Description of the longitudinal electromagnetic waves by the Maxwell equations

Authors

DOI:

https://doi.org/10.24144/2415-8038.2019.45.116-124

Keywords:

The Maxwell equations, Electromagnetic field, Classical electrodynamics, Longitudinal electromagnetic waves

Abstract

Purpose. The long time discussion on existence, or not existence, of longitudinal electromagnetic waves both in nature and in Maxwell classical electrodynamics is under consideration. The modern experiments on the existence of such waves are reviewed briefly. The link between the longitudinal electromagnetic waves and the system of Maxwell equations is demonstrated.

Methods. Maxwell classical electrodynamics, Fourier method, Fourier transform, amplitude analysis.

Results. The longitudinal wave component of the electric field strength vector is found as an exact solution of the standard Maxwell equations with specific currents and charges of the gradient type. The corresponded scalar wave component, which is propagated in the same direction, is found as well. The longitudinal components of both electric and magnetic field strengths, together with two corresponded scalar waves, are found as the exact solution of generalized Maxwell equations, which are characterized by the maximally high symmetry properties.

Conclusions. The analysis of found solutions demonstrates that longitudinal components are located near the corresponded current and charge densities, which are the sources of such fields. It follows from the fact that current and charge densities and the corresponded longitudinal components in the solutions are determined by the same amplitudes. The best examples of corresponding physical reality are such big charges as the whole water area of closed sea, the planet Earth in general, their oscillations and corresponding longitudinal electric and scalar waves.

References

Cheney M. Tesla, master of lightning/ M. Cheney, R. Uth. – New York: Barnes and Noble Books, 1999. – 198 p.

Nedic S. Longitudinal waves in electromagnetism – toward a consistent theory / S. Nedic // Galilean Electrodynamics. – 2017. – V. 28, № 5. – P. 91–96.

Ferraro V.C.A. Longitudinal electromagnetic waves between parallel plates / V.C.A. Ferraro, Flint H.T. Ferraro // Proceedings of the Physical Society. – 1941. – V. 53, № 2. – P. 170–181.

Khvorostenko N.P. Longitudinal electromagnetic waves / N.P. Khvorostenko // Russian Physical Journal. – 1992. – V. 35, № 3. – P. 223–227.

Simulik V.M. Connection between the symmetry properties of the Dirac and Maxwell equations. Conservation laws / V.M. Simulik // Theoretical and Mathematical Physics. – 1991. – V. 87, № 1. – P. 386–393.

Krivsky I.Yu. General solution of the Maxwell equations with gradient-like sources and longitudinal electromagnetic waves / I.Yu. Krivsky, V.M. Simulik // Non-Euclidean geometry in modern physics. BGL-1: The 1-st International Conference, 13–16 August 1997: Proceedings. – Uzhgorod, 1997. – P. 193–199.

Кривський І.Ю. Про повздовжні електромагнітні хвилі / І.Ю. Кривський, В.М. Симулик // Науковий вісник Ужгородського університету. Серія Фізика. – 1998. – № 2. – С. 121–125.

Simulik V.M. Longitudinal electromagnetic waves in the framework of standard classical electrodynamics [Електронний ресурс] / V.M. Simulik V.M. // arXiv:1606.01738 [physics.class-ph]. – 2016. – 3 pp .– Режим доступу: https://arxiv.org/abs/1606.01738.

Simulik V.M. Slightly generalized Maxwell classical electrodynamics can be applied to inneratomic phenomena / V.M. Simulik, I.Yu. Krivsky // Annales de la Fondation Louis de Broglie. – 2002. – V. 27, № 2. – P. 303–328.

Simulik V.M. Relationship between the Maxwell and Dirac equations: symmetries, quantization, models of atom / V.M. Simulik, I.Yu. Krivsky // Reports on Mathematical Physics. – 2002. – V. 50, № 3. – P. 315–328.

Simulik V.M. Classical electrodynamical aspect of the Dirac equation / V.M. Simulik, I.Yu. Krivsky // Electromagnetic Phenomena. – 2003. – V. 3, № 1(9). – P. 103–114.

Krivsky I.Yu. Fermi-Bose duality of the Dirac equation and extended real Clifford-Dirac algebra / I.Yu. Krivsky, V.M. Simulik // Condensed Matter Physics. – 2010. – V. 13, № 4. – P. 43101(1–15).

Simulik V.M. Bosonic symmetries, solutions and conservation laws for the Dirac equation with nonzero mass / V.M. Simulik, I.Yu. Krivsky, I.L. Lamer // Ukrainian Journal of Physics. – 2013. – V. 58, № 6. – P. 523–533.

Tidwell S.C. Generating radially polarized beams interferometrically / S.C. Tidwell, D.H. Ford, W.D. Kimura // Applied Optics. – 1990. – V. 29, № 15. – P. 2234–2239.

Dorn R. Sharper focus for a radially polarized light beam / R. Dorn, S. Quabis, G. Leuchs // Physical Review Letters. – 2003. – V. 91, № 23. – P. 233901(1–4).

Miyaji G. Intense longitudinal electric fields generated from transverse electromagnetic waves / G. Miyaji, N. Miyanaga, K. Tsubakimoto, K. Sueda, K. Ohbayashi // Applied Physics Letters. – 2004. – V. 84, № 19. – P. 3855–3857.

Niziev V.G. Generation of polarisation-nonuniform modes in a high-power CO2-laser / V.G. Niziev, V.P. Yakunin, N.G. Turkin // Quantum Electronics. – 2009. – V. 39, № 6. – P. 505–514.

Kovrizhnykh L.M. Interaction of longitudinal and transverse waves in plasma / L.M. Kovrizhnykh, V.N. Tsytovich // Soviet Physics – JETP. – 1964. V. 19, № 6. – P. 1494–1499.

Bogdankevich L.S. Excitation of longitudinal electromagnetic waves in a restricted plasma by injection of relativistic electron beams / L.S. Bogdankevich, A.A. Rukhadze // Soviet Physics – JETP. – 1972. – V. 35, № 1. – P. 126–132.

Petrov E.Yu. Plasmons in QED vacuum / E.Yu. Petrov, A.V. Kudrin // Physical Review. – 2016. – V. A94, № 3. – P. 032107(1–8).

Datsyuk V.V. Properties of longitudinal electromagnetic oscillations in metals and their excitation at planar and spherical surfaces / V.V. Datsyuk, O.R. Pavlyniuk // Nanoscale Research Letters. – 2017. – V. 12, № 1. – P. 473(1–8).

Monstein C. Observation of scalar longitudinal electrodynamic waves / C. Monstein, J.P. Wesley // Europhysics Letters. – 2002. – V. 59, № 4. – P. 514–520.

Rebilas K. On the origin of longitudinal electrodynamic waves / K. Rebilas // Europhysics Letters. – 2008. – V. 83, № 6. – P. 60007(1–5).

Published

2019-12-19

Issue

Section

Статті