Structure of glasses and composites in As<sub>2</sub>S<sub>3</sub>–Sb<sub>2</sub>S<sub>3</sub>–SbI<sub>3</sub> system

Authors

  • В. М. Рубіш Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine https://orcid.org/0000-0003-0229-1449
  • С. М. Гасинець Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine
  • О. М. Грещук V.E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ukraine https://orcid.org/0000-0001-6389-7239
  • Л. І. Макар Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine https://orcid.org/0000-0002-6391-5705
  • О. А. Микайло Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine
  • Р. П. Пісак Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine
  • І. М. Різак Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine
  • А. М. Соломон Institute of electronic physics of the National Academy of Sciences of Ukraine, Ukraine https://orcid.org/0000-0003-1980-268X
  • В. О. Юхимчук V.E. Lashkaryov Institute of Semiconductor Physics, NAS of Ukraine, Ukraine https://orcid.org/0000-0002-5218-9154
  • Т. І. Ясінко Uzhhorod laboratory of materials of optoelectronics and photonics of the Institute for Information Recording, NASU, Ukraine

DOI:

https://doi.org/10.24144/2415-8038.2019.45.27-38

Keywords:

Chalcohalogenide glasses, Raman spectra, Structure, Crystallization, Ferroelectrics

Abstract

Purpose. Composites on the basis x(As2S3)y(Sb2S3)z(SbI3) glasses are suitable for creation of ferroelectric glassceramics, nonlinear dielectrics, memory media, elements for infrared and nonlinear optics, various sensors. This paper presents the results of thermal, X-ray diffraction and Raman studies of the conditions of formation and nature of crystalline inclusions in the glass matrix of the As2S3-Sb2S3-SbI3 system during their thermal treatment.

Methods. Differential thermal analysis (DTA), Raman and X-Ray diffraction spectroscopy. DTA curves were carried out in the temperature interval of 293–700 K. Heating rate was equal 3 K/min.

Results. Danoheterogenous structure of glasses in As2S3-Sb2S3-SbI3 system established on the basis of Raman spectra investigations. Their structural network is formed by only binary structural groups with heteropolar bonds (AsS3/2, SbS3/2, SbI3, AsI3) and contains a certain amount molecular fragments with homopolar As-As and S-S bonds (As4S4, S8).

It has been established that the crystallization of glasses takes place in several stages. DTA curves of glasses recorded at 3 K/min revealed three exothermic effects. For example, for 40(As2S3)30(Sb2S3)30(SbI3) glass temperatures maxima of these effects are equal 341, 398 and 530 K. The first and second effects are less pronounced due to nucleus formation and the formation of nanocrystals in glass matrix. The structure of the phase that arises in the glass matrix at annealing (348 and 398 K) corresponds to the structure of the crystalline SbSI. The formation of triple units SbS2/2I occurs as a result of the glass structural relaxation during its softening, which is accompanied by breaking and switching of homopolar and heteropolar chemical bonds in the binary groups that form the structural network of glasses. This process is accompanied by the diffusion of atoms in a distances of interatomic order. The sizes of antimony sulfoiodsde crystalline inclusions increase with annealing temperature and annealing time. The matrixes of the annealed As2S3-Sb2S3-SbI3system glasses, in which crystalline SbSI inclusions of different dimensions are formed, are determined mainly by As4S4 structural groups linked together by fragments of chains or rings of sulfur atoms.

Conclusions. DTA curves, X–ray powder diffraction patterns and Raman spectra of glasses in As2S3-Sb2S3-SbI3 were investigated. The nanoheterogeneous structure of glasses was established. The crystallization of glasses takes place in several stages. The structure of the phase that arises in the glass matrix at annealing corresponds to the structure of crystalline antimony sulfoiodide. The sizes of SbSI crystalline inclusions are dependent on the heat treatment regimes.

References

Герзанич Е.И. Сегнетоэлектрики типа AV BV I CV II / Е.И. Герзанич, В.М. Фридкин. – Москва: Наука, 1982. – 228 с.

