Modeling of electronic and lattice subsystems in β-InSe layered crystal from first-principles

Authors

  • Любов Юріївна Хархаліс Uzhhorod national university, Ukraine
  • Костянтин Євгенійович Глухов Uzhhorod national university, Ukraine
  • Тетяна Ярославівна Бабука Uzhhorod national university, Ukraine

DOI:

https://doi.org/10.24144/2415-8038.2017.42.35-46

Keywords:

Electron band structure, Phonon spectrum, Raman-spectra, Infrared spectra, Effective Born charges, Dielectric constants, Elastic properties, Sound velocities

Abstract

Introduction. The study of the β-InSe crystals is motivated by the potential application of their physical properties in nonlinear optics, solar energy and spintronics. Recently, indium selenide has also attracted considerable attention in view of its use in heterostructures based on the homo- and heterojunctions β-InSe (β-InSe/In4Se3, β-InSe/graphene, InSe/SiC, p-GaSe-n-InSe). In addition to the applied aspects, the β-InSe material is interested from its electronic and dynamical properties related with the layered structure.

Purpose. In this work, we present a combined ab initio study of the electronic, structural, dynamical, and elastic properties of the β-InSe layered crystal

Methods. Quantum chemical calculations in this work were performed in the framework of density functional theory (DFT) within local approximation for exchange-correlation interaction (LDA) and dispersion correction (DFT-D) methodology.

Results. The band structure, the energy dependences of the absorption coefficient for different light polarizations and the dynamic characteristics have been obtained for the β- InSe crystal. We found a direct band gap of about 1.04 eV located at the Г-point in the hexagonal Brillouin zone (Egexp~1.32 eV). The contribution of different bands was analyzed from the partial density of states curves. The phonon dispersion curves and phonon density of states of the material were obtained too. It is shown that the presence of low-frequency optical vibration branches which interact with acoustic vibrations, and LO–TO splitting in the Г–A and Г–M directions in the high-energy region are observed. We carried out the Raman and IR spectra calculations and constructed the vectors of atom displacements corresponding to normal vibration active in these spectra. For the first time calculations of Born effective charges, dielectric constants, and velocities of the sound propagations were carried out for the hexagonal crystal β-InSe.

Conclusion. This study reports a detailed investigation on the electronic, the dynamic, the optical and elastic properties for the β-InSe layered crystal using the first-principles method. The calculation provides an excellent description of the electronic band structure and the phonon spectrum. From the calculations of the phonon spectrum, it follows that there is a significant anisotropy for low-frequency acoustic vibration. We have determined the phonon frequencies of the active vibration modes in Raman and IR spectra. Estimates of the Born effective charge, dielectric constants, elastic modules, and ultrasound propagation velocities in the β-InSe crystal show their anisotropy in the direction of strong and weak coupling, and well correlate with the experimental data. 

Author Biographies

Любов Юріївна Хархаліс, Uzhhorod national university

professor

Костянтин Євгенійович Глухов, Uzhhorod national university

associate professor

Тетяна Ярославівна Бабука, Uzhhorod national university

postgraduate

References

Segura А., Bouvier J., Andre´s M.V. et.al. (1997), “Strong optical nonlinearities in gallium and indium selenides related to inter-valence-band transitions induced by light pulses”, Phys. Rev. B., V. 56, No.7, pp. 4075-4084.

Segura A., Guesdon J.P., Besson J.M., Chevy A. (1983), “Photoconductivity and photovoltaic effect in indium selenide”, J. Appl, Phys., V.54, pp.876-881.

Slyn’ko V.V., Khandozhko A.G., Koval-yuk Z.D. et.al. (2005), “Weak Ferromagnetism in InSe:Mn Layered Crystals”, Semiconductors, V. 39, No.7, pp. 772–776.

Grygorchak I.I., Seredyuk B.O., Tovstyuk K.D., Bakhmatyuk B.P. (2002), “New Trends in Intercalation. Compounds for Energy Storage”, – Paris: Kluwer acad. Publ, 2002. – pp.543-545.

