Oxidative stress in skin diseases and the role of antioxidants in their treatment

Authors

DOI:

https://doi.org/10.26641/2307-0404.2025.3.340594

Keywords:

oxidative stress, antioxidant, skin, disease, treatment

Abstract

More and more preclinical and clinical studies indicate the crucial role of oxidative stress in the pathogenesis of skin diseases. This became the basis for the analysis of current literature data on oxidative stress and antioxidant protection in the skin in the norm and dermatological diseases, as well as on the antioxidants use to manage this pathology.The aim of the study was to review the current literature on oxidative stress and antioxidant protection in the skin and to analyze the possibilities of using antioxidants in skin diseases. The search for literature sources for 2005-2025 was carried out in the biometric search engine PubMed using the terms: “oxidative stress”, “antioxidant”, “skin”, “skin disease”, “topical treatment”, “α-toco­pherol”, “ascorbic acid”, “polyphenol”, “quercetin”, “coenzyme Q10”, “resveratrol”, “N-acetylcysteine”, as well as word combinations based on them. The inclusion criteria were: a document in English; publication in the period 2005-2025; compliance with search queries; availability of the article full text. The exclusion criteria were: a case from practice; conference proceedings; a publication that does not meet the purpose of the review; lack of full text, reflection of skin manifestations of a systemic disease or infection. The maximum number of literature sources was found for the query “oxidative stress – antioxidant – skin” (n=3076). After systematizing the selected documents using bibliographic and analytical methods, 115 of the most relevant sources remained. It was shown that the suppliers of reactive oxygen species (ROS) in the skin are processes that occur in keratinocytes, fibroblasts, and hematogenous cells. Many antioxidants eliminate ROS in the skin, they act together with superoxide dismutase, catalase, glutathione peroxidase and non-enzymatic antioxidants. Disruption of the balance between ROS and the power of antioxidant protection, i.e. oxidative stress, accompanies contact dermatitis, urticaria, atopic dermatitis, psoriasis, malignant skin tumors, photoaging, and vitiligo. The contribution of key natural antioxidants (ascorbic acid, α-tocopherol, retinoids, coenzyme Q10, resveratrol, selenium, and polyphenols) to skin care has been described, but there was only a small number of evidence-based studies that would justify the dosage and indications for their use in dermatology. Synthetic antioxidants are represented by almost one N-acetylcysteine in the treatment of toxic epidermal necrolysis, drug hypersensitivity syndrome, ichthyosis, contact and atopic dermatitis and some other diseases. The topical use of antioxidants is complicated by the search for an adequate dosage form, in which the stabilization of a substance with antioxidant properties is crucial, as well as its absorption, the ability to reach the target tissue in an active form and remain there for a long enough time, which is solved by the use of new methods of drug delivery, in particular based on nanotechnology. Thus, changes in the redox balance are widely represented in dermatoses, and the use of antioxidants can be of great importance if they are prescribed rationally. Obviously, it is advisable to combine antioxidants with each other and to introduce synthetic antioxidants more widely into practice.

References

Khan AQ, Agha MV, Sheikhan KSAM, Younis SM, Tamimi MA, Alam M, et al. Targeting deregulated oxidative stress in skin inflammatory diseases: An update on clinical importance. Biomed Pharmacother. 2022 Oct;154:113601. doi: https://doi.org/10.1016/j.biopha.2022.113601

Martemucci G, Portincasa P, Centonze V, Mariano M, Khalil M, D'Alessandro AG. Prevention of Oxi-dative Stress and Diseases by Antioxidant Supplemen-tation. Med Chem. 2023;19(6):509-37. doi: https://doi.org/10.2174/1573406419666221130162512

Kruk J, Duchnik E. Oxidative stress and skin diseases: possible role of physical activity. Asian Pac J Cancer Prev. 2014;15(2):561-8. doi: https://doi.org/10.7314/apjcp.2014.15.2.561

Addor FAS. Antioxidants in dermatology. An Bras Dermatol. 2017 May-Jun;92(3):356-62. doi: https://doi.org/10.1590/abd1806-4841.20175697

Pai VV, Shukla P, Kikkeri NN. Antioxidants in dermatology. Indian Dermatol Online J. 2014 Apr;5(2):210-4. doi: https://doi.org/10.4103/2229-5178.131127

Chen J, Liu Y, Zhao Z, Qiu J. Oxidative stress in the skin: Impact and related protection. Int J Cosmet Sci. 2021 Oct;43(5):495-509. doi: https://doi.org/10.1111/ics.12728

