The influence of laser radiation on the structure and optical properties of amorphous films in arsenic–antimony–sulphur system
DOI:
https://doi.org/10.24144/2415-8038.2019.46.7-21Keywords:
Chalcogenide films, Transmission spectra, Optical characteristics, Raman spectra, Photostructural transformationsAbstract
Purpose. As40−xSbxS60 amorphous films are suitable for creation of highly efficient, diffraction gratings, optical diffraction elements, optical compact-disks and sensors, waveguides, elements for infrared and nonlinear optics. This paper is devoted to investigation of Raman spectra of glasses and films and transmission spectra of films in As-Sb-S system with the Sb content up to 12 at % and their changes under laser radiation.
Methods. Raman and optical spectroscopy, atomic forse microscopy. The transmission spectra were studied in 400-750 nm range at room temperature using a diffraction monochromator “MDR-23”. The spectral resolution was no worse than 10-3 eV.
Results and discussion: Increased concentration of antimony in the composition of As40−xSbxS60 (0≤x≤12) amorphous films and laser irradiation (λ=530 nm) of them result in the shift of their absorption edge to the longwave range. In this case the pseudogap width Eg decreases, whereas the index n increases. Under the same conditions of irradiation, the largest changes in optical parameters occur in the As36Sb4S60 film. Changes in the optical characteristics of films are caused by photostructural transformations taking place in them under the laser irradiation.
The nanoheterogenous structure of the studied films was established. The structural matrix of As40−xSbxS60 films is built from As(Sb)S3 pyramidal units connected by bridging S atoms. No molecular fragments with Sb-Sb bonds in the structure of films were detected. However, the large amount of structural groups with homopolar As-As (As4S4, As4S3) and S-S bonds (Sn) are present in the structure of films. The laser irradiation of As40−xSbxS60 films leads to the breaking and switching of As-As and S-S bonds in As4S4, As4S3, and Sn type structural fragments. Accompanied with the formation of structural units with heteropolar bonds As-S (AsS3). These structural transformations are related with the decreasing content of molecular fragments possessing homopolar bonds in films matrix.
Conclusions. Transmission and Raman spectra of as-prepared and irradiated As40−xSbxS60 amorphous films were investigated. The nanoheterogenous structure of the studied films was confirmed by Raman spectra. It was established that the growth of the Sb content in composition of films and irradiation induced the absorption edge shift to the longwave region, Eg decreased and n increased. The largest changed in optical parameters of as-prepared and irradiated films occur in the As36Sb4S60 film. These changes are caused by the photostructural transformations, which are accompanied by decreasing in the number of structural groups with homopolar bonds in films matrix.
References
Semak, D.I., Rizak, V.M., Rizak, I.M. (1999), «Photothermostructural Transformations of Chalcogenides» [«Fototermostrukturni peretvorennia khalkohenidiv»], Zakarpattya Publ., Uzhgorod, 392 p.
Stronski, A.V., Vlcek, M., Sklenar, A., Shepeljavi, P.E. Kostyukevich, S.A. Wagner, T. (2000), «Application of As40S60−xSex layers for high-effciency grating production», J. Non. Cryst. Solids. – 2000. – V. 266–269. – P. 973–978.
Kostyukevich, S.A., Shepeliavyi, P.E., Moskalenko, N.L. et al. (2001), «Study of mastering the compactdisks based on inorganic photoresists» [«Issledovanie protsessa masterinha kompakt-diskov na neorhanicheskikh fotorezistakh»], Data Recording, Storage & Processing, V.3, No.4, pp.5-11.
Teteris, J. (2002), «Holographic recording in amorphous chalcogenide semiconductor thin films», J. Optoelectron. Adv. Mater, V. 4, N.3, pp. 687–697.
Kostyukevich, S.A., Shepelyavy, P.E., Svechnikov, S.V. et al. (2002), «Formatiom of diffraction optical elements by using inorganic laser lithography» [«Formuvannia dyfraktsiinykh optychnykh elementiv iz vykorystanniam neorhanichnoi lazernoi litohrafii»] Data Recording, Storage & Processing, V.4, No.3, pp. 3-14.