Rubish V.M. Thermo-stimulated relaxation of SbSI glass matrix / V.M. Rubish //J. Optoelectronics Advanced Mat. – 2001. – V.3. – N 4. – P. 941–944.

Rubish V.M. Crystallization parameters of non-сrystalline antimony chalcogenides / V.M. Rubish, M.V. Dobosh, P.P. Shtets et. al. // J. Phys. Studies. – 2004. – V.8. – N 2. – P. 178–182.

Rubish V.M. Investigation of glass structure in As(Sb)-S(Se)-I systems by the methods of Raman spectroscopy and X-ray diffraction / V.M. Rubish, I. Yurkin, V. Malesh et. al. // Proc. SPIE. – 1995. – V. 2648. – P. 529–536.

Рубіш В.М. Структура ближнього порядку у склах системи Sb2S3–SbI3 / В.М. Рубіш, П.П. Штець, В.В. Рубіш, Д.Г. Семак // Вісник Ужгород. ун-ту. Серія Фізика. – 2000. – Вип. 7. – С. 58–62.

Turyanitsa I.D. Raman spectra and dielectric properties of glasses of the Sb-S-I system / I.D. Turyanitsa, L.K. Vodop’yanov, V.M. Rubish et. al. // J. Appl. Spectroscopy. – 1986. – V. 44. – N 5. – P. 501–504.

Grigas J. Spliting of the XPS in ferroelectric SbSI crystals / J. Grigas, E. Talik, V. Lazauskas // Ferroelectrics. – 2003. – V. 284. – P.147–160.

Шпак А.П. Склоутворення і властивості сплавів в халькогенідних системах на основі миш’яку та сурми / А.П. Шпак, В.М. Рубіш. – Київ: ІМФ, НАНУ, 2006. – 120 с.

Rubish V.M. Obtaining and crystallization peculiarities of antimony containing chalcogenide glasses / V.M. Rubish, M.Yu. Rigan, S.M. Gasinets et. al. // Ferroelectrics. – 2008. – V. 372. – No. 1. – P. 87–92.

Рубіш В.М. Формування сегнетоелектричних включень в матриці халькогенідного скла / В.М. Рубіш, О.Г. Гуранич, Д.С. Леонов // Наносистеми, наноматеріали, нанотехнології. – 2005. – Т. 3. – N 4. – С. 911–920.

Рубіш В.М. Аномальна поведінка діелектричної проникності халькогенідних стекол в околі температури кристалізації / В.М. Рубіш // Сенсорна електроніка і мікросистемні технології. – 2007. – Т. 1. – С. 62–66.

Рубіш В.М. Особливості одержання і кристалізації стекол на основі сульфойодиду сурми / В.М. Рубіш // Фіз. і хімія тв. тіла. – 2007. – Т. 8. – N 1. – С. 41–46.

Kaynts D.I. Formation of ferroelectric nanostructures in (As2S3)100−x(SbSI)x glassy matrix / D.I. Kaynts, A.P. Shpak, V.M. Rubish et. al. // Ferroelectrics. – 2008. – V. 371. – N 1. – P. 28–33.

Рубіш В.М. Дослідження структури стекол системи As-Sb-S-I методою КР-спектроскопії / В.М. Рубіш, В.О. Стефанович, О.Г. Гуранич та ін. // Наносистеми, наноматеріали, нанотехнології. – 2008. – Т. 6. – N 4. – С. 1119–1127.

Рубіш В.М. Склоутворення, кристалізація і фізико-хімічні властивості сплавів в системах на основі SbSI / В.М. Рубіш, М.Ю. Риган, В.П. Перевузник та ін. // Фіз. і хімія тв. тіла. – 2009. – Т. 10. – N 4. – С. 861–866.

Shpak A.P. Optical properties and local structure of (As2S3)100−x(SbSI)x glasses / A.P. Shpak, V.M. Rubish, O.A. Mykaylo et. al. // Ukr. J. Phys. Opt. – 2010. – V. 11. – N 2. – P. 107-113.

