Limited impact of roselle flower extract on protein carbonyl levels after physical exercise in healthy men
DOI:
https://doi.org/10.26641/2307-0404.2025.1.325371Ключові слова:
roselle flower extract, oxidative stress, protein carbonyl, antioxidants, exercise-induced muscle damageАнотація
Exercise-induced oxidative stress can lead to muscle damage, with protein carbonyls serving as a key biomarker of oxidative modification in proteins. Roselle flower extract contains polyphenols with potential antioxidant properties that may reduce oxidative damage after physical exercise. This study investigated whether post-exercise supplementation of roselle flower extract reduces protein carbonyl levels. A randomized controlled trial with a parallel group pre-test/post-test design was conducted, comparing a placebo group with a treatment group receiving 500 mg of roselle flower extract. The extract did not result in a statistically significant reduction in protein carbonyl levels (p>0.05). However, a non-significant decreasing trend was observed, suggesting that future studies should explore larger sample sizes and longer intervention periods to assess potential cumulative effects. Further studies should explore the effects of higher doses of roselle flower extract (e.g., >500 mg/day) and chronic supplementation over several weeks to determine its long-term impact on markers of oxidative stress.
Посилання
Powers SK, Deminice R, Ozdemir M, Yoshihara T, Bomkamp MP, Hyatt H. Exercise-induced oxidative stress: Friend or foe? J Sport Heal Sci. 2020;9(5):415-25. doi: https://doi.org/10.1016/j.jshs.2020.04.001
Kruk J, Aboul-Enein HY, Kładna A, Bowser JE. Oxidative stress in biological systems and its relation with pathophysiological functions: the effect of physical acti-vity on cellular redox homeostasis. Free Radic Res. 2019;53(5):497-521. doi: https://doi.org/10.1080/10715762.2019.1612059
Kraus WE, et al. Physical Activity, All-Cause and Cardiovascular Mortality, and Cardiovascular Disease. Med Sci Sports Exerc. 2019;51(6):1270-81. doi: https://doi.org/10.1249/MSS.0000000000001939
Militello R, Luti S, Gamberi T, Pellegrino A, Mo-desti A, Modesti PA. Physical Activity and Oxidative Stress in Aging. Antioxidants. 2024;13(5):557. doi: https://doi.org/10.3390/antiox13050557
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, et al. The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 2020 Jul;127:110108. doi: https://doi.org/10.1016/j.biopha.2020.110108
Steinbacher P, Eckl P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules. 2015 Apr 10;5(2):356-77. doi: https://doi.org/10.3390/biom5020356
Powers SK, Jackson MJ. Exercise-induced oxidative stress: Cellular mechanisms and impact on muscle force production. Physiol Rev. 2008 Oct;88(4):1243-76. doi: https://doi.org/10.1152/physrev.00031.2007
Marciniak A, Brzeszczyńska J, Gwoździński K, Jegier A. Antioxidant capacity and physical exercise. Biol Sport. 2009;26(3):197-213. doi: https://doi.org/10.5604/20831862.894649
He F, Li J, Liu Z, Chuang CC, Yang W, Zuo L. Redox mechanism of reactive oxygen species in exercise. Front Physiol. 2016 Nov 7;7:486. doi: https://doi.org/10.3389/fphys.2016.00486
Campbell JP, Turner JE. Debunking the myth of exercise-induced immune suppression: Redefining the impact of exercise on immunological health across the lifespan. Front Immunol. 2018 Apr 16;9:648. doi: https://doi.org/10.3389/fimmu.2018.00648