Teteris, J., Reinfelde, M. (2003), «Application of amorphous chalcogenide semiconductor thin films in optical recording technologies», J. Optoelectron. Adv. Mater., V.5, pp. 1355-1360.
Kostyukevich, S.A., Morozovska, G.M., Minko, V.I. , Shepeliavyi,P.E., Kudryavtsev, A.A., Rubish, V.M., Rubish,V.V., Tverdokhleb,I.V., Kostiukevych1, A.S., Dyrda, S.V., (2004), «Recording the highly efficient diffraction grating by using He-Cd laser», Semiconductor Physics, Quantum Electronics & Optoelectronics, V.7, No.4, pp. 446-451.
Petrov, V.V., Kryuchin, A.A., Kostyukevich, S.A., Rubish V.M. (2007), «Inorganic Photolitography » [«Neorhanichna fotolitohrafiia»], Institute of Metal Physics, NAS of Ukraine, Kyiv, 195 р.
Venger, E.F., Melnichuk, A.V., Stronsky, A.V., (2007), «Photostimulated Process in Semiconductors and Their Practical Application. Chalcogenide Vitreous» [«Fotostimulirovannye protsessy v khalkohenidnykh stekloobraznykh poluprovodnikakh i ikh prakticheskoe primenenie »], Akademperiodika Publ., Kyiv, 283 p.
Rubish, V.M., Trunov, M.L., Lytvyn, P.M. et al. (2010), «Direct method of the surface relief gratings formation in films of chalcogenide glasses» [«Priamyi metod formuvannia poverkhnevykh reliefnykh hratok u plivkakh khalkohenidnykh stekol»], Data Recording, Storage & Processing, V.12, No.2, pp.43-51.
Eggleton, B.J., Davies, B.L., Richardson, K. (2011), «Chalcogenide photonics», Nature photonics, V.5, pp.141-148.
Petrov, V.V., Kryuchin, A.A., Rubish, V.M. (2012), «Materials for Perspective Optoelectronic Devices» [«Materialy perspektivnykh optoelektronnykh ustrojstv»], Naukova dunka-Verlag, Kiev, 336 р.
Indutnyi, I.Z., Kryuchin, A.A., Borodin, Yu.A. et al. (2013), «Optical recording of microand nano-sized relief structures on Ge-Se inorganic resists» [«Opticheskaja zapis mikro i nanorazmernykh relefnykh struktur na neorhanicheskikh rezistakh Ge-Se»], Data Recording, Storage & Processing , V.15, No.4, pp.3-12.
Petrov, V.V., Kryuchin, A.A., Kunitsky, Yu.A. et. al. (2015), «Methods of nanolithograrhy» [«Metody nanolitohrafii»], Naukowa dumka. Verlag, Kyiv, 262 р.
Rubish, V.M., Gera, E.V., Pop, M.M., Maryan, V.M., Kostyukevych, S.O., Moskalenko, N.L., Semak, D.G., Kostyukevych, K.V., Kryuchin, A.A., Petrov V.V. (2009), «Photothermoinduced changes of transmission spectra of As40−xSbxS60 amorphous layers», hrefhttps: //doi.org/10.15407/spqeo12.03.251 Semiconductor Physics, Quantum Electronics & Optoelectronics, V.12, No.3, pp. 251–254.
Rubish, V.M., Pop, M.M., Mykaylo, O.A., Kryuchyn, A.A., Maryan, V.M., Durkot, M.O., Yasinko, T.I., Kostyukevich, S.O., Kostyukevich K.V., (2017), «Laser-induced changes in the optical characteristics of amorphous films of the As-Sb-S system», Scientific Herald of Uzhhorod University Physics series, No. 42, pp.14–26.
Petkov, K. (2002), «Compositional dependence of the photoinduced phenomena in thin chalcogenide films», J. Optoelectron. Adv. Mater., V.4, No. 3, pp. 611-629.
