Optical analogue of Bormmann effect for the photonic crystals

Authors

  • М. В. Богданова Institute of Spectroscopy RAS, Russian Federation
  • Ю. Е. Лозовик Institute of Spectroscopy RAS, Russian Federation
  • С. Л. Эйдерман Institute of Spectroscopy RAS, Russian Federation

DOI:

https://doi.org/10.24144/2415-8038.2009.24.22-31

Keywords:

Bormmann effect, Photonic crystals, Reflection and absorption spectra

Abstract

We introduce a new optical effect in photonic crystals (PCs) - a direct analogue of the Borrmann effect being observed for conventional crystals in X-ray spectroscopy. Photonic crystal having a FCC opal-like structure with two-layered metal-dielectric balls placed in the nodes is considered. Using computer simulation by the layered Korringa–Kohn–Rostoker method (LKKR) dependence the PC absorption coefficient dependence on wavelength and incidence angle is obtained. A wavelength region where the absorption changes sharply at minor variations of the incidence angle is found. The distribution of the spatial energy of an electromagnetic wave inside each layer of the PC for two angles of incidence 23o и 30corresponding to the minimum and the maximum of the absorption coefficient at the wavelength 455 nm is analyzed using the finite-difference time-domain (FDTD) method. It is shown that in the absorption maximum, sharp maxima of the energy of the electromagnetic field are localized near the surface of absorbing metal cores. Furthermore in the absorption minimum, the maxima of the energy distribution of the electromagnetic field are localized basically between the nodes of PC lattice. This effect can be considered as a direct analogue of the Borrmann effect in X-ray spectroscopy.

References

E. Yablonovitch, Phys. Rev. Lett., 58, 2059 (1987).

He Sailing, Xiao Sanshui, Shen Linfang, He Jianping, Fu Jian, J. Phys. A: Math. Gen., 34, 9713 (2001).

Paulo de Tarso Neves, Jr. and Alexandre A. P. Pohl, J. of Communication and Information Systems, 20, 3 (2005).

Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, Phys. Rev. B 66, 161403 (2002).

S.Y. Lin, J. Moreno, J.G. Fleming, Phys. Rev. Lett. 83, 380 (2003).

S.Y. Lin, J.G. Fleming, I. EI-Kady, Phys. Rev. Lett., 83, 5933 (2003).

J. G. Fleming, S. Y. Lin, I. El-Kady, R. Biswas, K. M. Ho, Nature 417, 52–55 (2002).

N. Stefanou, V. Yannopapas, A. Modinos, Comp. Phys. Comm., 113, 49 (1998),.

A. Modinos, Physica A 141, 575 (1987).

J.B. Pendry, “Low Energy Electron Diffraction”, Academic Press, London (1974).

A. Taflove, S. C. Hagness, “Computational Electrodynamics”, Boston, MA: Artech House (2000).

K. S. Kunz, R. J. Luebbers, “Finite Difference Time Domain Method for Electromagnetics”, Boca Raton, FL, CRC Press (1993).

K.S. Yee. IEEE Trans. Antennas Propagat., AP-14, 302 (1966).

Valuev, A. Deinega, S. Belousov, Opt. Lett. 33, 1491-1493 (2008).

С.Л. Эйдерман, М.В. Богданова, Ю.Е. Лозовик, С.А. Белоусов, А.В. Дейнега, И.А. Валуев, Математическое моделиро- вание, т. 21, 5, с. 21-40 (2009); M. V. Bogdanova, S. L. Eiderman, Yu. E. Lozovik, and M. Willander, Laser Physics, 18, 417 (2008).

S. Roberts, Phys. Rev. 114, 1 (1959).

С.Г. Романов, ФТТ 49, вып.3, 512 (2007).

E. Pavarini, L.C. Andreani, C. Soci, M. Galli, F. Marabelli, D. Comoretto, Phys. Rev. B 72, 045102 (2005).

М.В.Ковальчук, В.Г.Кон, УФН 149, вып.1, 69 (1986).

G. Вorrmann , Phys. Zs. 42, 157 (1941); Zs. Phys. 127, 297 (1950).

M.von Laue, Acta Crystallogr 2, 106 (1949).

Published

2009-06-30

Issue

Section

Статті