Fenini G, Contassot E, French LE. Potential of IL-1, IL-18 and Inflammasome Inhibition for the Treatment of Inflammatory Skin Diseases. Front Phar-macol. 2017 May 22;8:278. doi: https://doi.org/10.3389/fphar.2017.00278

Md Jaffri J. Reactive Oxygen Species and Antioxidant System in Selected Skin Disorders. Malays J Med Sci. 2023 Feb;30(1):7-20. doi: https://doi.org/10.21315/mjms2023.30.1.2

White J. PubMed 2.0. Medical Reference Services Quarterly. 2020;39(4):382-7. doi: https://doi.org/10.1080/02763869.2020.1826228

Nakai K, Tsuruta D. What Are Reactive Oxygen Species, Free Radicals, and Oxidative Stress in Skin Diseases? Int J Mol Sci. 2021 Oct 6;22(19):10799. doi: https://doi.org/10.3390/ijms221910799

Belambri SA, Rolas L, Raad H, Hurtado-Nedelec M, Dang PM, El-Benna J. NADPH oxidase acti-vation in neutrophils: Role of the phosphorylation of its subunits. Eur J Clin Invest. 2018;48(Suppl 2):e12951. doi: https://doi.org/10.1111/eci.12951

Moghadam ZM, Henneke P, Kolter J. From Flies to Men: ROS and the NADPH Oxidase in Phagocytes. Front Cell Dev Biol. 2021;9:628991. doi: https://doi.org/10.3389/fcell.2021.628991

Manea A. NADPH oxidase-derived reactive oxygen species: Involvement in vascular physiology and pathology. Cell Tissue Res. 2010;342:325-39. doi: https://doi.org/10.1007/s00441-010-1060-y

Steinbrenner H, Ramos MC, Stuhlmann D, Mi-tic D, Sies H, Brenneisen P. Tumor promoter TPA stimulates MMP-9 secretion from human keratinocytes by activation of superoxide-producing NADPH oxidase. Free Radic Res. 2005;39:245-53. doi: https://doi.org/10.1080/10715760500053487

Papparella I, Ceolotto G, Lenzini L, Mazzoni M, Franco L, Sartori M, et al. Angiotensin II-induced over-activation of p47phox in fibroblasts from hypertensives: Which role in the enhanced ERK1/2 responsiveness to angiotensin II? J Hypertens. 2005;23:793-800. doi: https://doi.org/10.1097/01.hjh.0000163148.97459.9d

Rudolf J, Raad H, Taieb A, Rezvani HR. NADPH Oxidases and Their Roles in Skin Homeostasis and Carcinogenesis. Antioxid Redox Signal. 2018;28:1238-61. doi: https://doi.org/10.1089/ars.2017.7282

Nakai K, Yoneda K, Moriue T, Igarashi J, Kosaka H, Kubota Y. HB-EGF-induced VEGF production and eNOS activation depend on both PI3 kinase and MAP kinase in HaCaT cells. J Dermatol Sci. 2009;55:170-8. doi: https://doi.org/10.1016/j.jdermsci.2009.06.002

Nakai K, Karita S, Igarashi J, Tsukamoto I, Hirano K, Kubota Y. CoA-Cl prevented TGF-β1-induced CTGF expression by Akt dephosphorylation in normal human dermal fibroblasts, and it attenuated skin fibrosis in mice models of systemic sclerosis. J Dermatol Sci. 2019;94:205-12. doi: https://doi.org/10.1016/j.jdermsci.2019.02.003

Nandi A, Yan LJ, Jana CK, Das N. Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. Oxid Med Cell Longev. 2019;2019:9613090. doi: https://doi.org/10.1155/2019/9613090

Zheng M, Liu Y, Zhang G, Yang Z, Xu W, Chen Q. The Applications and Mechanisms of Superoxide Dismutase in Medicine, Food, and Cosmetics. Anti¬oxidants (Basel). 2023 Aug 27;12(9):1675. doi: https://doi.org/10.3390/antiox12091675

Case A. On the origin of superoxide dismutase: an evolutionary perspective of superoxide-mediated redox signaling. Antioxidants. 2017;6(4):82. doi: https://doi.org/10.3390/antiox6040082

Nocchi S, Björklund S, Svensson B, Engblom J, Ruzgas T. Electrochemical monitoring of native catalase activity in skin using skin covered oxygen electrode. Biosens Bioelectron. 2017;93:9-13. doi: https://doi.org/10.1016/j.bios.2017.01.001