Swanepoul, R. (1983), «Determination of the thickness and optical constants of amorphous silicon», J. Phys. E: Sci. Instrum., V.16, pp.1214-1222.
Shpotyuk, O.I., Savitsky, I.V. (1989), «Thermal Radiation Effects in Glassy Semiconductors of As2S3–Sb2S3 system» [«Radiatsiono-termicheskie effekty v stekloobraznykh poluprovodnikakh sistemy As2S3–Sb2S3»], Ukr. Phys. J., V.34, No.6, pp.894-898.
Shpotyuk, O.I., Shwarts, K.K., Kornelyuk, V.N. et.al (1991), «Destruction Polymerization Transformations in Chalcogenide Vitreous» [«Destruktsionno-polimerizatsionnye prevrashchenia v khalkohenidnykh stekloobraznykh poluprovodnikakh»], Semiconductors. Institute of Physics, Latvian AS Publ., Riga, 105 p.
Balitska V.O., Shpotyuk O.I. (1998), «Radiation-induced structural transformations in vitreous chalcogenide semiconductors», J. Non-Cryst. Solids., V. 227-230, pp.723-727.
Shpotyuk O.I., Filipecki. J. (2003), «Free volume in vitreous chalcogenide semiconductors: possibilities of positron annihilation lifetime study», Wydawnictwo WSP Czestochowa, 114 р.
Balitska V., Shpotyuk Y., Filipecki J., Shpotyuk O. (2010), «Radiation-induced defects in As-Sb-S glass», IOP Conf. Series: Mat. Science and Engineering, V.15, pp. 012054, (1-6).
Turyanitsa I.D., Vodop’yanov L.K., Rubish V.M., Kengerlinskii, L.Yu., Dobosh, M.V. (1986), «Raman spectra and dielectric properties of glasses of the Sb-S-I system», J. Appl. Spectroscopy, V.44, Iss.5, pp. 501-504.
Kato M., Onari S., Arai T. (1983), «Far infrared and Raman spectra in (As2S3)100−x(Sb2S3)x glasses», Jap. J. Appl. Phys., V.22, No.9, pp. 1382-1387.
El Idrissi Raghni M.A., Lippens P.E., Olivier-Fourcade J., Jumas J.C. (1995), «Local structure of glasses in the As−2S3-Sb2S3 system», J. Non-Cryst. Solids., V.192&193, pp.191-194.
Rubish, V.M., Rubish, V.V., Leonov, D.S. et al. (2004), «Features of the structure and structural transformations in chalcogenide glassy semiconductors» [«Osoblyvosti struktury i strukturnykh peretvoren v khalkohenidnykh sklopodibnykh napivprovidnykakh»], Nanosystems, nanomaterials, nanotechnologies, V.2, No.2, pp.417–440.
Kostyukevich S.A., Shepeliavyi P.E., Morozovska G.M., (2005), «Information recording in thin layers of chalcogenide semiconductors based on photoinduced transformations», [«Zapis informatsii v tonkih sloyah halkogenidnyih poluprovodnikov, osnovannaya na fotoindutsirovannyih preobrazovaniyah»], J. Opt. Technology, V.72, No.5, pp. 76–80.
Kostyukevych S.A., Kryuchyn A.A., Morozovska A.N., Petrov, V.V., Shepeliavyi, P.E., Kostyukevich, E.V., Tverdokhleb, I.V. (2005), «Investigation of the Process for Manufacturing Optoelectronic Devices Using Non-Organic Photoresists», Proc. of SPIE, V. 5713, pp.43–53.
Kryuchyn A.A., Petrov V.V., Rubish V.M. Trunov, M.L., Lytvyn, P.M., Kostyukevich, S.A. (2018), «Formation of Nanoscale Structures on Chalcogenide Films», Physica status solidi. B., V.255, No. 6, pp. 1700405 (1-5).
Downloads
Published
Issue
Section
License
Copyright (c) 2019 Scientific Herald of Uzhhorod University. Series Physics

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Authors who publish with this journal agree to the following terms:- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).