Kovalyuk, Z.D., Katerynchuk, V.M., Kushnir, B.V., Tovarnytskyi, M.V.(2016), “Heterojunctions based on In4Se3 layered crystals” [“Heteroperekhody na osnovi sharuvatykh krystaliv In4Se3”, Zhurnal fiziky ta inzhenerii poverkhni], Journal of Surface Physics and Engineering, V. 1, No. 3, pp. 242–245.

Kharkhalis L.Yu., Glukhov K.E., Babuka T.Ya. (2017), “Electronic and optical properties of heterostructures based on in-dium chalcogenides”, Acta Physica Polonica A, V. 132, No. 2, pp. 319-321.

Svatek S.A., Mudd G.W., Kudrynskyi Z.R. et.al. (2015), “Graphene-InSe-graphene van der Waals heterostructures”, J Physics: Conf. Ser., V.647, pp.012001 -5.

Lebedev, A.A., Rud’ V.Yu., Rud’, Yu.V. (1998), “Creation and photosensitivity of anodized SiC-based heterostructures” [Sozdanie i foto-chuvstvitelnost heterostructur na osnove anodizirovannogo karbida kremnia”], Sem-icoductors, Vl. 32, No. 3, pp. 326-328.

Кovalyuk Z.D., Makhniy V.P., Yanchuk O.I. (2002), “The mechanisms forming photoelectrical properties of p-GaSe-n-InSe”, Telecommun. Radio Eng., V. 57, No 12, pp.60-63.

Schluter, M. (1973) “Band structure of GaSe”, Nuovo Cimento, V. B13, pp. 313-320.

Sznajder M., Rushchanskii K.Z., Kharkha-lis L.Yu. et.al. (2006), “Similarities of the band structure of In4Se3 and InSe under pressure and peculiarities of the creation of the band gap”, Phys. Stat. Sol. (b).,V. 243,No.3, pp. 592–609.

Glukhov K.E., Tovstyuk N.K. (2010), “Elementary energy bands concept, band structure and peculiarities of bonding in b-InSe crystal”, Phys. Stat. Sol. (b), V. 247, No. 2, pp. 318-324.

Yandong M., Ying D., Lin Y., Chengwang N., Baibiao H. (2013), “Engineering a top-ological phase transition in β-InSe via strain”, New Journals of Physics, V.15, pp. 073008-11.

Zhu Z., Cheng Yi, Schwingenschlögl U. (2012), “Topological Phase Transition in Layered GaS and GaSe”, Phys. Rev. Letters, V. 108, p. 266805-6.

Balkanski M., P.G. da Costa, Wallis R.F. (1996), “Electronic energy bands and lattice dynamics of pure and lithium-intercalated InSe”, Phys. Stat. Sol. (b). V. 194, No. 1, pp. 175-185.

Bercha D.M., Rushchanskii K.Z., Kharkhalis L.Yu. (2000), “Structure simi-larity and lattice dynamics of InSe and In4Se3 crystals”, Condensed Matter Phys-ics, V. 3, No. 4(24), pp. 749-757.

Hai G.S, Yuan X.W., Yu L.Y., Guang B.Z. (2012) “Structural, Electronic, and Thermoelectric Properties of InSe Nanotubes: First-Principles Calculations”, J. Phys. Chem. C, V. 116, pp 3956−3961.

Z’olyomi V., Drummond N.D., Fal’ko V.I. (2014), “Electrons and phonons in single layers of hexagonal indium chalcogenides from ab initio calculations”, Phys. Rev. B, V. 89, pp. 205416-1- 205416-8.

Srinivasa R.T., Yi-Ying L., Rajesh K.U. et.al. (2014), “High Performance and Bendable Few-Layered InSe Photodetectors with Broad Spectral Response”, Nanoletters, V. 14, pp. 2800-2806.