Sharma G, Shin E-J, Sharma N, Nah S-Y, Mai HN, Nguyen BT, et al. Glutathione peroxidase-1 and neuromodulation: novel potentials of an old enzyme. Food Chem Toxicol. 2021;148:111945. doi: https://doi.org/10.1016/j.fct.2020.111945

Al-Roujayee AS. Naringenin improves the healing process of thermally-induced skin damage in rats. J Int Med Res. 2017;45(2):570-82. doi: https://doi.org/10.1177/0300060517692483

Sandmann G. Antioxidant protection from UV- and light-stress related to carotenoid structures. Antioxidants. 2019;8:219. doi: https://doi.org/10.3390/antiox8070219

Coetzee V, Perrett DI. Effect of beta-carotene supplementation on African skin. J Biomed Opt. 2014;19(2):025004. doi: https://doi.org/10.1117/1.jbo.19.2.025004

Shafe MO, Gumede NM, Nyakudya TT, Chivan-di E. Lycopene: A Potent Antioxidant with Multiple Health Benefits. J Nutr Metab. 2024 Jun 8;2024:6252426. doi: https://doi.org/10.1155/2024/6252426

Obana A, Gohto Y, Nakazawa R, Moriyama T, Gellermann W, Bernstein PS. Effect of an antioxidant supplement containing high dose lutein and zeaxanthin on macular pigment and skin carotenoid levels. Sci Rep. 2020;10:10262.

doi: https://doi.org/10.1038/s41598-020-66962-2

Pullar JM, Carr AC, Vissers MCM. The roles of vitamin C in skin health. Nutrients. 2017;9:866. doi: https://doi.org/10.3390/nu9080866

Wang K, Jiang H, Li W, Qiang M, Dong T, Li H. Role of vitamin C in skin diseases. Front Physiol. 2018;9:819. doi: https://doi.org/10.3389/fphys.2018.00819

Traber MG, Stevens JF. Vitamins C and E: beneficial effects from a mechanistic perspective. Free Radic Biol Med. 2011;51(5):1000-13. doi: https://doi.org/10.1016/j.freeradbiomed.2011.05.017

Mehling R, Schwenck J, Lemberg C, Trautwein C, Zizmare L, Kramer D, et al. Immunomodulatory role of reactive oxygen species and nitrogen species during T cell-driven neutrophil-enriched acute and chronic cutaneous delayed-type hypersensitivity reactions. Theranostics. 2021;11:470-90. doi: https://doi.org/10.7150/thno.51462

Esser PR, Wölfle U, Dürr C, von Loewenich FD, Schempp CM, Freudenberg MA, et al. Contact sensitizers induce skin inflammation via ROS production and hyaluronic acid degradation. PloS One. 2012;7(7):e41340. doi: https://doi.org/10.1371/journal.pone.0041340

Cannavò SP, Riso G, Di Salvo E, Casciaro M, Giuffrida R, Minciullo PL, et al. Oxidative stress involve-ment in urticaria. J Biol Regul Homeost Agents. 2020 Mar-Apr;34(2):675-8. doi: https://doi.org/10.23812/19-483-12-L

Kalkan G, Seçkin HY, Duygu F, Akbaş A, Ozyurt H, Sahin M. Oxidative stress status in patients with acute urticaria. Cutan Ocul Toxicol. 2014 Jun;33(2):109-14. doi: https://doi.org/10.3109/15569527.2013.808658

Kasperska-Zajac A, Brzoza Z, Polaniak R, Rogala B, Birkner E. Markers of antioxidant defence system and lipid peroxidation in peripheral blood of female patients with chronic idiopathic urticaria. Arch Dermatol Res. 2007;298:499-503.

doi: https://doi.org/10.1007/s00403-006-0724-7

Nettis E, Distaso M, Saitta S, Casciaro M, Cristani M, Saija A, et al. Involvement of new oxidative stress markers in chronic spontaneous urticaria. Postepy Dermatol Alergol. 2017 Oct;34(5):448-52. doi: https://doi.org/10.5114/ada.2017.71110

Nakai K, Yoneda K, Maeda R, Munehiro A, Fujita N, Yokoi I, et al. Urinary biomarker of oxidative stress in patients with psoriasis vulgaris and atopic dermatitis. J Eur Acad Dermatol Venereol. 2009;23:1405-8. doi: https://doi.org/10.1111/j.1468-3083.2009.03327.x

Sivaranjani N, Rao SV, Rajeev G. Role of reactive oxygen species and antioxidants in atopic dermatitis. J Clin Diagn Res. 2013 Dec;7(12):2683-5. doi: https://doi.org/10.7860/JCDR/2013/6635.3732

