Double-layer targets for forming the beams of the high-energy photons on the electron accelerator of M-30 microtron
DOI:
https://doi.org/10.24144/2415-8038.2019.45.50-60Keywords:
Microtron, Bremsstrahlung, Residual electrons, Electron absorption, Double-layer targetsAbstract
Purpose. The bremsstrahlung received at electron accelerators is widely used to study the characteristics of photonuclear reactions and to solve a wide spectrum (series) of applied problems. Basically the output of bremsstrahlung depends on the electron energy, the material of the target converter (Ta) and its effective thickness. The optimum thickness of the converter (when the output of the bremsstrahlung is at its maximum) is significantly less than the electron
path in it. This is the reason for the presence of high-energy electrons in bremsstrahlung. Therefore, there is a need to clean the bremsstrahlung beams from residual electrons. The aim of the work is to experimentally determine the optimal parameters (thicknesses) of double-layer targets for obtaining separated bremsstrahlung beams for an energy range of 6.5 – 17.75 MeV in electron accelerator M-30 microtron.
Methods. Experimental studies of the relative absorption coefficient of electrons in the investigated materials (C (reactor graphite), Al, Ta) were carried out on the M-30 microtron using the transmission method. The measurements of the outputs of the electrons from the accelerator and the residuals that have passed through the layer of absorbing material were carried out using a pass-through chamber and a Faraday cup, respectively. Studies of the absorption of high-energy photons by single-layer targets (C (20 mm), Al (20 mm)) using activation detectors have been carried out.
Results. The electron absorption coefficients in single- (C (7 – 46 mm), Al (8 – 48 mm), Ta (0.1 – 1 mm)) and in double-layer targets (Ta (1 mm) + C (7 – 39 mm) and Ta (1 mm) + Al (8 – 40 mm)) were measured for the electron energy 6.5 – 17.75 MeV. The values of the total electron absorption thickness for C, Al, and Ta are in good agreement with the calculated values of the practical electron path (database «ESTAR») for the indicated energy range. The experimentally established values of the thicknesses of materials (C and Al at a thickness of Ta – 1 mm) of doublelayer targets, which ensure the complete absorption of electrons for the indicated energy range. The absorption of high-energy photons by single-layer targets (C (20 mm), Al (20 mm)) for bremsstrahlung energy of 17.5 MeV was evaluated.
Conclusions. The optimal parameters (thicknesses) of double-layer targets (Ta (1mm) + C (20 mm) and Ta (1 mm) + Al (20 mm)) or (Ta (1mm) + C (39 mm) and Ta (1 mm) + Al (32 mm)) were established experimentally to form the separated bremsstrahlung beams in the electron accelerator – M-30 microtron for energy region 6.5 ч 17.75 MeV. The use of two-layer targets allows us to carry out procedures to form of high-energy photon beams with the parameters necessary for performing specific experimental studies on electronic accelerators, which will increase the accuracy and reliability of the results.
References
Starovoitova V. High intensity photon sources for activation analysis / V. Starovoitova, C. Segebade // J. Radioanal. Nucl. Chem. – 2016. – V. 310, Iss. 1. – P. 13–26.
Shahzad A. Design and development of the 6 – 18 MeV electron beam system for medical and other applications / A. Shahzad, A.B. Phatangare, V.D. Bharud, M.S. Bhadane, C.D. Tahakik, B.J. Patil, S.S. Dahiwale, S.T. Chavan, S.N. Pethe, S.D. Dhole, V.N. Bhoraska // Radiation effects & Defects in solids – 2017. – V. 172, Is. 11–12. – P. 931–951.
Versteegen M. Low-energy modification of the γ- strength function of the odd-even nucleus 115In / M. Versteegen, D. Denis-Petit,V. Meot, T. Bonnet, M. Comet, F. Gobet, F. Hannachi, M. Tarisien, P. Morel, M. Martini, S. Peru // Phys. Rev. C – 2016. – V. 94. 044325.– P. 13.
Ko J. Characteristic analysis of a photon converter in a medical linac using GEANT4 / J. Ko, B.Y. Kim, Y.S. Kim // Vibroengineering Procedia – 2017. – V. 14. – P. 256–259.
Dixon D.A. Validation of the MCNP6 electron-photon transport algorithm: multiplescattering of 13 - and 20 - MeV electrons in thin foils / A.D. Dixon, H.G. Hughes // EPJ Web of Conferences – 2017. – V. 153. 06021.– P. 6.
Kovalev V.P. Dependence of bremsstrahlung yield on target thickness and atomic number for 12 – 22 MeV electrons / V.P. Kovalev, V.P. Kharin, V.V. Gordeev, M.S Borisov // At Energy – 1971. – V. 31, Is. 3. – P. 1028–1031.