Man, L.I., Imamov, R.M., Semiletov, S.A. (1976), “Types of Ga, In and Tl crystalline halcogenides” [“Typy kristallicheskikh khalkogenodov Ga, In i Tl“, Kristallo-grafiya, V. 21, No. 3, pp. 628-639.

Evtodiev I., Caraman Ju., Kantser V. et.al. (2016), “Optical and Photoelectric properties of GaS, GaSe, GaTe and InSe Semiconductors and Nanocomposites Obtained by Heat Treatment in Cd and Zn Vapor”, Nanostruct. and Thin Films for Mul-tifuctional Applications, pp. 381-413.

Alieva, L.N., Belenkii, G.L., Reshina I.I. et.al. (1979), “Raman scattering and inter-layer interaction in the InSe crystals” [“Kombintsionnoie rasseianie i mezhsloevoe vzaimodeistvie v kristallakh InSe”], Physics of the Solid State, V. 21, No 1, pp. 155–160.

Vodopyanov, L.K., Golubev, L.V. , Allakhverdiev, K.R., Salaev, E.Yu. (1978), ”Raman spectra in the InSe crystals”, Semiconductors” [“Spectry kobinatsionnogo rasseiania v kristallakh InSe”], Fiz. tverd. Tela, V. 20, No. 9, pp. 2803-2805.

Mushinskii, V.P., Kobolev, V.I. (1972), "Investigation of the optical properties of In2Se3xTe3(1−x) single crystals" ["Issledo-vanie opticheskikh svoistv kristallov In2Se3xTe3(1−x) ], Fiz. Tverd. Tela, V. 14, pp. 1275-1279.

Kuroda N., Nishina Y. (1980), “Resonance Raman scattering study on exciton and polaron anisotropies in InSe”, Solid State Commun.,V. 34, pp. 481-484.

Ikari T., Shigetomi T.S., Hashimo K. (1982), “Crystal Structure and Raman Spectra of InSe”, Phys. stat. sol. (b) V. 111, pp. 477 -481.

Zhou B., Su Q., He De-Yan (2009), ”First-principles calculations on the electronic and vibrational properties of β-V2O5”, Chin. Phys. B, V. 18, p. 4988.

Rushchanskii, K.Z. (2000), “Spectra of lattice elementary excitation of the group In-Se, In-Te crystals” [Spectry elementarnykh zbudzhen’ gratky krystaliv grupy Іn-Sе, Іn-Те”], avtoref. disert. na zdobuttya nauk.stu-penya kand.fiz.-mat. nauk], Uzhhorod, 17 p.

Belen’kii, G.L., Salaev E.Yu., Suleimanov, R.A. (1988), “Deformation effects in lay-er crystals”, Advances in Physical Sciences, [“Deformatsionnie yavlenia v sloistykh kristallakh ”], Sov. Phys. Usp., V. 31, No. 5, pp. 434–455.

Ghalouci L., Taibi F., Bensaid M.O. (2016) “Ab initio investigation into structural, mechanical and electronic properties of low pressure, high pressure and high pressure-high temperature phases of Indium Selenide,” Computational Materials Science , V. 124, pp. 62–77.

Gatulle M., Fischer M., Chevy A. (1983 ) “Elastic constants of the layered compounds GaS, GaSe, InSe, and their pressure dependence I. Experimental part.”, Phys. Status Solidi B 119, pp. 327–336.

Iskander-Zade, Z.A., Faradzhaev, V.D., Agaev, A.I. (1972), ‘’Elastic properties of InSe“, [“Uprugie svoistva InSe“, Physics of the Solid State, V. 19, No. 3, pp. 851–853.

Ferrer Ch., Segura A., Andrés M.V., Muñoz V., Pellicer J. (1996), ”The applica-tion of the photoacoustic transmittance os-cillations for determining elastic constants in gallium and indium selenides”, J. Appl. Phys., V. 79(6), No.15, pp. 3200-3204.

Published

2017-12-21

Issue

Section

Статті