XPS investigation of the thymine thin film on polycrystalline titanium oxide surfaces

Authors

  • А. А. Барта Uzhhorod National University, Ukraine
  • Н. І. Попович Uzhhorod National University, Ukraine
  • А. Ю. Попович Uzhhorod National University, Ukraine
  • К. Велтруска Charles University in Prague, Czechia
  • Т. Духон Charles University in Prague, Czechia
  • С. А. Берча Charles University in Prague, Czechia
  • І. Халахан Charles University in Prague, Czechia
  • З. Гажова Institute of Experimental Physics SAV, Slovakia
  • В. Матолін Інститут експериментальної фізики Словацької АН, Slovakia
  • В. М. Різак Uzhhorod National University, Ukraine

DOI:

https://doi.org/10.24144/2415-8038.2016.40.48-53

Keywords:

Thymine, Titanium oxide, Biomolecule – surface interaction, X-ray photoelectron spectroscopy

Abstract

Purpose. Information biomolecules have attracted increasing attention as interest in nanoscience and nanotechnology of biomaterials has appeared. Recent studies have demonstrated that nano-TiO2 induces DNA damage and increase the risk of cancer and the mechanism might relate to oxidative stress. To our knowledge, no detailed spectroscopic study is reported on thymine on TiOx surface. Therefore, the aim of this work is study of the thymine biomolecules interaction with the polycrystalline titanium oxide by X-Ray photoelectron spectroscopy (XPS).

Methods. Titanium oxide TiOxon the surface of polycrystalline titanium foil was prepared according to the method described in [3]. The thermal evaporation of thymine at 385 K took place in the preparation chamber (pressure 1.4×105 Pa). Al Kα radiation (1486.6 eV) was used to measure the XPS core levels spectra of O1s, C1s, N1s and Ti 2p3/2 with total resolution of 1 eV. Curve fitting was performed after a Shirley background subtraction by a Lorenzian–Gaussian method.

Results. The thymine layer (d=13.66 Å) on the surface of titanium oxide was obtained by thermal deposition in vacuum. Analysis of the measured XPS spectra shows that the N 1s spectra can be divided into two regions above 400 eV and around 398– 399 eV. A higher energy peak is attributed to amino –N- sites that connect with single bonds. A peak at the lower binding energy can be attributed to imino species that include a double N═C bond. C 1s core level spectra contains components that can be uniquely assigned to the hydrocarbons C─C, C─H, carbon bound to nitrogen C─N, N─C─N, amide carbon N─C═O, and urea carbon N─C(═O)─N with characteristic binding energies of approximately 285, 286–287, 288, and 289 eV, respectively. The heating in vacuum at T=50, 75, 100, 125, 150 and 200°C does not effect on the structure of the sample and the film thickness of thymine film.

Conclusions. The polycrystalline titanium oxide layer on the Ti foil was obtained. The thin film of thymine on the titanium oxide surface has was obtained by thermal evaporation in vacuum. XPS investigation of influence of thermal treatment on X-Ray photoelectron spectra of thymine thin film showed that the thickness of the film to 200˚C does not almost change. This indicates the formation of stable chemical bonds between the molecules C5H6N2O2 and the titanium oxide surface.

References

Kundu, J., Neumann, O., Janesko, B.G., Zhang, D., Lal, S., Scuseria, A.B.G.E., Halas, N.J. (2009), ”Adenine and adenosine monophosphate (AMP) gold binding interactions studied by surface-enhanced Raman and infrared spectroscopies” J. Phys. Chem. C No 113(32), pp. 1439014397.

Papadopoulou, E.; Bell, S. E. J. (2010), “Structure of Adenine on Metal Nanoparticles: pH Equilibria and Formation of Ag+ Complexes Detected by Surface-Enhanced Raman Spectroscopy.” J. Phys. Chem. No 114, pp. 22644−22651.

Барта А., Попович Н. Попович, А., Цуд Н., Духон Т., Велтруска К., Берча С., Халахан І., Гажова З., Матолін В., Різак В.. Рентгенофотоелектронні спектроскопічні дослідження тонкої плівки тиміну на поверхні окису титану. – Наук. вісник Ужгородського університету. Сер.Фізика. – Вип. 39. – 2016.- сс. 36-44.

Tsud, N., Bercha, S., Ševčíková, K., Acres, R. G., Prince K. C., Matolín, V. (2015), “Adenine adlayers on Cu (111): XPS and NEXAFS study”, J. Chem. Phys., No143, pp. 174704.

Ptasińska, S., Stypczyńska, A., Nixon, T., Mason, N. J., Klyachko, D. V., Sanche, L. (2008), “X-ray induced damage in DNA monitored by X-ray photoelectron spectroscopy”, J. Chem. Phys. No 129, pp. 065102-1,6.

Науковий вісник Ужгородського університету. Серія Фізика. № 40. – 2016

Duncan, D.A., Pfisterer, J.H.K., Deimel, P.S., Acres, R.G., Fritton, M., Feulner, P., Barth J.V., and Allegretti, F. (2016), “Formation of a thermally stable bilayer of coadsorbed intact and deprotonated thymine exploiting the surface corrugation of rutile TiO2 (110)”, Phys. Chem. Chem. Phys., No 18, pp. 20433-20442.

Барта А.А., Чобаль О.І., Заячук І.П., Різак В.М.. Першопринципні розрахунки фізичних властивостей біоінформаційної молекули тиміну. – Наук. вісник Ужгородського університету. Сер.Фізика.– Вип. 38.– 2015.- сс.18-22.

Wang, F. (2006) “Ionisation energy splitting of amino and imino N–K sites in cytidine”, Micro & Nano Letters 1(1):23.

Dmitri Y. Petrovykh, D.Y., Suda, H.K. Whit man, L.J. Tarlov, M.J, (2003), “Quantitative Analysis and Characterization of DNA Immobilized on Gold”, J. AM. CHEM. SOC., No 125, pp. 5219-5226.

Jingfang, Z., David A. B., Rossen S., and Ralston, J. (2007), “Synthesis and Surface Structure of Thymine-Functionalized, Self-Assembled Monolayer-Protected Gold Nanoparticles”, Langmuir, No 23, pp. 9170-9177.

Published

2016-12-31

Issue

Section

Статті