Nakai K, Yoneda K, Murakami Y, Koura A, Maeda R, Tamai A, et al. Effects of Topical N-Ace-tylcysteine on Skin Hydration/Transepidermal Water Loss in Healthy Volunteers and Atopic Dermatitis Patients. Ann Dermatol. 2015;27:450-1. doi: https://doi.org/10.5021/ad.2015.27.4.450

Bertino L, Guarneri F, Cannavò SP, Casciaro M, Pioggia G, Gangemi S. Oxidative Stress and Atopic Der-matitis. Antioxidants. 2020;9(3):196. doi: https://doi.org/10.3390/antiox9030196

Dobrică EC, Cozma MA, Găman MA, Voiculescu VM, Găman AM. The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants (Basel). 2022 Jan 29;11(2):282. doi: https://doi.org/10.3390/antiox11020282

Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. Int J Mol Sci. 2020 Aug 27;21(17):6206. doi: https://doi.org/10.3390/ijms21176206

Wroński A, Wójcik P. Impact of ROS-Dependent Lipid Metabolism on Psoriasis Pathophysiology. Int J Mol Sci. 2022 Oct 12;23(20):12137. doi: https://doi.org/10.3390/ijms232012137

Xian D, Lai R, Song J, Xiong X, Zhong J. Emerging Perspective: Role of Increased ROS and Redox Imbalance in Skin Carcinogenesis. Oxid Med Cell Longev. 2019 Sep 16;2019:8127362. doi: https://doi.org/10.1155/2019/8127362

Azzimonti B, Ballacchino C, Zanetta P, Cuc-ci MA, Monge C, Grattarola M, et al. Microbiota, Oxida-tive Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants (Basel). 2023 Feb 21;12(3):546. doi: https://doi.org/10.3390/antiox12030546

Emanuelli M, Sartini D, Molinelli E, Campagna R, Pozzi V, Salvolini E, et al. The Double-Edged Sword of Oxidative Stress in Skin Damage and Melanoma: From Physiopathology to Therapeutical Approaches. Antioxi-dants (Basel). 2022 Mar 23;11(4):612. doi: https://doi.org/10.3390/antiox11040612

Lingappan K. NF-κB in oxidative stress. Current opinion in toxicology. 2018;7:81-6. doi: https://doi.org/10.1016/j.cotox.2017.11.002

Farias CF, Massaoka MH, Girola N, et al. Ben-zofuroxan derivatives N-Br and N-I induce intrinsic apoptosis in melanoma cells by regulating AKT/BIM signaling and display anti metastatic activity in vivo. BMC Cancer. 2015;15(1):807. doi: https://doi.org/10.1186/s12885-015-1835-3

Papaccio F, Arino DA, Caputo S, Bellei B. Focus on the Contribution of Oxidative Stress in Skin Aging. Antioxidants (Basel). 2022 Jun 6;11(6):1121. doi: https://doi.org/10.3390/antiox11061121

Shin SH, Lee YH, Rho NK, Park KY. Skin aging from mechanisms to interventions: focusing on dermal aging. Front Physiol. 2023 May 10;14:1195272. doi: https://doi.org/10.3389/fphys.2023.1195272

Shin MH, Rhie GE, Kim YK, Park CH, Cho KH, Kim KH, et al. H2O2 accumulation by catalase reduction changes MAP kinase signaling in aged human skin in vivo. J Investig Dermatol. 2005;125:221-9. doi: https://doi.org/10.1111/j.0022-202X.2005.23823.x

Rinnerthaler M, Bischof J, Streubel MK, Trost A, Richter K. Oxidative stress in aging human skin. Bio-molecules. 2015 Apr 21;5(2):545-89. doi: https://doi.org/10.3390/biom5020545

Mohania D, Chandel S, Kumar P, Verma V, Digvijay K, Tripathi D, et al. Ultraviolet Radiations: Skin Defen¬se-Damage Mechanism. Adv Exp Med Biol. 2017;996:71-87. doi: https://doi.org/10.1007/978-3-319-56017-5_7

Gromkowska-Kępka KJ, Puścion-Jakubik A, Markiewicz-Żukowska R, Socha K. The impact of ultraviolet radiation on skin photoaging – review of in vitro studies. J Cosmet Dermatol. 2021 Nov;20(11):3427-31. doi: https://doi.org/10.1111/jocd.14033

de Jager TL, Cockrell AE, Du Plessis SS. Ultraviolet Light Induced Generation of Reactive Oxygen Species. Adv Exp Med Biol. 2017;996:15-23. doi: https://doi.org/10.1007/978-3-319-56017-5_2

Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-kappaB and FoxO6 modulation during skin photoaging. Redox Biol. 2021;44:102022. doi: https://doi.org/10.1016/j.redox.2021.102022

Solano F. Photoprotection and Skin Pigmentation: Melanin-Related Molecules and Some Other New Agents Obtained from Natural Sources. Molecules. 2020 Mar 27;25(7):1537. doi: https://doi.org/10.3390/molecules25071537

Xuan Y, Yang Y, Xiang L, Zhang C. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. Oxid Med Cell Longev. 2022 Jan 22;2022:8498472. doi: https://doi.org/10.1155/2022/8498472

Shah AA, Sinha AA. Oxidative stress and autoimmune skin disease. Eur J Dermatol. 2013 Jan-Feb;23(1):5-13. doi: https://doi.org/10.1684/ejd.2012.1884

Motor S, Ozturk S, Ozcan O, Gurpinar AB, Can Y, Yuksel R, et al. Evaluation of total antioxidant status, total oxidant status and oxidative stress index in patients with alopecia areata. Int J ClinExp Med. 2014;7:1089-93. PMCID: PMC4057866. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC4057866/

Acharya P, Mathur MC. Oxidative stress in alopecia areata: A systematic review and meta-analysis. Int J Dermatol. 2020;59:434-40. doi: https://doi.org/10.1111/ijd.14753

Alzolibani AA. Preferential recognition of hydroxyl radical-modified superoxide dismutase by circulating autoantibodies in patients with alopecia areata. Ann Dermatol. 2014;26:576-83. doi: https://doi.org/10.5021/ad.2014.26.5.576

Sorg H, Tilkorn DJ, Hager S, Hauser J, Mirastschijski U. Skin Wound Healing: An Update on the Current Knowledge and Concepts. Eur Surg Res. 2017;58(1-2):81-94. doi: https://doi.org/10.1159/000454919

Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: trajectory and recent advan-cements. Cells. 2022 Aug 6;11(15):2439. doi: https://doi.org/10.3390/cells11152439

Tottoli EM, Dorati R, Genta I, Chiesa E, Pisani S, Conti B. Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics. 2020 Aug 5;12(8):735. doi: https://doi.org/10.3390/pharmaceutics12080735

Bowers S, Franco E. Chronic Wounds: Evaluation and Management. Am Fam Physician. 2020 Feb 1;101(3):159-66. PMID: 32003952. Available from: https://pubmed.ncbi.nlm.nih.gov/32003952/

Bilgen F, Ural A, Kurutas EB, Bekerecioglu M. The effect of oxidative stress and Raftlin levels on wound healing. Int Wound J. 2019 Oct;16(5):1178-84. doi: https://doi.org/10.1111/iwj.13177

Kampfer H, Pfeilschifter J, Frank S. Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair. J Investig Dermatol. 2003;121:1544-51. doi: https://doi.org/10.1046/j.1523-1747.2003.12610.x

Paprocki J, Pawłowska M, Sutkowy P, Piechocki J, Woźniak A. Evaluation of Oxidative Stress in Patients with Difficult-to-Heal Skin Wounds Treated with Hyperbaric Oxygen. Oxid Med Cell Longev. 2020 Jul 31;2020:1835352. doi: https://doi.org/10.1155/2020/1835352

Georgescu SR, Mitran CI, Mitran MI, Nicolae I, Matei C, Ene CD, et al. Oxidative Stress in Cutaneous Lichen Planus-A Narrative Review. J Clin Med. 2021;10:2692. doi: https://doi.org/10.3390/jcm10122692

Sredoja Tisma V, Bulimbasic S, Galesic Ljubanovic D, Galesic K, Morovic-Vergles J, Mitrovic J, et al. The Onset of Systemic Oxidative Stress Associated with the Accumulation of Lipid Peroxidation Product Acrolein in the Skin of Patients with Small-Vessel Vasculitis. Molecules. 2021;26:2344. doi: https://doi.org/10.3390/molecules26082344

Bergqvist C, Safi R, El Hasbani G, Abbas O, Kibbi A, Nassar D. Neutrophil Extracellular Traps are Present in Immune-complex-mediated Cutaneous Small Vessel Vasculitis and Correlate with the Production of Reactive Oxygen Species and the Severity of Vessel Damage. Acta Derm Venereol. 2020;100:adv00281. doi: https://doi.org/10.2340/00015555-3363

