doi: https://doi.org/10.1055/s-0039-1691817
Lemyre B, Davis PG, De Paoli AG, Kirpalani H. Nasal intermittent positive pressure ventilation (NIPPV) versus nasal continuous positive airway pressure (NCPAP) for preterm neonates after extubation. Cochrane Database Syst Rev. 2017;2(2):CD003212. doi: https://doi.org/10.1002/14651858.CD003212.pub3
Lemyre B, Laughon M, Bose C, Davis PG. Early nasal intermittent positive pressure ventilation (NIPPV) versus early nasal continuous positive airway pressure (NCPAP) for preterm infants. Cochrane Database Syst Rev. 2016;12(12):CD005384. doi: https://doi.org/10.1002/14651858.CD005384.pub2
Manley BJ, Dold SK, Davis PG, Roehr CC. High-flow nasal cannulae for respiratory support of preterm infants: a review of the evidence. Neonatology. 2012;102(4):300-8. doi: https://doi.org/10.1159/000341754
Zhu XW, Shi Y, Shi LP, et al. Non-invasive high-frequency oscillatory ventilation versus nasal continuous positive airway pressure in preterm infants with respi¬ratory distress syndrome: Study protocol for a multi-center prospective randomized controlled trial. Trials. 2018;19(1):319. Published 2018 Jun 14. doi: https://doi.org/10.1186/s13063-018-2673-9
Schmölzer GM, Kumar M, Pichler G, Aziz K, O'Reilly M, Cheung PY. Non-invasive versus invasive res¬piratory support in preterm infants at birth: systematic review and meta-analysis [published correction appears in BMJ. 2014;348:g58]. BMJ. 2013;347:f5980. Published 2013 Oct 17.
doi: https://doi.org/10.1136/bmj.f5980
R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, Austria: R Foundation for Statistical Computing; 2020. Available from: https://www.R-project.org/
Shalabh G, Sunil S. 1,2 Non-invasive Ventilation in Premature Infants: Based on Evidence or Habit. J Clin Neonatol. 2013;2(4):155-9. doi: https://doi.org/10.4103/2249-4847.123082
Shalish W, Latremouille S, Papenburg J, Sant'Anna GM. Predictors of extubation readiness in preterm infants: a systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2019;104(1):F89-F97. doi: https://doi.org/10.1136/archdischild-2017-313878
Shehadeh AMH. Non-invasive respiratory support for preterm infants following extubation from mechanical ventilation. A narrative review and guide¬line suggestion. Pediatr Neonatol. 2020;61(2):142-7. doi: https://doi.org/10.1016/j.pedneo.2019.09.014
Jensen EA, Dysart K, Gantz MG, et al. The Diag¬nosis of Bronchopulmonary Dysplasia in Very Preterm Infants. An Evidence-based Approach. Am J Respir Crit Care Med. 2019;200(6):751-9. doi: https://doi.org/10.1164/rccm.201812-2348OC
Shalish W, Kanbar L, Kovacs L, et al. The Impact of Time Interval between Extubation and Reintubation on Death or Bronchopulmonary Dysplasia in Extre¬mely Preterm Infants. J Pediatr. 2019;205:70-76.e2. doi: https://doi.org/10.1016/j.jpeds.2018.09.062
Rhee C, Fraser IC, Kibler K, et al. The ontogeny of cerebrovascular pressure autoregulation in premature infants. J Perinatol. 2014;34:926-31 doi: https://doi.org/10.1038/jp.2014.122
Thekkeveedu R, Guaman MC, Shivanna B. Bronchopulmonary dysplasia: A review of pathogenesis and pathophysiology. Respir Med. 2017 Nov;132:170-7. Epub 2017 Oct 24. PMID: 29229093; doi: https://doi.org/10.1016/j.rmed.2017.10.014
Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer-Verlag New York; 2016. Available from: https://ggplot2.tidyverse.org
Wilkinson D, Andersen C, O'Donnell CP, De Paoli AG. High flow nasal cannula for respiratory support in preterm infants. Cochrane Database Syst Rev. 2011;(5):CD006405. Published 2011 May 11. doi: https://doi.org/10.1002/14651858.CD006405.pub2
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Medicni perspektivi (Medical perspectives)
This work is licensed under a Creative Commons Attribution 4.0 International License.
Submitting manuscript to the journal "Medicni perspektivi" the author(s) agree with transferring copyright from the author(s) to publisher (including photos, figures, tables, etc.) editor, reproducing materials of the manuscript in the journal, Internet, translation into other languages, export and import of the issue with the author’s article, spreading without limitation of their period of validity both on the territory of Ukraine and other countries. This and other mutual duties of the author and all co-authors separately and editorial board are secured by written agreement by special form to use the article, the sample of which is presented on the site.
Author signs a written agreement and sends it to Editorial Board simultaneously with submission of the manuscript.