Barj M. Formation and structure of crystalline inclusions in As2S3-SbSI and As2Sе3-SbSI systems glass matrices / M. Barj, O.A. Mykaylo, D.I. Kaynts et. al. // J. Non-Cryst. Solids. – 2011. – V. 357. – P. 2232–2234.

Rubish V.M. Crystallization study of (As2S3)100−x(SbSI)x amorphous films by optical method / V.M. Rubish, O.V. Kozusenok, P.P. Shtets et. al. // Semiconductor Physics, Quantum Electronics & Optoelectronics. – 2012. – V. 15. – N 3. – P. 294–297.

Azhniuk Yu.M. Photoinduced changes in the structure of As2S3–based SbSI nanocrystalcontaining composites studied by Raman spectroscopy / Yu.M. Azhniuk, P. Bhandivad, V.M. Rubish et. al. // Ferroelectrics. – 2011. – V. 416. – P. 113–118.

Azhniuk Yu.M. SbSI nanocrystal formation in As–Sb–S–I glass under laser beam / Yu.M. Azhniuk, V. Stoyka, I. Petryshynets et. al. // Mat. Res. Bull. – 2012. – V. 47. – P. 1520–1522.

Azhniuk Yu.M. Raman and AFM studies of (As2S3)0.45(SbSI)0.55 thin films and bulk glass / Yu.M. Azhniuk, A. Villabona, A.V. Gomonnai et. al. // J. Non-Cryst. Sol. – 2014. – V. 396-397. – P. 36–40.

Рубіш В.М. Механізм формування і природа кристалічних включень в матриці стекол системи Sb2S3-AsSI / В.М. Рубіш, В.М. Мар’ян, В.О. Стефанович та ін. // Фіз. і хімія тв. тіла. – 2013. – Т. 14. – N 1. – С. 70–74.

Rubish V.M. The influence of obtaining and heat thetment conditions on the structure of As2S3-SbSI system / V.M. Rubish, L. Bih, O.A. Mykaylo et. al. // Semiconductor Physics, Quantum Electronics & Optoelectronics. – 2013. – V. 16. – Nо. 2. – P. 123–127.

Петров В.В. Материалы перспективных оптоэлектронных устройств / В.В. Петров, А.А. Крючин, В.М. Рубиш. – Київ: Наукова думка, 2012. – 336 с.

Koudelká L. Raman spectra and structure of As-S-I system glasses / L. Koudelká, M. Pisárčik. // J. Non-Cryst. Solids. – 1984. – V. 64. – N 1. – P. 87–94.

Ролстен Р.Ф. Иодидные металлы и иодиды металлов / Р.Ф. Ролстен. – Москва: Металургия, 1968. – 524 с.

Rubish V.M. Thermoinduced formation of SbSI crystallites in As2S3-Sb2S3–SbI3 glass matrix / V.M. Rubish, S.M. Gasynets, O.V. Gorina et. al. // Abstr. V Ukrainian-Polish-Lithuanian Meeting on Physics of Ferroelectrics (UPLMF-V). – Uzhhorod, Ukraine. – 2018. – P. 86.

Рубіш В.М. Вплив умов відпалу на структуру і властивості стекол (As2Se3)100−x(SbSI)x та композитів на їх основі / В.М. Рубіш, С.М. Гасинець, О.В. Горіна та ін. // Науковий вісник УжНУ. Серія Фізика. – 2017. – Вип. 41. – С. 68–78.

Perry C.H. The Raman spectrum of ferroelectric SbSI / C.H. Perry, D.K. Agrawal // Solid State Communs. – 1970. – V. 8. – P. 225–230.

Teng M.K. Optical phonon analysis in the AV BV I CV II compounds / M.K. Teng, M. Balkanski, M. Massot, M. Ziolkiewicz // Phys. Status Solidi (b). – 1974. – V. 62. – P. 173–182.

Published

2019-12-19

Issue

Section

Статті