Emre S, Metin A, Demirseren DD, Akoglu G, Oztekin A, Neselioglu S, et al. The association of oxidative stress and disease activity in seborrheic dermatitis. Arch Dermatol Res. 2012;304:683-7. doi: https://doi.org/10.1007/s00403-012-1254-0

Seçkin HY, Kalkan G, Bas Y, Akbas A, Önder Y, Özyurt H, et al. Oxidative stress status in patients with melasma. Cutan Ocul Toxicol. 2014;33:212-7. doi: https://doi.org/10.3109/15569527.2013.834496

Hughes MCB, Williams GM, Pageon H, Fourtanier A, Green AC. Dietary Antioxidant Capacity and Skin Photoaging: A 15-Year Longitudinal Study. J Invest Dermatol. 2021 Apr;141(4S):1111-8.e2. doi: https://doi.org/10.1016/j.jid.2020.06.026

Kumar V, Tanwar N, Goel M, Khan M, Kumar D, Singh G, et al. Antioxidants for Skin Health. Recent Adv Food Nutr Agric. 2024 Aug 6. Epub ahead of print. doi: https://doi.org/10.2174/012772574X311177240710100118

Boo YC. Ascorbic Acid (Vitamin C) as a Cosmeceutical to Increase Dermal Collagen for Skin Antiaging Purposes: Emerging Combination Therapies. Antioxidants (Basel). 2022 Aug 26;11(9):1663. doi: https://doi.org/10.3390/antiox11091663

Keen MA, Hassan I. Vitamin E in dermatology. Indian Dermatol Online J. 2016 Jul-Aug;7(4):311-5. doi: https://doi.org/10.4103/2229-5178.185494

Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants. 2022;11(11):2270. doi: https://doi.org/10.3390/antiox11112270

Teo CWL, Tay SHY, Tey HL, Ung YW, Yap WN. Vitamin E in Atopic Dermatitis: From Preclinical to Clinical Studies. Dermatology. 2021;237(4):553-64. doi: https://doi.org/10.1159/000510653

Lain ET, Agrawal N, Ruvolo E, Weise JM, Callender VD. The Role of Coenzyme Q10 in Skin Aging and Opportunities for Topical Intervention: A Review. J Clin Aesthet Dermatol. 2024 Aug;17(8):50-5. PMCID: PMC11324190. Available from: https://pubmed.ncbi.nlm.nih.gov/39148958/

Knott A, Achterberg V, Smuda C, Mielke H, Sper-ling G, Dunckelmann K, et al. Topical treatment with coenzyme Q10-containing formulas improves skin's Q10 level and provides antioxidative effects. Biofactors. 2015 Nov-Dec;41(6):383-90. doi: https://doi.org/10.1002/biof.1239

Žmitek K, Žmitek J, Rogl Butina M, Pogačnik T. Effects of a Combination of Water-Soluble Coenzyme Q10 and Collagen on Skin Parameters and Condition: Results of a Randomised, Placebo-Controlled, Double-Blind Study. Nutrients. 2020 Feb 27;12(3):618. doi: https://doi.org/10.3390/nu12030618

Tessema EN, Bosse K, Wohlrab J, Mrestani Y, Neubert RHH. Investigation of ex vivo Skin Penetration of Coenzyme Q10 from Microemulsions and Hydrophilic Cream. Skin Pharmacol Physiol. 2020;33(6):293-9. doi: https://doi.org/10.1159/000511443

Ayunin Q, Miatmoko A, Soeratri W, Erawati T, Susanto J, Legowo D. Improving the anti-ageing activity of coenzyme Q10 through protransfersome-loaded emul-gel. Sci Rep. 2022 Jan 18;12(1):906. doi: https://doi.org/10.1038/s41598-021-04708-4

Ma EZ, Khachemoune A. Flavonoids and their therapeutic applications in skin diseases. Arch Dermatol Res. 2023Apr;315(3):321-31. doi: https://doi.org/10.1007/s00403-022-02395-3

Kostenko V, Akimov O, Gutnik O, Kostenko H, Romantseva T, et al. Modulation of redox-sensitive transcription factors with polyphenols as pathogenetically grounded approach in therapy of systemic inflammatory response. Heliyon. 2023 Apr 16;9(5):e15551. doi: https://doi.org/10.1016/j.heliyon.2023.e15551

Sun M, Deng Y, Cao X, Xiao L, Ding Q, Luo F, et al. Effects of Natural Polyphenols on Skin and Hair Health: A Review. Molecules. 2022 Nov 14;27(22):7832. doi: https://doi.org/10.3390/molecules27227832

