The room temperature visible photoluminescence in g- As<sub>2</sub>S<sub>3</sub> and Ge-based glasses
DOI:
https://doi.org/10.24144/2415-8038.2013.34.54-58Keywords:
Visible photoluminescence, Chalcogenide glass, Oxide phase, Edge absorption, GeS2Abstract
PL radiation from long term aged fractured surfaces of GeS2-based glasses was assigned to the surface contaminant effect from native oxidized layer, which might have formed in the air. When have been used for PL measuring the freshly fractured surface of g-GeS2(T3V2) all PL peaks which was connected with GeOx species where disappeared in PL spectrum.
References
Zalkovsij M., Bisgaard C. Zoffman, Novitsky A., Malureanu R., Savastru D., Popescu A., Jepsen P.U., Lavrinenko A.V. Ultraboardband terahertz spectroscopy of chalcogenide glasses // Applied Physics Latters. 2012. - vol. 100. - P. 031901-1-031901-6.
Mitsa V., Holomb R., Veres M., Mar¬ton A., Rosola I., Fekeshgazi I., Koós M. Non-linear optical properties and structure of wide band gap non-crystalline semiconductors // Phys. Stat. Sol. C. - vol. 8. - № 9. – 2011. - P. 2696-2700.
Liu X., Naftaly M., Iha A. Spectroscopic evidence for oxide dopant sites in GeS2-based glasses using visible photo-luminescence from Pr3+ probe ions // Journal of Luminescence. - vol. 96. - 2002. - P. 227-238.
Gamulin O., Ivanda M., Mitsa V., Balarin M., Kosovic M. Monitoring structural phase transition of (Ge2S3)x(As2S3)1-x chalcogenide glass with Raman spectroscopy // Journal of Molecular Structure. - vol. 993. - 2011. – P. 264–268.
Eggleton B.J., Luther-Davies B., Richardson K. Chalcogenide photonics // Nature Photonics. - vol. 5. – 2011. - P. 141-148.
Mitsa V., Babinets Y., Gvardionov Y. and Yermolovich I. Photoluminescence in GexAsyS1-x-y by varying the average coordination number // J. of Non-Crystalline Solids. - vol. 137&138. – 1991. - P. 959-962.
Popescu M. Non-Crystalline Chalcogenides // KluwerAcademic Publishers. – New York. – 2000.
Kolobov A.V. Photo-induced metastability in amorphous semiconductors // Wiley-VCH. - 2003.
Fairman R. and Ushkov B. Semiconducting Chalcogenide Glass.
P.I–III. P.I. Glass formation,structure, and simulated transformations inchalcogenide glass; P. II. Properties of glasses // Elsevier. - 2004.
Davydova N.A., Bondar N.V., Tyschenko V.V. Photoiduced effects in luminescent spectra of chalcogenide glasses // Journal of Applied Spectroscopy. - vol. 69. – 2002. - P. 258-262.
Nakanishi 3.T., Tomii Y., Hachiya K. Temperature dependence of the photoinduced fatigue-recovery phenomena of photoluminescence under prolonged irradiation in GeS2 chalcogenide glass // J. of Non-Crystalline Solids. - vol. 354. – 2008. - P. 1627-1632.
Terakado N., Tanaka K. Does the charged defect exist in nano-structured chalcogenide glass? // Applied Physics Express. - vol. 1. – 2008. - P. 081501-1-081501-3.
Holomb R., Mitsa V., Petrachenkov O., Veres M., Stronski A. and Vlček M. Comparison of structural transformations in bulk and as-evaporated optical media under action of polychromatic or photon-energy dependent monochromatic illumination // Phys. Stat. Sol. C. - vol. 8. - № 9. – 2011. - P. 2705-2708.
Murayama K., Bösch M.A. Radiative recombination in crystalline As2S3 // Physical Review B. - vol. 23. – 1981. - P. 6810-6812.
Tanaka K. Excitation-energy-dependent photoluminescence in glassy As–S and crystalline As2S3 // Phys. Status Solidi B. - vol. 1–6. – 2013. - DOI 10.1002/pssb.201248519.
Kartopu G., Bayliss S.C., Karavansckii V.A., Curry R.J., Turan R., Sapelkin A.V. On the origin of the 2.2-2.3 photoluminescence from chemically etched germanium // J of Luminescence. - vol. 101. – 2003. - P. 275-283.
Ko T.S., Shieh J., Yang M.C., Lu T.C., Kuo H.C., Wang S.C. Phase transformation and optical characteristics of porous germanium thin films // This Solid Films. - vol. 516. – 2008. - P. 2934-2938.
Sun K.W., Sue S.H., Liu C.W. Visible luminescence from Ge quantum dots // Physica E. - vol. 28. – 2005. - P. 525-530.
Lezal D. Chalcogenide glasses – survay and progress // Journal of Optoelectronics and Advanced Materials. - vol. 5. -2003. - P. 23–34.
Bishop S.G., Shanabrook B.V., Strom U. and Taylor P.C. Comperison of optically induced localized states in chalcogenide glasses and their crystalline counterparts // J. De Phisique E. - vol. 42. – 1981. - P. C4-383-C4-386.
Mingfa Peng, Yang Li, Jing Gao, Duo Zhang, Zheng Jiang, Xuhui Sun. Electronic Structure and Photoluminescence Origin of Single-Crystalline Germanium Oxide Nanowires with Green Light Emission // J. Phys. Chem. C. - vol. 115. – 2011. - P. 11420–11426.
Zyubin A.S., Mebel A.M., Lin S.H. Photoluminescence of oxygen-deficient defects in germanium oxides: A quantum chemical study // The Journal of Chemical Physics. - vol. 125. – 2006. - P. 064701-0647011.
Holomb R., Johansson P., Mitsa V., Rosola I. Local structure of technologically modified g-GeS2: resonant Raman and absorption edge spectroscopy combined with ab initio calculations // Philosophical Magazine. - 2005. - vol. 85.- P. 2947-2960.
Banik I. On photoluminescence in chalcogenide glasses based on barrier-cluster model // J. of Non – Oxide and Photonic Glasses. - vol. 1. – 2009. - P. 29-33
Downloads
Published
Issue
Section
License
Copyright (c) 2013 Scientific Herald of Uzhhorod University.Series Physics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).