Song YR, Kim JK, Lee HS, Kim SG, Choi EK. Serum levels of protein carbonyl, a marker of oxidative stress, are associated with overhydration, sarcopenia and mortality in hemodialysis patients. BMC Nephrol. 2020 Jul 16;21(1):281. doi: https://doi.org/10.1186/s12882-020-01937-z
Leger T, He B, Azarnoush K, Jouve C, Rigau-diere JP, Joffre F, et al. Dietary EPA increases rat mortality in diabetes mellitus, a phenomenon which is compensated by green tea extract. Antioxidants. 2019 Nov 4;8(11):526. doi: https://doi.org/10.3390/antiox8110526
Frijhoff J, Winyard PG, Zarkovic N, Davies SS, Stocker R, Cheng D, et al. Clinical Relevance of Biomar-kers of Oxidative Stress. Antioxidants Redox Signal. 2015 Nov 10;23(14):1144-70. doi: https://doi.org/10.1089/ars.2015.6317
Nowak K, Zabczyk M, Natorska J, Zalewski J, Undas A. Elevated plasma protein carbonylation increases the risk of ischemic cerebrovascular events in patients with atrial fibrillation: association with a prothrombotic state. J Thromb Thrombolysis. 2024 Oct;57(7):1206-15. doi: https://doi.org/10.1007/s11239-024-03003-z
Vezzoli A, Dellanoce C, Mrakic-Sposta S, Mon-torsi M, Moretti S, Tonini A, et al. Oxidative Stress Asses-sment in Response to Ultraendurance Exercise: Thiols Redox Status and ROS Production according to Duration of a Competitive Race. Oxid Med Cell Longev. 2016;2016:6439037. doi: https://doi.org/10.1155/2016/6439037
Thirupathi A, Wang M, Lin JK, Fekete G, Ist-ván B, Baker JS, et al. Effect of Different Exercise Moda-lities on Oxidative Stress: A Systematic Review. Biomed Res Int. 2021 Feb 11;2021:1947928. doi: https://doi.org/10.1155/2021/1947928
Arjmand A, Abedi B, Hosseini SA. The Effect of Resistance Training on Malondialdehyde and Protein Carbonyl Concentration in the Heart Tissue of Rats Exposed to Stanozolol. Pharm Biomed Res. 2020;6(4):261-8. doi: https://doi.org/10.18502/pbr.v6i4.5112
Setianingsih S, Nurani LH, Rohman A. Effect of the ethanolic extract of red roselle calyx (Hibiscus sabdariffa L.) on hematocrit, platelets, and erythrocytes in healthy volunteers. Pharmaciana. 2018;8(1):266. doi: https://doi.org/10.12928/pharmaciana.v8i2.8738
Jin HM, Dang B, Zhang WG, Zheng WC, Yang XJ. Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors. Molecules. 2022 May 25;27(11):3411. doi: https://doi.org/10.3390/molecules27113411
Ayubi N, et al. Potential of Polyphenolic Com-pounds in Rosella Flowers on Reducing Oxidative Stress and Inflammation After Exercise: A Systematic Review. Phys Educ Theory Methodol. 2024;24(1):169-79. doi: https://doi.org/10.17309/tmfv.2024.1.20
Sapian S, Ibrahim Mze AA, Jubaidi FF, Mohd Nor NA, Taib IS, Abd Hamid Z, et al. Therapeutic Poten-tial of Hibiscus sabdariffa Linn. in Attenuating Cardio-vascular Risk Factors. Pharmaceuticals. 2023 May 29;16(6):807. doi: https://doi.org/10.3390/ph16060807
Wibawa JC, Arifin MZ, Herawati L. Ascorbic Acid Drink after Submaximal Physical Activity can Main¬tain the Superoxide Dismutase Levels in East Java Student Regiment. Indian J Forensic Med Toxicol. 2021;15(3):3383-92. doi: https://doi.org/10.37506/ijfmt.v15i3.15824
Aritanoga M, Effendi C, Herawati L. Kopi Arabika-Gayo Menurunkan MDA dan Meningkatkan SOD setelah Latihan Fisik Akut Submaksimal pada Pria Se-denter Gayo-Arabica Coffee Decreases MDA and Increases SOD after Single Bout Submaximal Physical Exercise in Sedentary Men. Jurnal Sumberdaya Hayati. 2019;5(2):58-63. doi: https://doi.org/10.29244/jsdh.5.2.58-63
Asgary S, Soltani R, Zolghadr M, Keshvari M, Sarrafzadegan N. Evaluation of the effects of roselle (Hibiscus sabdariffa L.) on oxidative stress and serum levels of lipids, insulin and hs-CRP in adult patients with metabolic syndrome: A double-blind placebo-controlled clinical trial. J Complement Integr Med. 2016 Jun 1;13(2):175-80. doi: https://doi.org/10.1515/jcim-2015-0030