Tuong W, Walker L, Sivamani RK. Polyphenols as novel treatment options for dermatological diseases: A systematic review of clinical trials. J Dermatolog Treat. 2015;26(4):381-8. doi: https://doi.org/10.3109/09546634.2014.991675

Di Salvo E, Gangemi S, Genovese C, Cicero N, Casciaro M. Polyphenols from Mediterranean Plants: Biological Activities for Skin Photoprotection in Atopic Dermatitis, Psoriasis, and Chronic Urticaria. Plants (Basel). 2023 Oct 15;12(20):3579. doi: https://doi.org/10.3390/plants12203579

Duarte MS, Fuhro VM, de Souza Nogueira J, Romana-Souza B. Polyphenol hydroxytyrosol present olive oil improves skin wound healing of diabetic mice. Wound Repair Regen. 2024 Nov-Dec;32(6):904-15. doi: https://doi.org/10.1111/wrr.13217

Zhang Y, Heinemann N, Rademacher F, Darvin ME, Raab C, Keck CM, et al. Skin Care Product Rich in Antioxidants and Anti-Inflammatory Natural Com-pounds Reduces Itching and Inflammation in the Skin of Atopic Dermatitis Patients. Antioxidants (Basel). 2022 May 28;11(6):1071. doi: https://doi.org/10.3390/antiox11061071

Yavtushenko IV, Nazarenko SM, Katrushov OV, Kostenko VO. Quercetin limits the progression of oxi-dative and nitrosative stress in the rats' tissues after experimental traumatic brain injury. Wiad Lek. 2020;73(10):2127-32. doi: https://doi.org/10.36740/WLek202010104

Zaborowski MK, Długosz A, Błaszak B, Szulc J, Leis K. The Role of Quercetin as a Plant-Derived Bioactive Agent in Preventive Medicine and Treatment in Skin Disorders. Molecules. 2024 Jul 5;29(13):3206. doi: https://doi.org/10.3390/molecules2933206

Beken B, Serttas R, Yazicioglu M, Turkekul K, Erdogan S. Quercetin Improves Inflammation, Oxidative Stress, and Impaired Wound Healing in Atopic Dermatitis Model of Human Keratinocytes. Pediatr Allergy Immunol Pulmonol. 2020 Jun;33(2):69-79. doi: https://doi.org/10.1089/ped.2019.1137

Shin EJ, Lee JS, Hong S, Lim TG, Byun S. Quer-cetin Directly Targets JAK2 and PKCδ and Prevents UV-Induced Photoaging in Human Skin. Int J Mol Sci. 2019 Oct 23;20(21):5262. doi: https://doi.org/10.3390/ijms20215262

Lim HJ, Kang SH, Song YJ, Jeon YD, Jin JS. Inhibitory Effect of Quercetin on Propionibacterium acnes-induced Skin Inflammation. Int Immunopharmacol. 2021 Jul;96:107557. doi: https://doi.org/10.1016/j.intimp.2021.107557

Hatahet T, Morille M, Hommoss A, Devois-selle JM, Müller RH, Bégu S. Quercetin topical appli-cation, from conventional dosage forms to nanodosage forms. Eur J Pharm Biopharm. 2016 Nov;108:41-53. doi: https://doi.org/10.1016/j.ejpb.2016.08.011

Chekalina NI, Kazakov YM, Mamontova TV, Vesnina LE, Kaidashev IP. Resveratrol more effectively than quercetin reduces endothelium degeneration and level of necrosis factor α in patients with coronary artery disease. Wiad Lek. 2016;69(3 pt 2):475-9. PMID: 28478409. Available from: https://pubmed.ncbi.nlm.nih.gov/28478409/

Frenkel Y, Cherno V, Kostenko H, Chopra H, Gautam RK, Kostenko V. Dietary Supplementation with Resveratrol Attenuates Serum Melatonin Level, Pro-Inflammatory Response and Metabolic Disorder in Rats Fed High-Fructose High-Lipid Diet under Round-the-Clock Lighting. Pathophysiology. 2023 Feb 19;30(1):37-47. doi: https://doi.org/10.3390/pathophysiology30010005

de Brito Oliveira AL, Monteiro VVS, Navegantes-Lima KC, Reis JF, de Souza Gomes R, Rodrigues DVS, et al. Resveratrol role in autoimmune disease – A mini-review. Nutrients. 2017;9:1306. doi: https://doi.org/10.3390/nu9121306