Kim Y.S.Estimation of photoneutron yield in linear accelerator with different collimation systems by Geant4 and MCNPX simulation codes / Y.S. Kim, Z. Khazaei, J. Ko, H. Afarideh, M. Ghergherehchi // Phys. Med. Biol. – 2016. – V. 61. – P. 2762–2779.
Hai-Bo Xu Monte Carlo simulation for bremsstrahlung and photoneutron yields in highenergy x-ray radiography / Xu Hai-Bo, P. Xian-Ke, C. Chao-Bin // Chin. Phys. B – 2010. – V. 19. 062901. – P. 1–8.
Electron and Photon attenuation [Електронний ресурс] // Режим доступу: http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
Varlamov A.V. Atlas of giant dipole resonance parameters and graphs of photonuclear reaction cross sections / A.V. Varlamov, V.V. Varlamov, D.S. Rudenko, M.E. Stepanov // INDC(NDS)-399, Int. Atomic Energy Agency, Int. Nuclear Data Committee. – 1999. – P. 321.
Ishkhanov B.S. Bremsstrahlung target for studying photonuclear reactions in the giant dipole resonance energy region / B.S. Ishkhanov, S.Yu. Troschiev // Moscow University Physics Bulletin – 2010. – V. 65, No. 1. – P. 39–42.
Gil Y.M. Monte Carlo simulation study of bremsstrahlung produced by 9 MeV electron linear accelerator / Y.M. Gil, Y.S. Lee, M.H. Cho, W. Namkung // KPS Conference Posters in Physics. Sungkyunkwan University. – April 23-24, 2004. – P. 8.
Sujoy C., Bandyopadhyay T., Roy A. Study of the variation of photo-neutron spectrum with various moderators generated using electron linac / C. Sujoy, T. Bandyopadhyay, A. Roy // Proceedings of the seventh DAE-BRNS Indian particle accelerator conference: book of abstracts. Mumbai (India). – 21-24 Dec 2015. – P. 3.
Virgil’ev Yu.S. Reactor Graphite / Yu.S. Virgil’ev, I.P. Kalyagina // Inorganic Materials – 2003. – V. 39 (1). – P. S46–S58.
Virgiliev Yu.S. Reactor graphite: development, production and properties / Yu.S. Virgiliev, A.N. Seleznev, A.A. Sviridov, I.P. Kalyagina // Russian Chemical Journal – 2006. – T. 50, No 1.– P. 4–12.
Bakalyarov A.M. Optimization of the extraction facilities of an electron accelerator - bremsstrahlung source for the pulsed photonuclear metod / A.M. Bakalyarov, M.D. Karetnikov, V.I. Lebedev, G.V. Yakovlev // Atomic Energy – 2009. – V. 106, No. 3. – P. 206–212.
Парлаг О.О. Визначення вмісту фотонейтронів у гальмівному випромінюванні мікротрона М-30 активаційними детекторами / О.О. Парлаг, О.І. Лендел, В.М. Головей, В.Т. Маслюк, Т.Й. Маринець, М.М. Биров // Наук. вісник Ужгородського ун-ту. Серія Фізика – 2010. – Т. 28. – С. 99–106.
Thiep T.D. Determination of the total bremsstrahlung photon flux from electron accelerators by simultaneous activation of two monitors / T.D.Thiep, T.T. An, N.T. Khai, N.T. Vinh, P.V. Cuong, Iu.P. Gangrski, A.G. Belov, O.D. Maslo // Phys. Part. Nuclei Lett. – 2012. – V. 9. – P. 648–655.
Skakun Ye. Reaction rates of the 113In(γ, n)112mIn and 115In(γ, n)114mIn / Ye. Skakun, I. Semisalov, V. Kasilov, V. Popov, S. Kochetov, V. Maslyuk, V. Mazur, O. Parlag, I. Gajnish// J. Phys.: Conf. Ser. – 2016. – V. 665. 012040 – P. 1–4.
Decay Radiation database version of 1/3/2018 [Електронний ресурс] // Режим доступу: https://www.nndc.bnl.gov/nudat2/indxdec.jspl.
Лендєл О.І. Напівемпіричне описання абсолютної ефективності Ge(Li)-та HPGe-детекторів для фотоподільних експериментів / О.І. Лендєл, О.О. Парлаг, В.Т. Маслюк // Наук. вісник Ужгородського ун-ту. Серія Фізика. 2009. – Т. 25. – С. 95–99.
Pylypchynets I. Empirical formula for the HPGe-detector efficiency dependence on energy and distance / I. Pylypchynets, A. Lengyel, O. Parlag, V. Maslyuk, I. Potoki// J Radioanal Nucl Chem – 2019. – V. 319. – P. 1315–1319.
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Scientific Herald of Uzhhorod University.Series Physics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).