Joven J, March I, Espinel E, Fernández-Arroyo S, Rodríguez-Gallego E, Aragonès G, et al. Hibiscus sab-dariffa extract lowers blood pressure and improves endo-thelial function. Mol Nutr Food Res. 2014 Jun;58(6):1374-8. doi: https://doi.org/10.1002/mnfr.201300774
Ujianti I, Sianipar IR, Prijanti AR, Hasan I, Aro-zal W, Jusuf AA, et al. Effect of Roselle Flower Extract (Hibiscus sabdariffa Linn.) on Reducing Steatosis and Steatohepatitis in Vitamin B12 Deficiency Rat Model. Med. 2023 May 28;59(6):1044. doi: https://doi.org/10.3390/medicina59061044
Akagawa M. Protein carbonylation: molecular mechanisms, biological implications, and analytical approaches. Free Radic Res. 2021 Apr;55(4):307-20. doi: https://doi.org/10.1080/10715762.2020.1851027
Yu S, Doycheva DM, Gamdzyk M, Gao Y, Guo Y, Travis ZD, et al. BMS-470539 Attenuates Oxi-dative Stress and Neuronal Apoptosis via MC1R/cAMP/PKA/Nurr1 Sig¬naling Pathway in a Neonatal Hypoxic-Ischemic Rat Model. Oxid Med Cell Longev. 2022 Jan 31;2022:4054938. doi: https://doi.org/10.1155/2022/4054938
Martínez-Orgado J, Martínez-Vega M, Silva L, Romero A, de Hoz-Rivera M, Villa M, et al. Protein Car-bonylation as a Biomarker of Oxidative Stress and a Therapeutic Target in Neonatal Brain Damage. Antioxi-dants. 2023 Oct 10;12(10):1839. doi: https://doi.org/10.3390/antiox12101839
Martini S, Austin T, Aceti A, Faldella G, Corvaglia L. Free radicals and neonatal encephalopathy: mechanisms of injury, biomarkers, and antioxidant treatment perspectives. Pediatr Res. 2020 Apr;87(5):823-33. doi: https://doi.org/10.1038/s41390-019-0639-6
Mohamed J, Shing SW, Idris MH, Budin SB, Zainalabidin S. The protective effect of aqueous extracts of roselle (Hibiscus sabdariffa L. UKMR-2) against red blood cell membrane oxidative stress in rats with streptozotocin-induced diabetes. Clinics. 2013 Oct;68(10):1358-63. doi: https://doi.org/10.6061/clinics/2013(10)11
Herranz-López M, Olivares-Vicente M, Enci-nar JA, Barrajón-Catalán E, Segura-Carretero A, Joven J, et al. Multi-targeted molecular effects of Hibiscus sabdariffa polyphenols: An opportunity for a global approach to obesity. Nutrients. 2017 Aug 20;9(8):907. doi: https://doi.org/10.3390/nu9080907
Da-Costa-Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M. Hibiscus sabdariffa L. – A phy-tochemical and pharmacological review. Food Chem. 2014 Dec 15;165:424-43. doi: https://doi.org/10.1016/j.foodchem.2014.05.002
Morales-Luna E, Pérez-Ramírez IF, Salgado LM, Castaño-Tostado E, Gómez-Aldapa CA, Reynoso-Camacho R. The main beneficial effect of roselle (Hibiscus sabdariffa) on obesity is not only related to its anthocyanin content. J Sci Food Agric. 2019 Jan 30;99(2):596-605. doi: https://doi.org/10.1002/jsfa.9220
Si LY, Ali SAM, Latip J, Fauzi NM, Budin SB, Zainalabidin S. Roselle is cardioprotective in diet-induced obesity rat model with myocardial infarction. Life Sci. 2017 Dec 15;191:157-65. doi: https://doi.org/10.1016/j.lfs.2017.10.030
Mattioli R, Francioso A, Mosca L, Silva P. Antho-cyanins: A Comprehensive Review of Their Chemical Pro¬perties and Health Effects on Cardiovascular and Neuro¬degenerative Diseases. Molecules. 2020 Aug 21;25(17):3809. doi: https://doi.org/10.3390/molecules25173809
Meng Q. The Impact of Physical Exercise on Oxidative and Nitrosative Stress : Balancing the Benefits and Risks. 2024, p. 1-26.