Lin MH, Hung CF, Sung HC, Yang SC, Yu HP, Fang JY. The bioactivities of resveratrol and its naturally occurring derivatives on skin. J Food Drug Anal. 2021;29:15-38. doi: https://doi.org/10.38212/2224-6614.1151

Marko M, Pawliczak R. Resveratrol and Its Derivatives in Inflammatory Skin Disorders-Atopic Dermatitis and Psoriasis: A Review. Antioxidants (Basel). 2023 Nov 2;12(11):1954. doi: https://doi.org/10.3390/antiox12111954

Adil M, Amin SS, Mohtashim M. N-acetylcys-teine in dermatology. Indian J Dermatol Venereol Leprol. 2018 Nov-Dec;84(6):652-9. doi: https://doi.org/10.4103/ijdvl.IJDVL_33_18

Janeczek M, Moy L, Riopelle A, Vetter O, Reser-va J, Tung R, et al. The Potential Uses of N-acetylcysteine in Dermatology: A Review. J Clin Aesthet Dermatol. 2019 May;12(5):20-6. Available from: https://pmc.ncbi.nlm.nih.gov/articles/PMC6561714/

Stachura A, Sobczak M, Kędra K, Kopka M, Kopka K, Włodarski PK. The Influence of N-Acetylcysteine-Enriched Hydrogels on Wound Healing in a Murine Model of Type II Diabetes Mellitus. Int J Mol Sci. 2024 Sep 16;25(18):9986. doi: https://doi.org/10.3390/ijms25189986

Padalhin A, Abueva C, Ryu HS, Yoo SH, Seo HH, Park SY, et al. Impact of Thermo-Responsive N-Acetylcysteine Hydrogel on Dermal Wound Healing and Oral Ulcer Regeneration. Int J Mol Sci. 2024 Apr 29;25(9):4835. doi: https://doi.org/10.3390/ijms25094835

Jędrejko K, Catlin O, Stewart T, Muszyńska B. Mexidol, Cytoflavin, and succinic acid derivatives as antihypoxic, antiischemic metabolic modulators, and ergogenic aids in athletes and consideration of their potential as performance enhancing drugs. Drug Test Anal. 2024 Dec;16(12):1436-67. doi: https://doi.org/10.1002/dta.3655

Gupta DS, Bagwe Parab S, Kaur G. Promising effects of emoxypine and its succinate derivative in the management of various diseases – with insights on recent patent applications. Curr Res Pharmacol Drug Discov. 2022 Aug 1;3:100121. doi: https://doi.org/10.1016/j.crphar.2022.100121

Lokes K, Kiptilyi A, Skikevych M, Steblovskyi D, Lychman V, Bilokon S, et al. Microbiological substantiation of the effectiveness of quercitin and its combination with ethylmethylhydroxypyridine succinate in the complex treatment of odontogenic phlegmon and maxillofacial abscesses. Front Oral Health. 2024 Jan 19;5:1338258. doi: https://doi.org/10.3389/froh.2024.1338258

Vazhnichaya E, Baliuk O, Sydorenko A. Systemic Effect of the Antioxidant Gel in Experimental Dermatologic Pathology. EC Pharmacology and Toxicology. 2024;12(12):01-09. Available from: https://ecronicon.net/assets/ecpt/pdf/ECPT-12-00863.pdf

Ji H, Li XK. Oxidative Stress in Atopic Dermatitis. Oxid Med Cell Longev. 2016;2016:2721469. doi: https://doi.org/10.1155/2016/2721469

Lin X, Huang T. Oxidative stress in psoriasis and potential therapeutic use of antioxidants. Free Radic Res. 2016 Jun;50(6):585-95. doi: https://doi.org/10.3109/10715762.2016.1162301

Guarneri F, Bertino L, Pioggia G, Casciaro M, Gangemi S. Therapies with Antioxidant Potential in Psoriasis, Vitiligo, and Lichen Planus. Antioxidants (Basel). 2021;10(7):1087. doi: https://doi.org/10.3390/antiox10071087

Published

2025-09-29

How to Cite

1.
Vazhnichaya E, Baliuk O, Deviatkina N, Vlasenko N, Kovalev S, Bobrova N. Oxidative stress in skin diseases and the role of antioxidants in their treatment. Med. perspekt. [Internet]. 2025Sep.29 [cited 2025Dec.5];30(3):68-81. Available from: https://journals.uran.ua/index.php/2307-0404/article/view/340594

Issue

Section

MEDICINE