Tikhonov IV, Pliss EM, Borodin LI, Sen’ VD. Effect of superoxide dismutase on the oxidation of methyl linoleate in micelles inhibited by nitroxyl radicals. Russ Chem Bull. 2016;65(12):2985-7. doi: https://doi.org/10.1007/s11172-016-1690-7
Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Antioxi¬dants. 2023 Aug 27;12(9):1675. doi: https://doi.org/10.3390/antiox12091675
Bienert GP, Møller AL, Kristiansen KA, Schulz A, Møller IM, Schjoerring JK, et al. Specific aquaporins faci-litate the diffusion of hydrogen peroxide across membranes. J Biol Chem. 2007 Jan 12;282(2):1183-92. doi: https://doi.org/10.1074/jbc.M603761200
Lee TT, Li TL, Ko BJ, Chien LH. Effect of Acute High-Intensity Interval Training on Immune Function and Oxidative Stress in Canoe/Kayak Athletes. Biology (Basel). 2023 Aug 18;12(8):1144. doi: https://doi.org/10.3390/biology12081144
Mrakic-Sposta S, Gussoni M, Moretti S, Pratali L, Giardini G, Tacchini P, et al. Effects of mountain ultramarathon running on ROS production and oxidative damage by micro-invasive analytic techniques. PLoS One. 2015 Nov 5;10(11):e0141780. doi: https://doi.org/10.1371/journal.pone.0141780
Larsen EL, Poulsen HE, Michaelsen C, Kjær LK, Lyngbæk M, Andersen ES, et al. Differential time responses in inflammatory and oxidative stress markers after a mara¬thon: An observational study. J Sports Sci. 2020;38(18):2080-91. doi: https://doi.org/10.1080/02640414.2020.1770918
Molina MN, Ferder L, Manucha W. Emerging Role of Nitric Oxide and Heat Shock Proteins in Insulin Resistance. Curr Hypertens Rep. 2016 Jan;18(1):1. doi: https://doi.org/10.1007/s11906-015-0615-4
Ji LL, Kang C, Zhang Y. Exerciseinduced hormesis and skeletal muscle health. Free Radic Biol Med. 2016 Sep;98:113-22. doi: https://doi.org/10.1016/j.freeradbiomed.2016.02.025
Lim AY, Chen YC, Hsu CC, Fu TC, Wang JS. The Effects of Exercise Training on Mitochondrial Function in Cardiovascular Diseases : A Systematic Review and Meta-Analysis. Int J Mol Sci. 2022 Oct 19;23(20):12559. doi: https://doi.org/10.3390/ijms232012559
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress : antioxidant enzymes , nanomaterials with multiple enzyme – mimicking acti-vities , and low – molecular – weight antioxidants. Arch Toxicol. 2024 May;98(5):1323-67. doi: https://doi.org/10.1007/s00204-024-03696-4
Anwar S, Alrumaihi F, Sarwar T, Babiker AY, Khan AA, Prabhu SV, et al. Exploring Therapeutic Po-tential of Catalase : Strategies in Disease Prevention and Management. 2024 Jun 14;14(6):697. doi: https://doi.org/10.3390/biom14060697
Wibawa JC, et al. Increased activity of the catalase enzyme after physical exercise as a signal for reducing hydrogen peroxide (H2O2): a systematic review. Fizjo¬terapia Pol. 2024;5:232-8. doi: https://doi.org/10.56984/8ZG020C7GDL
Bloomer RJ, Davis PG, Consitt LA, Wideman L. Plasma protein carbonyl response to increasing exercise duration in aerobically trained men and women. Int J Sports Med. 2007 Jan;28(1):21-5. doi: https://doi.org/10.1055/s-2006-924140
Poblete Aro CE, Russell Guzmán JA, Soto Muñoz ME, Villegas González BE. Effects of high intensity interval training versus moderate intensity continuous training on the reduction of oxidative stress in type 2 diabetic adult patients: CAT. Medwave. 2015 Aug 13;15(7):e6212. doi: https://doi.org/10.5867/medwave.2015.07.6212
Quan H, Koltai E, Suzuki K, Aguiar AS Jr, Pinho R, Boldogh I, et al. Exercise, redox system and neurodegenerative diseases. Biochim Biophys Acta - Mol Basis Dis. 2020 Oct 1;1866(10):165778. doi: https://doi.org/10.1016/j.bbadis.2020.165778
##submission.downloads##
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2025 Медичні перспективи

Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Submitting manuscript to the journal "Medicni perspektivi" the author(s) agree with transferring copyright from the author(s) to publisher (including photos, figures, tables, etc.) editor, reproducing materials of the manuscript in the journal, Internet, translation into other languages, export and import of the issue with the author’s article, spreading without limitation of their period of validity both on the territory of Ukraine and other countries. This and other mutual duties of the author and all co-authors separately and editorial board are secured by written agreement by special form to use the article, the sample of which is presented on the site.
Author signs a written agreement and sends it to Editorial Board simultaneously with submission of the manuscript.